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32.11. 32.21 Absolute continuity of a set function ¢ with respect to a measure u is
defined just as if ¢ were itself a measure: u(A) =0 must imply that ¢(A4)=0.
Show that, if this holds and u is o-finite, then ¢(A)=(,fdu for some
integrable f. Show that A*=[w: f(0)>0] and A =[w: f(w)<0] give a
Hahn decomposition for ¢. Show that the three variations satisfy ¢ *(A4) =
J4ft du, ¢ (A)=[,f du,and |pl(A) = [,|f| du. Hint: To construct f, start
with (32.2).

32.12. 1t A signed measure ¢ is a set functicn that satisfies (32.1) if A4, A,,... are
disjoint and may assume one of the values +o and —oo but not both. Extend
the Hahn and Jordan decompcsitions to signed measures

32.13. 31.221 Suppose that p and » are a probability measure and a o-finite
measure on the line and that » <« x. Show that the Radon -Nikodym derivative
f satisfies
- +
fim v(x—h,x+h]
h—¢ u(x—h,x+h]

=f(x)
on a set of pu-measure 1.

32.14. Find on the unit interval unccuntably many probability measures u,,0 <p <1,
with supports S, such that . {x} =0 for each x and p and the §, are disjoint
in pairs.

32.15. Let &, be the field consisting of the finite and the cofinite sets in an
uncountable €. Define ¢ on %, by taking ¢(A) to be the number of points in
A if A is finite, and the negative of the number of points in A° if A is cofinite.
Show that (32.1) holds (this is not true if € is countable). Show that there are
no negative sets for ¢ (except the empty set), that there is no Hahn decomposi-
tion, and that ¢ does not have bounded range.

SECTION 33. CONDITIONAL PROBABILITY

The concepts .of conditional probability and expected value with respect to a
o-field underlie much of modern probability theory. The difficulty in under-
standing these ideas has to do not with mathematical detail so much as with
probabilistic meaning, and the way to get at this meaning is through calcula-
tions and examples, of which there are many in this section and the next.

The Discrete Case

Consider first the conditional probability of a set A with respect to another
set B. It is defined of course by P(A|B)=P(ANB)/P(B), unless P(B)
vanishes, in which case it is not defined at all.

It is helpful to consider conditional probability in terms of an observer in
possession of partial information.” A probability space (£, &, P) describes

TAs always, observer, information, know, and so on are informal, nonmathematical terms; see the
related discussion in Section 4 (p. 57).
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the working of a mechanism, governed by chance, which produces a result
distributed according to P; P( A) is for the observer the probability that the
point w produced lies in 4. Suppose now that  lies in B and that the
observer learns this fact and no more. From the point of view of the observer,
now in possession of this partial information about w, the probability that w
also lies in A is P(A|B) rather than P(A). This is the idea lying back of the
definition.

If, on the other hand, w happens to lie in B¢ and the observer learns of
this, his probability instead becomes P(A|B€). These two conditional proba-
bilities can be linked together by the simple function

; P(AIB) if w€B,
(33.1) H@) =\ peaiB) it wese

The observer learns whether w lies in B or in B€; his new probability for the
event w €A is then just f(w). Although the observer does not in general
know the argument w of f, he can calculate the value f(w) because he knows
which of B and B¢ contains w. (Note conversely that from the value f(w) it
is possible to determine whether w lies in B or in B¢, unless P(A|B) =
P(A|B¢)—that is, unless A and B are independent, in which case the
conditional probability coincides with the unconditional one anyway.)

The sets B and B¢ partition (), and these ideas carry over to the general
partition. Let B,, B,,... be a finite or countable partition of {} into Fsets,
and let  consist of all the unions of the B,. Then 4 is the o-field generated
by the B,. For A in &, consider the function with values

P(ANB;)

P(B) if we B, i=1,2,....

(33.2) f(w) =P(AIB,) =

If the observer learns which element B, of the partition it is that contains o,
then his new probability for the event w €4 is f(w). The partition {B,}, or
equivalently the o-field &, can be regarded as an experiment, and to learn
which B, it is that contains w is to learn the outcome of the experiment. For
this reason the function or random variable f defined by (33.2) is called the
conditional probability of A given & and is denoted P[ A||#]. This is written
P[ A||#], whenever the argument « needs to be explicitly shown.

Thus P[A||#] is the function whose value on B, is the ordinary condi-
tional probability P(A|B,). This definition needs to be completed, because
P(A|B;) is not defined if P(B;)=0. In this case P[A|l#] will be taken to
have any constant value on B;; the value is arbitrary but must be the same
over all of the set B,. If there are nonempty sets B. for which P(B,) =0,
P[A||#] therefore stands for any one of a family of functions on ). A
specific such function is for emphasis often called a version of the conditional
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probability. Note that any two versions are equal except on a set of probabil-
ity 0.

Example 33.1. Consider the Poisson process. Suppose that 0 <s < ¢, and
let A=[N,=0] and B;=[N,=i], i=0,1,.... Since the increments are
independent (Section 23), P(A|B;)=P[N,=0]P[N,— N, =i]/P[N, =], and
since they have Poisson distributions (see (23.9)), a simple calculation reduces
this to

(33.3) P[Ns=0||f]w=(1—%)i foeB, i=0,12,...

Since i = N,(w) on B, this can be written

s N(w)
(33.4) PIN, =015, = (1-7)

Here the experiment or observation corresponding to {B;} or & deter-
mines the number of events —telephone calls, say—occurring in the time
interval [0, ¢]. For an observer who knows this number but not the locations
of the calls within [0, ¢], (33.4) gives his probability for the event that none of
them occurred before time s. Although this observer does not known w, he
knows N,(w), which is all he needs to calculate the right side of (33.4). [ ]

Example 33.2. Suppose that X, X,,... is a Markov chain with state
space S as in Section 8. The events

(33.5) [Xy=ig,..., X, =1i,]

form a finite or countable partition of () as i,...,i, range over S. If .4, is
the o-field generated by this partition, then by the defining condition (8.2) for
Markov chains, P[ X, ,,=jll#], =p, ; holds for w in (33.5). The sets

(33.6) [X.=i]

for i € § also partition (), and they generate a o-field .!j,o smaller than <.
Now (8.2) also stipulates P[X,,, =jll£’], =p; for @ in (33.6), and the
essence of the Markov property is that

(33.7) P(X,., =ilZ) =P[X,., =il£)]. .

The General Case

If & is the o-field generated by a partition B,, B,,..., then the general
element of ¢ is a disjoint union B,.lUB,.ZU ---, finite or countable, of
certain of the B;. To know which set B, it is that contains w is the same thing
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as to know which sets in & contain @ and which do not. This second way of
looking at the matter carries over to the general o-field & contained in .
(As always, the probability space is (2, %, P).) The o-field & will not in
general come from a partition as above.

One can imagine an observer who knows for each G in & whether w € G
or w <G Thus the o-field & can in principle be identified with an
experiment or observation. This is the point of view adopted in Section 4; see
p. 57. It is natural to try and define conditional probabilities P[ A||«#] with
respect to the experiment . To do this, fix an A4 in & and define a finite
measure » on & by

»(G)=P(ANG), Ged.

Then P(G) = 0 implies that »(G) = 0. The Radon—Nikodym theorem can be
applied to the measures » and F on the measurable space ({1, #) because
the tirst one is absolutely continuous with respect to the second.” It follows
that there exists a function or random variable f, measurable & and
integrable with respect to P, such that' P(A N G) = »(G) = [;fdP for all G
in £.

Denote this function f by P[A||#]. It is a random variable with two
properties:

(i) PlA|l#Z) is measurable & and integrable.
(ii) P[All#Z] satisfies the functional equation

(33.8) fGP[AII&’]dP=P(AnG), Ged.

There will in general te many such random variables P[ A||#], but any two
of them are equal with probability 1. A specific such random variable is
called a version of the conditional probability.

If 4 is generated by a partition B,, B,,... the function f defined by
(33.2) is measurable .¢ because [w: f(w) €H] is the union of those B; over
which the constant value of f lies in H. Any G in # is a disjoint union
G = U,B;,and P(ANG) =L, P(A|B;)P(B,), so that (33.2) satisfies (33.8)
as well. Thus the general definition is an extension of the one for the discrete
case.

Condition (i) in the definition above in effect requires that the values of
P[ A||#] depend only on the sets in 4. An observer who knows the outcome
of £ viewed as an experiment knows for each G in ¢ whether it contains w
or not; for each x he knows this in particular for the set [w": P[Al|Z], =x],

"Let P, be the restriction of P to & (Example 10.4), and find on (£, &) a density f for v with
respect to P,. Then, for G € &, v(G) = [;fdP, = [sfdP (Example 16.4). If g is another such
density, then P[f#gl=P,)f #g]=0.
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and hence he knows in principle the functional value Pl A||], even if he
does not know w itself. In Example 33.1 a knowledge of N,(w) suffices to
determine the value of (33.4)—w itself is not needed.

Condition (ii) in the definition has a gambling interpretation. Suppose that
the observer, after he has learned the outcome of £, is offered the opportu-
nity to bet on the event A (unless A lies in &, he does not yet know whether
or not it occurred). He is required to pay an entry fee of P[ A||#¢] units and
will win 1 unit if A occurs and nothing otherwise. If the observer decides to
bet and pays his fee, he gains 1 — P[ A||#] if A occurs and —P[A|Z]
otherwise, so that his gain is

(1-P[AIZ D1, + (-P[AIZ]) L, =1,-P[AllZ].

If he declines to bet, his gain is of course 0. Suppose that he adopts the
strategy of betting if G occurs but not otherwise, where G is some set in &.
He can actually carry out this strategy, since after learning the outcome of
the experiment & he knows whether or not G occurred. His expected gain
with this strategy is his gain integrated over G: )

fG(IA ~P[ All£])dP.

But (33.8) is exactly the requirement that this vanish for each G in 4.
Condition (ii) requires then that each strategy be fair in the sense that the
observer stands neither to win nor to lose on the average. Thus P[ A|#] is
the just entry fee, as intuition requires.

Example 33.3. Suppose that A € &, which will alwavs hold if & coin-
cides with the whole o-field %. Then [, satisfics conditions (i) and (ii), so
that P[ A||£]= 1, with probability 1. If 4 €, then to know the outcome of
& viewed as an experiment is in particular to know whether or not A4 has
occurred. [ |

Example 33.4. 1If & is {0, (1}, the smallest possible o-field, every function
measurable & must be constant. Therefore, P[ A|l£], = P(A) for all v in
this case. The observer learns nothing from the experiment . [ |

According to these two examples, P[ A|[0, €2}] is identically P(A), whereas
1, is a version of P[A||% ). For any &, the function identically equal to
P(A) satisfies condition (i) in the definition of conditional probability, whereas
1, satisfies condition (ii). Condition (i) becomes more stringent as & de-
creases, and condition (ii) becomes more stringent as < increases. The two
conditions work in opposite directions and between them delimit the class of
versions of P[ A|l#].




432 DERIVATIVES AND CONDITIONAL PROBABILITY

Example 33.5. Let Q be the plane R? and let & be the class #? of
planar Borel sets. A point of () is a pair (x, y) of reals. Let . be the o-field
consisting of the vertical strips, the product sets E X R' =[(x,y): x € E),
where E is a linear Borel set. If the observer knows for each strip E X R!
whether or not it contains (x, y), then, as he knows this for each one-point
set E, he knows the value of x. Thus the experiment ¢ consists in the
determination of the first coordinate of the sample point. Suppose ncw that
P is a probability measure on %? having a density f(x, y) with respect to
planar Lebesgue measure: P(A)= [[,f(x,y)dxdy. Let A be a horizontal
strip R! X F=[(x,y): yE€F), F being a linear Borel szt. The conditional
probability P[ A||.#] can be calculated explicitly.

Put

]Ff(x,z)dt

fR{f(x,t)dt.

(33.9) e(x,y) =

Set ¢(x,y) =0, say, at points where the denominator here vanishes; these
points form a set of P-measure 0. Since ¢(«, y) is a function of x alone, it is
measurable . The general element of . being E X R', it will follow that ¢
is a version of P[ A||#] if it is shown that

(33.10) [EXngo(x,y)dP(x,y)=P(AO(E><R')).

Since A = R' X F, the right side here is P(E X F). Since P has density f,
Theorem 16.11 and Fubini’s theorem reduce the left side to

/E{/R,‘P(x,y)f(x,}’)d}’}dx=fE{];f(x,t)dt}dx
= [ f(x.y)dedy=P(ExXF).

Thus (33.9) does give a version of P[R! X F|.£]. ]

The right side of (33.9) is the classical formula for the conditional
probability of the event R! X F (the event that y € F) given the event
{x} X R' (given the value of x). Since the event {x} X R' has probability 0,
the formula P(A|B) = P(A N B)/P(B) does not work here. The whole point
of this section is the systematic development of a notion of conditional
probability that covers conditioning with respect to events of probability O.
This is accomplished by conditioning with respect to collections of
events—that is, with respect to o-fields .£.
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Example 33.6. The set A is by definition independent of the o-field & if
it is independent of each G in .¢: P(A N G)= P(A)P(G). This being the
same thing as P(4 N G) = [; P(A)dP, A is independent of # if and only if
P[ A||#¢] = P(A) with probability 1. ]

The o-field o(X) generated by a random variable X consists of the sets
[w: X(w)€ H] for HeE R'; see Theorem 20.1. The conditional probability
of A given X is defined as P{A|lc(X)] and is denoted P[A|X]. Thus
Pl A||X] =P[ Alle(X)] by definition. From the experiment corresponding to
the o-field o (X), one learns which of the sets [w': X(w") = x] contains w and
hence learns the value X(w). Example 33.5 is a case of this: take X(x, y) =x
for (x, y) in the sample space () = R? there.

This definition applies withcut change to random vector, or, equivalentiy,
to a finite set of random variables. It can be adapted to arbitrary sets of
random variables as well. For any such set [X,, : € T), the o-field olX,,
t € T] it generates is the smallest o-field with respect to which each X, is
measurable. It is generated by the collection of sets of the form [w: X (w) €
Hlfor t in 7 and H in #'. The conditional probability Pl A||X,, t€ T] of A
with respect to this set of random uvariables is by definition the conditional
probability P[ Alle[X,, t € T]] of A with respect to the o-field o[ X,, t €T].

In this notation the property (33.7) of Markov chains becomes

(33.11) P[X, . =illXg,..., X,]| = P[X,,,=jlX,].

The conditional probability of [ X, , , = j] is the same for someone who knows
the present state X, as for someone who knows the present state X, and the
past states X, ..., X,_,; as well.

Example 33.7. Let X and Y be random vectors of dimensions j and k,

let u be the distribution of X over R’, and suppose that X and Y are
independent. According to (20.30),

P[XeH,(X,Y)e]]= [HP[(x,Y) eJ | u(dx)

for HE #/ and J € #/**. This is a consequence of Fubini’s theorem,; it has
a conditional-probability interpretation. For each x in R’ put

(33.12) f(x)=P[(x,Y)el] =Plo" (x,Y(u')) €J].

By Theorem 20.1(ii), f(X(w)) is measurable o(X), and since u is the
distribution of X, a change of variable gives

[ f(X(w))P(dw) = [ f(x)u(dx) = P([(X,Y) €I n[X < H]).
[XeH] H
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Since [ X € H] is the general element of ¢(X), this proves that

(33.13) f(X(w))=P[(X,Y)eJIX],

with probability 1. [ |
The fact just proved can be written

P(X.Y) €| X], = P[(X(w).,Y) €]
=P[m': (X(w),Y(w')) EJ].

Replacing o' by w on the nght here causes a notational collision like the one
replacing y by x causes in [2f(x,y)dy.

Suppose that X and Y are independent random variables and that Y has
distribution function F. For J = [(u, v): max{u, v} <m], (33.12) is 0 for m < x
and F(m) for m > x; if M = max{X,Y}, then (33.13) gives

(33.14) P[M<ml|X], = Ly < i @) F(m)

with probability 1. All equations involving conditional probabilities must be
qualified in this way by the phrase with probability 1, because the conditional
probability is unique only to within a set of probability 0.

The following theorem is useful for checking conditional probabilities.

Theorem 33.1. Let & be a mw-system generating the o-field &, and suppose
that () is a finite or countable union of sets in &F. An integrable function f is a
version of P A|#Z1 if it is measurable & and if

(33.15) ffdP=P(A NG)
G

holds for all G in &.
Proor. Apply Theorem 10.4. [ |

The condition that () is a finite or countable union of Hsets cannot be
suppressed; see Example 10.5.

Example 33.8. Suppose that X and Y are independent random variables with a
common distribution function F that is positive and continuous. What is the condi-
tional probability of [ X < x] given the random variable M = max{X,Y}? As it should
clearly be 1 if M <x, suppose that M > x. Since X< x requires M =Y, the chance of
which is 5 by symmetry, the conditional probability of [X <x] should by indepen-
dence be 3F(x)/F(m)= 1P[ X <x|X <m] with the random variable M substituted
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for m. Intuition thus gives

(33.16) P[X <xIM], =l < (@) + %IIMMI(“’) F(f\;gj,)) ‘

It suffices to check (33.15) for sets G = [M < m], because these form a m-system
generating o(M). The functional equation reduces to

(33.17) P[M < min{x,m}] + 2/ Fﬂ(;[—))dP=P[Msm, X<x].
I<M<sm

Since the other case is easy, suppose that x < m. Since the distribution of (X,Y) is
product measure, it follows by Fubini’s theorem and the assumed continuity of F that

f(MSm F(M) dp = f/ F(l )dF(u)dF(U)

X u <t
X<t <m

+/fl<u Fon )dF(u)dF(u) (£ (m)—F(x)),

x<usm

which gives (33.17). ]

Example 33.9. A collection [ X,: t > 0] of random variables is a Markov
process in continuous time if for k>1,0<t, < -+ <t, <u,and He X',

(33.18) P{X,€HIX,,....X,| =P[X,€HI|X,]

holds with probability 1. The analogue for discrete time is (33.11). (The X,
there have countable range as well, and the transition probabilities are
constant in time, conditions that are not imposed here.)

Suppose that ¢t < u. Looking on the right side of (33.18) as a version of the
conditional probability on the left shows that

(33.19) | P[X,€HIX,] dP =P([X,€H]NG)

G
if0<t;< -+ <ty=t<uand Geo(X,,..., X, ). Fix t, u, and H, and let
k and t,,...,t, vary. Consider the class F— Ua(X , X,.), the union
extending over all kK > 1 and all k-tuples satisfying O <tl e <t =t If

Aea(X,,..., ) and BEO‘(XS, -.» X)), then ANBea(X, e X)
where the Ty are the sg and the ¢, merged together. Thus & is a w-system
Since & generates o[X;: s <t] and P[X, € H||X,] is measurable with
respect to this o-field, it follows by (33.19) and Theorem 33.1 that P[X,
H||X,] is aversion of P[ X, €H|X,, s <t]:

(33.20) P[x,€H|X,, s<t]| =P[X,€HIX], t<u,

with probability 1.
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This says that for calculating conditional probabilities about the future,
the present o(X,) is equivalent to the present and the enfire past of X|:
s < t]. This follows from the apparently weaker condition (33.18). n

Example 33.10. The Poisson process [N,: t > 0] has independent incre-
ments (Section 23). Suppose that 0 <, < -+ <t, <u. The random vector
(N,,N,—N,,...,N, —N, ) is independent of N, — N, , and so (Theorem
20.2) (N,, N, ,..., N, ) is independent of N, — N, . If J is the set of points
(x,..., %, y)in R**! such that x, +y € H, where HE #", and if v is the
distribution of N, — N, , then (33.12) is Pl(x,,...,x,, N, —N,) €J]="Plx,
+ N, - N, € H] = v(H — x,). Therefore, (33.13) gives P[N, €
HIIN,I....,N,k]= u(H—N,k). This holds also if k=1, and hence P[N, €
HIIN,,..., N, 1= PN, € HIN, ] The Poisson process thus has the Markov
property (33.18); this is a consequence solely of the independence of the
increments. The extended Markov property (33.20) follows. [ |

Properties of Conditional Probability

Theorem 33.2. With probability 1, P[D!|£]=0, P[Q|£]=1; and

(33.21) 0<P[Al#] <1
foreach A. If A, A,,... is a finite or countable sequence of disjoint sets, then
(33.22) P[ U A,,W] = Y P{A,#]

with probability 1.

Proor. For each version of the conditional probability, [;P[AllZ]dP =
P(ANG)>0 for each G in #; since P[ A|l#] is measurable &, it must be
nonnegative except on a set of P-measure 0. The other inequality in (33.21) is
proved the same way.

If the A, are disjoint and if G lies in ¢, it follows (Theorem 16.6) that

fG(ZP[A,,IIf])dP= Z[GP[Annj] dP= Y P(A,N G)
=P(( LnJA,,)nG).

Thus ¥, P[ A,ll£], which is certainly measurable ¢, satisfies the functional
equation for P[U ,A4,ll], and so must coincide with it except perhaps on a
set of P-measure 0. Hence (33.22). [ ]
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Additional useful facts can be established by similar arguments. If A C B, then
(33.23) P[B-Al£L]1=P[BIZ]-P[AI£], P[All£]<P[BIZ].

The inclusion—exclusion formula

(33.24) U Aill ﬁ] [‘,P[A I#] - X P[A4:nAllL] +

i<j
holds. If A4, T A, then
(33.25) P[A,\Z]1 P[AI£],
and if A, A, then
(33.26) P[A <] P[AlIZ].
Further, P(A) =1 implies that
(33.27) PlAlZ] =1,
and P(A)=0 implies that
(33.28) P[All£] =
Of course (33.23) through (33.28) hold with probability 1 only.

Difficulties and Curiosities

This section has been devoted almost entirely to examples connecting the
abstract definition (33.8) with the probabilistic idea lying back of it. There are
pathological examples showing that the interpretation of conditional proba-
bility in terms of an observer with partial information breaks down in certain
cases.

Example 33.11. Let (O, %, P) be the unit interval ) with Lebesgue
measure P on the o-field & of Borel subsets of (). Take  to be the o-field
of sets that are either countable or cocountable. Then the function identically
equal to P(A) is a version of P[ A||#Z]: (33.8) holds because P(G) is either 0
or 1 for every G in <. Therefore,

(33.29) P[AIZ], = P(A)

with probability 1. But since & contains all one-point sets, to know which
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elements of & contain w is to know w itself Thus & viewed as an
experiment should be completely informative—the observer given the infor-
mation in & should know w exactly—and so one might expect that

1 fweAd,

(33.30) P[Allf]w=<0 o

This is Example 4.10 in a new form. [ |

The mathematical definition gives (33.29); the heuristic considerations
lead to (33.30). Of course, (33.29) is right and (33.30) is wrong. The heuristic
view breaks down in certain cases but is nonetheless illuminating and cannot,
since it docs not intervene in proofs, lead to any difficulties.

The point of view in this section has been “global.” To each fixed A in &
has been atiached a function (usually a family of functions) P[A|.¢],
defined over all of (). What happens if the point of view is reversed—if w is
fixed and A varies over &% ? Will this result in a probability measure on % ?
Intuition says it should, and if it does, then (33.21) through (33.28) all reduce
to standard facts about measures.

Suppose that B,,..., B, is a partition of () into .%sets, and let &=
o(B,,...,B,). If P(B,)=0and P(B;)> 0 for the other i, then one version of
P[A||#] is

17 if w€ B,

P[AlZ],=¢{ P(ANB;)

P(B) fweB,i=2,...,r.

With this choice of version for each A, P[ A||#], is, as a function of A, a
probability measure on & if w€B,U --- UB,, but not if weB,. The
“wrong” versions have been chosen. If, for example,

P(A) if w€B,,
P[Al#£],={ P(ANB)

P(B,) f weB,i=2,...,r,

then P[All¢], is a probability measure in A for each w. Clearly, versions
such as this one exist if & is finite.

It might be thought that for an arbitrary o-field & in % versions of the
various P[A|Z] can be so chosen that P[A|l#], is for each fixed w a
probability measure as A varies over . It is possible to construct a




SECTION 33. CONDITIONAL PROBABILITY 439

counterexample showing that this is not so." The example is possible because
the exceptional w-set of probability O where (33.22) fails depends on the
sequence A,, A4,,...; if there are uncountably many such sequences, it can
happen that the union of these exceptional sets has positive probability
whatever versions P[ 4[] are chosen.

The existence of such pathological examples turns out not to matter.
Example 33.9 illustrates the reason why. From the assumption (33.18) the
notably stronger conclusion (33.20) was reached. Since the set [ X, € H] is
fixed throughout the argument, it does not matter that conditional probabili-
ties may not, in fact, be measures. What does matter for the theory is
Theorem 33.2 and its extensions.

Consider a point w, with the property that P(G) >0 for every G in &
that contains w,. This will be true if the one-point set {w,)} lies in & and has
positive probability. Fix any versions of the P[ A||Z]. For each A the set [w:
P{A|l£], <0l lies in & and has probability 0; it therefore cannot contain
wg. Thus P{All#], > 0. Similarly, P[Q(F], =1, and, if the 4, are dis-
joint, P{U ,,A,,Il.f]wo = ):,,,P[All.f]wo. Therefore, P[Allf]wu is a probability
measure as A ranges over %.

Thus conditional probabilities behave like probabilities at points of posi-
tive probability. That they may not do so at points of probability O causes no
problem because individual such points have no effect on the probabilities of
sets. Of course, sets of points individually having probability 0 do have an
effect, but here the global point of view reenters.

Conditional Probability Distributions
Let X be a random variable on (0, &, P), and let 4 be a o-field in &.

Theorem 33.3. There exists a function w(H, ), defined for H in &' and
w in (), with these two properties:

(i) Foreach w in Q, u(-, w) is a probability measure on %’.
(ii) For each H in R, n(H, ) is a version of Pl X € H||#Z].

The probability measure u(-, w) is a conditional distribution of X given 4.
If &= 0(2), it is a conditional distribution of X given Z.

Proor. For each rational 7, let F(r, w)be a version of P[X <r|£],. If
r <s, then by (33.23),

(33.31) F(r,w) <F(s,w)

"The argument (s outlined in Problem 33.11. It depends on the construction of certain
nonmeasurable sets.
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for w outside a “set A, of probability 0. By (33.26),

(33.32) F(r,o)=Ilim F(r+n~ "', w)

for  outside a “set B, of probability 0. Finally, by (33.25) and (33.26),

(3333) . lim F(r,0)=0, lim F(r,o)=1

outside a #set C of probability 0. As there are only countably many of these
exceptional sets, their union E lies in & and has probability (.

For w € E extend F(-,w) to all of R' by setting F(x, ») = infl F(r, w):
x <rl. For w € E take F(x,w)=F(x), where F is some arbitrary but fixed
distribution function. Suppose that w & E. By (33.31) and (33.32), F(x, w)
agrees with the first definition on the rationals and is nondecreasing; it is
right-continuous; and by (33.33) it is a probability distribution function.
Therefore, there exists a probability measure w(-,») on (R, #!) with
distribution function F(-,w). For w € E, let u(-,w) be the probability
measure corresponding to F(x). Then condition (i) is satisfied.

The class of H for which wu(H,-) is measurable & is a A-system
containing the sets H = (-, r] for rational r; therefore w(H, -) is measur-
able & for H in %#'.

By construction, u((—x, r], w) = P[ X <rl|£], with probability 1 for ratio-
nal r; that is, for H = (-, r] as well as for H =R,

fc“( H,0)P(dw) =P([X€H]NG)

for all G in #. Fix G. Each side of this equation is a measure as a function
of H, and so the equation must hold for all H in %" =

Example 33.12. let X and Y be random variables whose joint distribu-
tion v in R? has density f(x, y) with respect to Lebesgue measure: P[(X,Y")
€Al=v(A)= [[4f(x, y)dxdy. Let g(x,y)=f(x,y)/[pf(x,t)dt, and let
w(H, x) = [yg(x, y)dy have probability density g(x,-); if [gif(x,t)dt=0,
let «(-, x) be an arbitrary probability measure on the line. Then w(H, X(w))
will serve as the conditional distribution of Y given X. Indeed, (33.10) is the
same thing as [y giu(F, x)dv(x,y) =v(E X F), and a change of variable
gives [ix e E];L(F, X(w))P(dw)=P[X € E, Y F]. Thus u(F, X(w)) is a ver-
sion of P[Y € Fl| X],,. This is a new version of Example 33.5. - |




