Lab #10 — Partial solutions

Question #1: When I did this, I got

	Theory	Sample	
Mean	0.50	0.41	
SD	0.67	0.61	

Question #2: For my 100 samples of size 5, the histogram of sample sums with the normal curve overlaid looks something like this:

The match between the histogram and the normal curve isn't very good.

Question #3: When I did this, I got

	Theory	Sample	
Mean	5.00	4.68	
SD	2.12	2.33	

Question #4: For my 100 samples of size 50, the histogram of sample sums with the normal curve overlaid looks something like this:

It looks like the histogram still exhibits some right skewing, but the match between the histogram and the normal curve is much better than at n=5.

- **4 Question #5:** Overall, the normal approximation worked better for n = 50 than for n = 5
- ♣ Question #6:

$$P[X \le 8] = P\left[\frac{X - \boxed{5.00}}{\boxed{2.12}} \le \frac{8 - \boxed{5.00}}{\boxed{2.12}}\right]$$
$$= P\left[Z \le \boxed{1.42}\right]$$

1

where I found the probability using the "CDF" function in Minitab.

Question #7: The histograms of 100 sample averages, for samples of size 1, 5 and 20 are displayed below.

The means and standard deviations of the sets of 100 sample averages that I got are as follows (yours will be similar but not identical).

	n = 1	n = 5	n = 20
Mean of sample means	5.73	6.16	5.81
SD of sample means (SE)	4.37	1.85	1.02

♣ Question #8: Generally speaking, the histograms become more normal as the sample size increases. (Note: 20 isn't really enough for the central limit theorem to "kick in"—it would have been more dramatic to try a sample size of 50 or 100 instead of 20. But still, it seems to be working).

Question #9:

$$P[\overline{X} \le 5] = P\left[\frac{\overline{X} - 5.81}{1.02} \le \frac{5 - 5.81}{1.02}\right]$$

= $P[Z \le -0.79]$
 ≈ 0.21