Types of Data

- Qualitative (Categorical) —
 M/F, Fr/So/Jr/Sr, Dem/Rep/Wrestler, etc.
 - Bar graph (frequency or percent)
 - Pie Chart
 - Center/Location: Mode (most frequent)
 - Spread/Variability: None!
 - Later in 36-201: Contingency Tables
- Quantitative (Discrete or Continuous) —
 Dollars, Age, Test Score, Number of Cars, etc.
 - Stem and leaf
 - boxplot
 - histogram (frequency, percent, density)
 - Location: Five number summary:
 Min, Q1, Med, Q3, Max
 - Center/Location: Mean, Median, Mode (if discrete)
 - Spread/Variability: Range, IQR,
 Standard Deviation (SD; see below!)

What is the best summary for quantitative data???

Need to know the shape of the data.

Shape of Quantitative Data Distributions

Main distinctions for stem and leaf and histograms:

Symmetry

- symmetric
- skewed left
- skewed right

Number of modes

- unimodal (one hump)
- bimodal (two humps), trimodal (three), etc.
- multimodal (two or more humps)
- rectangular (flat across the top, no humps)

Outliers

- Say whether or not there are any
- If there are:
 - * write them down
 - * is each one high or low?
 - * is each one far from non-outliers or close?

Useful Numerical Summaries

• Unimodal

Shape	Center	Spread
Symmetric, no outliers	Mean = Median = Mode	SD
Symmetric, outliers	Mean = Median	IQR
Skewed left	Mean < Median	IQR
Skewed right	Mean > Median	IQR

• Multimodal

- Describe the modal humps (where, how wide)
- Describe the gaps (where, how wide)
- Maybe give overall Median, IQR

The Standard Deviation

At one food testing laboratory, the egg fat content data was

N = the number of observations = 7.

 x_1, x_2, \ldots, x_N name the individual observations:

$$x_1 = .62, x_2 = .55, x_3 = .34, x_4 = .24,$$

 $x_5 = .80, x_6 = .68, x_7 = .76$

The Mean

$$\overline{x} = (x_1 + x_2 + \dots + x_N)/N = 0.57$$

Deviations from the Mean; MAD and Variance

	Observation	Deviation	Abs Dev	Sq Dev
	x	$x-\overline{x}$	$ x-\overline{x} $	$(x-\overline{x})^2$
	$x_1 = .62$	0.05	0.05	0.0025
	$x_2 = .55$	-0.02	0.02	0.0004
	$x_3 = .34$	-0.23	0.23	0.0529
	$x_4 = .24$	-0.33	0.33	0.1089
	$x_5 = .80$	0.23	0.23	0.0529
	$x_6 = .68$	0.11	0.11	0.0121
	$x_7 = .76$	0.19	0.19	0.0361
Mean	0.57	0.00	0.1657	0.0380
$\sqrt{0.0380} = 0.1949$				

The Sample Standard Deviation (SD)

We just calculated

Sample Mean
$$(\overline{x}) = (x_1 + x_2 + \dots + x_N)/N = 0.57$$

Population Variance $= [(x_1 - \overline{x})^2 + \dots + (x_N - \overline{x})^2]/N$
 $= 0.0380$
Population SD $= \sqrt{\text{Population Variance}} = 0.1949$

For technical statistical reasons ("unbiased estimates") we usually calculate

Sample Mean
$$(\overline{x})=(x_1+x_2+\cdots+x_N)/N=0.57$$

Sample Variance $(s^2)=\left[(x_1-\overline{x})^2+\cdots+(x_N-\overline{x})^2\right]/(N-1)$

$$=0.0443$$

Sample SD $(s) = \sqrt{\text{Sample Variance}} = 0.2105$

Comparing Mean/SD with Median/IQR

Among the egg fat measurements

.62 .55 .34 .24 .80 .68 .76

the largest is

$$x_5 = 0.80$$

What if it were bigger still?

x_5	Mean	SD	Median	IQR
0.8	0.57	0.21	0.62	0.275
0.9	0.58	0.23	0.62	0.275
1	0.60	0.26	0.62	0.275
2	0.74	0.58	0.62	0.275
3	0.88	0.95	0.62	0.275
10	1.88	3.58	0.62	0.275
20	3.31	7.36	0.62	0.275
30	4.74	11.14	0.62	0.275
100	14.74	37.60	0.62	0.275

Binary (Yes/No) Data

Another use for Sample Mean, Sample SD

- Examples...
 - Would You Vote for Smith?
 - Do You Approve of Plan B to Fund New Stadiums in Pittsburgh?
 - Did the Coin Come Up Heads?
- Numerical Representation
 - Yes = 1
 - No = 0
- We are typically interested in
 - Center: Sample Mean
 - Spread: Sample Variance, SD

Example

32 people were asked: Do you approve of Plan B?

5 Yes's

27 No's

Mean: Fraction of Yes's

Sample Mean
$$(\overline{x})$$
 = $(x_1 + \cdots + x_N)/N = \frac{(\text{# Yes's})}{N}$
= $5/32 = 0.1563$

Variance and SD

Sample Variance
$$(s^2) = \left[(x_1 - \overline{x})^2 + \dots + (x_N - \overline{x})^2 \right] / (N - 1)$$

$$= \frac{(\# \operatorname{Yes's}) \times (\# \operatorname{No's})}{N \times (N - 1)} = 0.1361$$
Sample SD $(s) = \sqrt{\operatorname{Sample Variance}} = 0.3689$

Notes:

• Siegel p. 131 has a typo (X = Yes's, Y = No's):

$$\frac{X+Y}{n\times(n-1)}$$
 should be: $\frac{X\times Y}{n\times(n-1)}$

Many books use

$$s^{2} = \frac{(\# \textit{Yes's}) \times (\# \textit{No's})}{N \times N}$$

for the variance of binary data $(s^2 = 0.1318, s = 0.3631)$.