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14.1 Lasso

For the model Y = Xβ? + ε, where ε ∈ SGn(σ2), the Lasso solution is

β̂ := β̂Lasso ∈ arg min
β∈Rd

1

2n
‖Y −Xβ‖2 + λn‖β‖1

where λn > 0 is the regularization parameter chosen by the user. The penalty forces the solution to the
least-squares problem to have relatively small `1-norm to promote sparse solutions.

Theorem 14.1 Let A be the event {λn ≥ n−1‖XT ε‖∞}. If A holds, then

‖X(β̂ − β?)‖2

n
≤ 4‖β?‖1λn (14.1)

Proof: [Theorem 14.1].
First, we establish the basic inequality

1

2n
‖X(β̂ − β?)‖2 ≤ εTX(β̂ − β?)

n
+ λn(‖β?‖1 − ‖β̂‖1). (14.2)

This follows from the simple fact that

1

2n
‖Y −Xβ̂‖2 + λn‖β̂‖1 ≤

1

2n
‖Y −Xβ?‖2 + λn‖β?‖1.

From the linearity of the true model, we can plug in Xβ? + ε and simplify to get (14.2).

Now we bound 1
2n‖X(β̂ − β?)‖2.

1

2n
‖X(β̂ − β?)‖2 ≤ εTX(β̂ − β?)

n
+ λn(‖β?‖1 − ‖β̂‖1)

(via Hölder’s inequality) ≤ ‖X
T ε‖∞‖β̂ − β?‖1

n
+ λn(‖β?‖1 − ‖β̂‖1)

(Triangle inequality) ≤ ‖X
T ε‖∞
n

(‖β̂‖1 + ‖β?‖1) + λn(‖β?‖1 − ‖β̂‖1)

= ‖β̂‖1
(
‖XT ε‖∞

n
− λn

)
+ ‖β?‖1

(
‖XT ε‖∞

n
+ λn

)
≤ 2λn‖β?‖1
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where the last inequality follows since ‖X
T ε‖∞
n − λn < 0 by assumption.

There are several things to note in Theorem 14.1. First, the bound depends on the user-chosen parameter λn
(which itself shows dependency on the sample size n). Second, the framing of the problem does not explicitly
write probabilities. Implicitly, we see that A is a random quantity, and we can only learn something if P(A)
tends to one.

14.1.0.1 Choices of λn

It is clear that we would like λn to be as small as possible, but we need the assumption to still hold. Because
we do not observe the true ε, we cannot solve for λn. But when can we get A to occur? We will need to add
an extra assumption.

Assume maxj‖Xn‖ ≤
√
Cn where Xj is the jth column of the design matrix X, and we have some C > 0.

Recall that ε ∈ SG(σ2). Then for all t ≥ 0

P
(
‖XT ε‖∞

n
≥ t
)

= P

(
maxj |XT

j ε|
n

≥ t

)

(Union bound) ≤
∑
j

P

(
|HT

j ε|
n
≥ t

)

=
∑
j

P

(
|HT

j ε|
n||Xj ||2

≥ t

||Xj ||2

)

(Subgaussianity, ‖Xj‖ ≤
√
Cn) ≤ 2d exp

(
− t2n

2σ2C

)
= exp

(
− t2n

2σ2C
+ log 2d

)
≤ δ < 1

where the last inequality chooses

t =

√
2σ2C

n
(log 1/δ + log 2d).

.

Note that in practice, we do not have σ2 (otherwise we might solve for t). This result gives us the following
corollary.

Corollary 14.2 (Slow rate for the Lasso) With probability 1− δ,

‖X(β̂ − β?)‖2

n
≤ 4‖β?‖1σ

√
c

n
(log 1/δ + log 2d)

Why do we call this a “slow” rate? Recall best subset selection with the `0 penalty. We can derive a
bound of the order

‖X(β̂ − β?)‖2

n
. σ2‖β?‖0

log n+ log d

n
.

From Corollary 14.2, if we pick δ = 1/n, then

‖X(β̂ − β?)‖2

n
. σ‖β?‖1

√
log n+ log d

n
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with probability 1− 1/n by choosing t accordingly. The square root here is not ideal. However, this is still
a good result—the Lasso solution is sparse and works well in high dimensions (d > n).

14.1.1 Fast rate for the Lasso

Can we be more computationally efficient, and still do as well as the optimal? Notice if λmin(XTX) ≥ γn > 0,
then

‖β̂ − β?‖ ≤ 1

γn
‖X(β̂ − β?)‖2.

If d > n, then λmin(XTX) = 0. We see that when XTX is badly conditioned, the solution is unstable and
small perturbations turn into large changes.

To get away from the slow rate, we need to add additional constraints on X. This can be formalized in
several ways, but the basic underlying idea is the same: get γn away from zero.

One of the more milder ways of controlling γn is the restricted eigenvalue condition on XTX/n.

Definition 14.3 (Restricted Eigenvalue (RE) condition)

For some α ≥ 1, and subset S ⊆ {1, . . . , d}, S 6= ∅, let

Cα(S) = {∆ ∈ Rd : ‖∆S{‖1 ≤ α‖∆S‖1},

where S{ = {1, . . . , d}\S and ∆S = {∆j , j ∈ S}.

We say that an n× d matrix X satisfies the RE(α, κ) condition w.r.t. S if

1

n
‖X∆‖2 ≥ κ‖∆‖2 ∀∆ ∈ Cα(S)

where κ > 0.

Intuition If we take the vector ∆ = β̂ − β?, we have shown that ‖X∆‖2/n can be small. But from this
we cannot conclude that ‖∆‖2 is small since the function

∆→ 1

n
‖X∆‖2 (14.3)

may be very flat around β̂ − β?, i.e. in the unfavorable setting where the loss function is flat around its
minimizer β?, it is not necessarily true that a small loss difference implies a small error (for a visual example,
see Wainwright Figure 7-5).

If we have that λmin(XTX)/n is bounded away from zero, say in fact that we have

‖∆‖2κ ≤ 1

n
‖X∆‖2

where 0 < κ ≤ λmin(XTX/n), then we know we have enough curvature. We only need this to be true for
certain ∆, specifically we require the function (14.3) to be curved along ∆ ∈ Cα(S), where S is the support
of β?.
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Context of the RE condition The RE condition was first developed in the field of compressed sensing,
and was later adapted to Lasso. We noted the RE condition is one of the milder restrictions; there exist
stronger criteria (also historically-rooted in compressed sensing) that we could use to derive fast rates.

One such example is the pairwise incoherence condition

max
j,k∈{1,...,d}

∣∣∣xjxk
n
− 1(j 6= k)

∣∣∣ ≤ 1

Cs
for C > 0, n ∈ N+

which implies the RE condition. This condition is more interpretable: it says that we cannot have overly
correlated columns of X.

A natural generalization of the pairwise incoherence condition to larger subsets of columns is the restricted
isometry property, where for some δ ∈ (0, 1)∥∥∥∥XT

SXS

n
− Ik

∥∥∥∥
op

≤ δk

for all S of size k, where XS is a sub-matrix of X with columns in S. This is equivalent to stating that all
the eigenvalue of XT

SXS fall into the interval [1− δk, 1 + δk], and has the same idea of restricting correlation
between columns.

For futher details, see Wainwright 7.2.3, which describes the relationship between resticted nullspace, re-
stricted eigenvalue, pairwise incoherence, and restricted isometry properties.

Next lecture, we will continue discussion on fast rates of convergence for Lasso.


