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Recall that last time we proved the slow rate for the LASSO in mean estimation. Today we will derive
conditions under which the LASSO does achieve best subset selection. As we will see, this is only true under
very strong assumptions.

One key (but strong) assumption is a condition on the eigenvalues of XTX. This is known as the RE
(restricted eigenvalue) condition. In the first part of this lecture, we will use this condition to prove the so-
called fast rate of the LASSO. In the second part of this lecture, we will look into “sparsistency,” which shows
LASSO’s ability to recover the true support of β∗. Next week, we will cover so-called Oracle Inequalities.

15.1 Fast Rate of the LASSO

As usual, let S ⊆ {1, . . . , d}. This is the notation we will use for a particular class of vectors in Rd:

Cα(S) = {∆ ∈ Rd : ‖∆Sc‖1 ≤ α‖∆S‖1}.

In English, Cα(S) is the set of vectors where the values of coefficients in S are sufficiently larger than the
coefficients not in S. You could imagine that if the coefficients in vs. not in S are not “distinguishable”
enough from each other, it might be too difficult for us to recover the coefficients in S.

Definition 15.1 X ∈ Rd×n satisfies the RE(α, k) condition for k > 0 when

1

n
‖X∆‖2 ≤ k‖∆‖2

for all ∆ ∈ Cα(S).

Note that this requirement is quite artificial. Now we will see a theorem that uses this definition to prove
a fast convergence rate for the LASSO. The first three requirements are very familiar to us: they are all we
needed to assume for the slow rate of the LASSO in the last lecture. The fifth assumption is what is so
strong, and necessary, for a faster rate on the errors 1

n‖X(β̂ − β∗)‖2 and ‖β̂ − β∗‖. (It is worth noting that
this theorem implicitly focuses on d > n.)

Theorem 15.2 Assume that:

1. Y = Xβ∗ + ε;

2. X is fixed;

3. ε ∈ SG(σ2);
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4. S = support(β∗), |S| = s;

5. X satisfies the RE(3, k) condition for some k > 0.

Then, if

λn ≥ 2
‖XT ε‖∞

n

any LASSO solution β̂ satisfies

1. 1
n‖X(β̂ − β∗)‖2 ≤ 9λ2n

s
k ;

2. ‖β̂ − β∗‖ ≤ 3
k

√
sλn.

Note two things: (1) as Heejong pointed out, the last condition is always true if XTX is positive semidefinite;
(2) that there is no way to check that condition without checking over all possible S, at which point you
may as well just do brute-force subset selection.

Remark 15.3 If we plug in λ ∼ σ
√

log d
n + log(1/δ) then we get essentially the same guarantees as best

subset selection (s = ‖β∗‖0).

Now we will prove the theorem. Our strategy is to (1) show that for the choice of λn given in the theorem,

∆̂ = β̂−β∗ ∈ C3(S) (by deriving a basic inequality and using Hölder’s Inequality and the Triangle Inequality);
(2) use the RE condition and simply rearrange. Note that this proof technique is the same for other norms
(not just for LASSO).

Proof: We first show that, for this choice of λn, ∆̂ = β̂ − β∗ ∈ C3(S). We get the basic inequality from the

fact that β̂ minimizes the LASSO equation:

1

2n
‖Y −Xβ̂‖2 + λn‖β̂‖1 ≤

1

2n
‖Y −Xβ∗‖2 + λn‖β∗‖1.

Plugging in the fact that Y = Xβ∗ + ε and rearranging, we get:

0 ≤ 1

2n
‖X∆̂‖2 ≤ εTX∆̂

n
+ λn[‖β∗‖1 − ‖β̂‖1]. (15.1)

Note that by the way we have defined ∆̂ and the definition of S, we have that:

‖β∗‖1 − ‖β̂‖1 = ‖β∗S‖1 − ‖β∗S + ∆̂S‖1 − ‖β̂Sc‖1 (15.2)

since ‖β∗S‖1 + ‖β̂Sc‖1 = ‖β∗S‖1 − ‖β∗S + ∆̂S‖1 − ‖∆̂Sc‖1, but ‖β̂Sc − β∗Sc‖1 = ‖β̂Sc‖1 because β∗Sc = 0.

So plugging in 15.1 to 15.2 we get:

0 ≤ 1

2n
‖X∆̂‖2 ≤ εTX∆̂

n
+ λn[‖β∗S‖1 − ‖β∗S + ∆̂S‖1 − ‖∆̂Sc‖1]

and using Hölder’s Inequality on the first term of the right-hand side (and moving the 2 to the other side):

0 ≤ 1

n
‖X∆̂‖2 ≤ 2

‖XT ε‖∞‖∆̂‖1
n

+ 2λn[‖β∗S‖1 − ‖β∗S + ∆̂S‖1 − ‖∆̂Sc‖1]



Lecture 15: October 22 15-3

and using the Triangle Inequality on ‖β∗S − ∆̂S‖1 ≥ ‖β∗S‖1 − ‖∆̂S‖1:

0 ≤ 1

n
‖X∆̂‖2 ≤ 2

‖XT ε‖∞‖∆̂‖1
n

+ 2λn[‖∆̂S‖1 − ‖∆̂Sc‖1]

and finally using the fact that λn ≤ 2‖XT ε‖∞‖∆‖1/n:

0 ≤ 1

n
‖X∆̂‖2 ≤ λn‖∆̂‖1 + 2λn[‖∆̂S‖1 − ‖∆̂Sc‖1].

Split ‖∆̂‖1 into ‖∆̂S‖1 and ‖∆̂Sc‖1:

0 ≤ 1

n
‖X∆̂‖2 ≤ λn‖∆̂S‖1 + λn‖∆̂Sc‖1 + 2λn[‖∆̂S‖1 − ‖∆̂Sc‖1]

and combine the right-hand side to yield

0 ≤ λn[3‖∆̂S‖1 − ‖∆̂Sc‖1]

which implies that ‖∆̂Sc‖1 ≤ 3‖∆̂S‖1, which means that ∆̂ = β̂ − β∗ ∈ C3(S). Now, notice that

λn[3‖∆̂S‖1 − ‖∆̂Sc‖1] ≤ 3λn‖∆̂S‖1 ≤ 3λn∆̂‖1 ≤ 3λn
√
s‖∆̂S‖2 ≤ 3λn

√
s‖∆̂‖2

because ∀ x ∈ Rd, ‖x‖2 ≤ ‖x‖1 ≤
√
d‖x‖2. Now we use the RE(3, k) condition to show:

1

n
‖X∆̂‖2 ≤ 3λn

√
s
‖X∆̂‖√

n

1√
k

dividing out the right-hand side and squaring yields:

1

n
‖X∆̂‖2 ≤ (3λn

√
s/k)2

which implies that
‖X∆̂‖2

n
≤ 9λ2n

s

k

as claimed.

Similarly for estimating β∗ by the RE(3, k) condition:

‖∆̂‖ = ‖β̂ − β∗‖ ≤ 1√
n
‖X∆̂‖ 1√

k
≤ 3λn

√
s/k

1√
k

= 3λn
√
s/k.

15.2 Best Subset Selection

We can do model selection in high dimensions as well; again, with very strong assumptions. Notice that
nothing we have done so far shows that the LASSO recovers the true support. The result we will discuss
next is due to [1] (which was at first rejected from the Annals of Statistics, then accepted three years later
in IEEE).

Let S = support(β∗). Ideally we want to recover S, the true support. See Theorem 7.21 in [2].

Theorem 15.4 Assume that
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1. λmin
XT

SXS

n ≥ Cmin > 0;

2. maxJ ‖XJ‖ ≤
√
n;

3. maxJ∈Sc |XT
J XS(XT

SXS)−1sgn(β∗)| < 1;

4. ‖XT
ScXS(XT

SXS)−1‖∞ < 1− γ for γ ∈ (0, 1),

then

1. support(β̂) ⊆ S;

2. ‖β̂S − β∗S‖ ≤ λngn(λn), where

gn(λn) =

∥∥∥∥∥
(
XT
SXS

n

)−1∥∥∥∥∥
∞

+
4σ
√
cmin

.

The first two assumptions in this theorem are not strong, and the third one is known as the βmin condition.
It is just a technicality. The fourth condition is called the incoherence condition, and this is very strong. It
cannot be verified in practice.

If we want to achieve sparsistency, then

min
j∈S
|β∗j | > gn(λn) =⇒ support(β̂) = S.

This is not really useful in practice and requires very strong assumptions. The incoherence condition is
essentially necessary to gain this result. In addition, many papers you read on this assume X is fixed, when
in practice we obviously want a random design.

Next week, we will be covering Oracle Inequalities.
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