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Topics
• Bayes

• Probability on a Dartboard, Conditional Probability
• The Reverend Thomas Bayes (not a little-known Unitarian!)
• Bayes’ Theorem

• Banjos
• Getting the beat in music

• Bad Test Scores
• Scoring the SAT and similar tests
• What to do with a zero or a 100%??

• Big Science
• Big data in science, scalable computation, and Bayes
• Bayesian Brains?
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Probability on a Dartboard

• Suppose I throw a dart at a circular target on a square 
board.

• Let’s let Event A = “dart lands inside the circle”

• Each dart is an independent trial on which “A” can happen

• If darts land equally likely anywhere in the square, then the 
probability of “A” will be proportional to the ratio of the area of the 
circle to the area of the square

13 January 2013 Sunday Forum, 1UU Pgh 3

Probability on a Dartboard
• A = dart inside circle
• Each dart leaves a mark:

• Green dot: “A” happened
• Red dot: “A” failed

• (R demonstration)…
• R: prob.circ()

• If the darts are equally likely to land in any 
equal area,

13 January 2013 Sunday Forum, 1UU Pgh 4

P (A) =
(area of circle)
(area of square)

= π/4



Aside: Monte Carlo estimation of π

• If P(A) = π/4 then π = 4 × p

• If we have estimated 

then π ≈ 4 × 0.78 = 3.12

• This method is called “Monte Carlo estimation”.  It w as first named 
and applied to difficult problems by the  Manhattan  Project folks 
• The estimate gets better and better the more darts we throw, by the 

“Law of Large Numbers” 
• (but that is a different presentation!)
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P (A) =
#(green darts)

#(green darts) + #(red darts)
= 0.78

Conditional Probability

• Now, let A = “dart lands 
in NE corner”

• What is P(A)?
• R: prob.ne.corner()

• Let B = “dart lands in 
NE square”

• What is P(A|B)?
• R: cond.prob.ne.corner()
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Conditional Probability
• The idea of conditional probability does not depend on 

darts.  If A and B are two events, then we define

• This is entirely consistent with our estimate of P(A|B):
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P (A|B) = P (A and B)
P (B)

P (A|B) ≈
#(green darts)

#(green & red darts)

=
#(green darts)/#(all darts)

#(green & red darts)/#(all darts)

≈
P(A & B)

P(B)

• This almost certainly is not 
Bayes(!)

• It is the only claimed likeness
• Not a Unitarian (or Universalist)!

The Reverend Thomas Bayes
• 1701?—1760 
• 2nd Gen Presbyterian Minister & 

Amateur Mathematician
• Published

• Divine Benevolence, or an Attempt 
to Prove That the Principal End of 
the Divine Providence and 
Government is the Happiness of 
His Creatures (1731)

• An Introduction to the Doctrine of 
Fluxions, and a Defence of the 
Mathematicians Against the 
Objections of the Author of the 
Analyst (anon.,1736)

• Wrote but did not publish
• An Essay towards solving a 

Problem in the Doctrine of 
Chances
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Before Bayes’ “Essay”
• Official statistics have been kept since 2200BC (China)
• By the mid-1700’s in Europe

• Statistical Tables were kept for taxation and other state purposes 
• Observations were combined to reduce measurement error (especially 

in Astronomy)
• Calculations were developed to show how much better the mean was, than 

an individual observation, as a measurement
• Least squares was used as a curve-fitting tool
• Gauss would later (ca. 1795) develop the normal distribution to place least 

squares on more principled footing

• Bernoulli & deMoivre knew how to take initial conditions B and 
derive probabilities of events A from them (probability)

• BUT they could not take a set of events A and infer the initial 
conditions B from them (inverse probability)
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Contribution of Bayes’ “Essay”
• Mathematicians were convinced that there should be a 

principled approach to inverse probability 
• But they couldn’t see it because their examples were too simple 

(cards and games of chance).

• Bayes came up with a better example in which a 
principled theorem could be derived and applied

• In modern, simplified notation, Bayes’ Theorem is

• Although the algebra is easy (next slide!) it was a big 
breakthrough to be able to write this down. 
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P (B|A) =
P (A|B) · P (B)

P (A)



Bayes’ Theorem on Inverse Probability

• Suppose we know P(A), P(B), and P(A|B).
• We want the “inverse probability” P(B|A). 

• So

• (Did you blink?)
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P (B|A) = P (B&A)
P (A) Definition of P (B|A)

= P (A|B)·P (B)
P (A) Since P (A|B) = P (A&B)/P (B)!

P (B|A) =
P (A|B) · P (B)

P (A)

Why was this difficult for Bayes’ 
contemporaries?
• Let A = “observable event”, B = “initial conditions” 
• For decades mathematicians had been calculating 

• P(A) = P(observable event)
• P(A|B) = P(observable event | initial conditions)

without ever having to worry about whether 
P(B) = P(initial conditions) made sense
• Indeed, they would “set” the initial conditions, so there didn’t seem 

to be any probability to attach to B!

• Bayes had to argue that such expressions did make 
sense!
• He did so by setting up an experiment in which the “initial 

conditions” were also randomly determined
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Bayes’ Billiard Table (he didn’t call it that!)

• Let’s play a game!

• I will randomly place a black ball on a pool table
• This is the initial condition (it is random!)

• You get to blindly place a ball on the table 1000 times
• I will only tell you if it is to the left or to the right of my ball
• These are the observable events!

• Can you guess where my ball is, from 
• p = # of your balls to the left of my black ball
• q = # of your balls to the right of my black ball

• R: billiards()

13 January 2013 Sunday Forum, 1UU Pgh 13

Bayes’ Billiard Table
• Easy to “guess” the 
black ball is at 9/(9+17) 
= 0.35

• With his theorem, Bayes 
could also derive
• A probability curve showing 

where the black ball was 
likely or not likely to be

• A recipe for an interval 
where the black ball was 
likely to be!

• Bayes could measure 
uncertainty in the guess!
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Why didn’t Bayes publish?
• For years, famous statisticians claimed that Bayes was 

troubled by the idea of P(initial conditions).
• However , modern interpretations of Bayes’ Essay suggest that he 

was absolutely certain he was right about that part of the problem.
• Probability can be defined in ways other than relative frequency (think 

about the weather, or making book on NFL games)

• The calculation of the probability curve, and the interval 
where the black ball was likely to be, involved calculus
• Easy hand calculation , if p, q small
• Impossible hand calculation , if p, q large

• Bayes realized that he had a recipe that could not be 
followed , if the curve and interval could not be calculated.
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Aside: Stigler’s Law of Eponymy
• Thomas Simpson beat Bayes to it: he published a partial 

solution to the problem of inverse probability a few years 
before Bayes
• Bayes probably read Simpson’s work and may have been trying to 

improve on it

• Bayes gave a better partial solution, but only in terms of 
the billiards example 
• He shared the Essay with essentially no one while he was alive
• Posthumously edited, updated and published by Richard Price

• Pierre-Simon Laplace independently discovered these 
ideas and published them in a complete, general form 

• And so, of course, we call it Bayes’ Theorem.
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Bayesian Decision-Making
• States of nature: B1, B2, …, BN

• Observable event: A
• Decision: Which Bk given, A?

• Prior distribution: P(B1), P(B2), …, P(BN)
• Likelihood function:

P(A|B1), P(A|B2), …, P(A|BN)
• Posterior distribution: Inverse probability of each Bk,:

• P(B1|A) = P(A|B1) · P(B1) / P(A)
• P(B2|A) = P(A|B2) · P(B2) / P(A)

• …
• P(BN|A) = P(A|BN) · P(BN) / P(A)
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Decision: Choose the Bk
with maximum P(Bk|A)

Bayesian Decision-Making
• Each posterior probability has same factor 1/ P(A); can 

omit this and get the same decision:
• P(Bk|A) = P(A|Bk) · P(Bk) / P(A) ∝ P(A|Bk) · P(Bk)

• Interpretation: Bayes’ Theorem lets you combine
• Past experience about prevalence of each Bk (prior)
• Consistency of the data A with each Bk (likelihood)

in making a decision (in a way that minimizes expected
loss [or maximizes expected gain]…)
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“posterior is proportional to likelihood times prior”



Banjos: What is the beat?
• How do we recognize the “beat” in music?

David Temperly (2007) argues that this decision process 
can be modeled with Bayes Rule.

• The most likely time signature will be the one that 
maximizes likelihood times prior

(actually time signatures are not in 1-1 correspondence with the 
rhythmic “grid” of a music, any more than unreduced fractions are in 1-
1 correspondence with the numbers they represent, but we will “go with 
it” for this talk…)
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P (time sig | music) ∝ P (music | time sig) · P (time sig)

Posterior                                likelihood                             prior

A prior distribution for beats: P(time sig)

• Our musical experience suggests some time signatures 
are more likely than others:
• Most common 4/4, 2/2
• Next most common 3/4
• Less common 6/8, 9/8, 12/8
• More rare 5/4, 5/8, 7/8

• and various mixed time signatures (Blue Rondo a la Turk!)

• Suggests a prior distribution like 
• P(4/4 or 2/2) = 0.70
• P(3/4) = 0.15
• P(6/8) = 0.06
• P(5/4) = 0.05
• P(others) = 0.04
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I just made these numbers up.  An “actual” 
prior, based on a corpus of European folk
songs, is in Temperly’s book.



A likelihood for beats: P(music | time sig)

• Human-made music 
doesn’t line up 
perfectly with rhythmic 
grid

• But some are more 
likely than others! 

• Temperly develops 
P(music | time sig) 
based on this.
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Can you guess the time signature?
• Example 1: Waterbound

• Example 2: Trick of the Light 

• Example 3: Elk River Blues

• Think about your “recognition process” in terms of …
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P (time sig | music) ∝ P (music | time sig) · P (time sig)



Music and Probability
• Temperly applies the same Bayesian principles to

• Recognizing the rhythmic grid of a music
• Recognizing the key from a monophonic melody
• Recognizing the key from a polyphonic melody
• Etc

• He then discusses the consequences of this for
• Musical expectation and error detection
• Recognizing different musical styles
• Scope for deviation from a musical style
• Etc.

• (fun book! $20 at Amazon.com…)
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Bad Test Scores
• Standardized tests are a big industry in the US; see Zwick

(2002) for an overview.

• Many tests are not scored on simply the “number right”.  

• Instead
• a likelihood is formed, 
• and a parameter (kind of an “ideal test score”) is estimated 

from the likelihood, from each student’s test score
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Building the likelihood

• For each correct answer, a 
function like this appears in 
the product:

• For each wrong answer, a 
function like this appears in 
the product:

• R: test.score.likelihood()
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• The “test score” likelihood is a product of functions:

Estimating the ideal test score
• If you get some wrong and some right, your likelihood will 

look like this, and the “ideal score” that maximizes the 
likelihood is a reasonable estimate:

• This is “maximum likelihood estimation” (MLE)
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Problem: What about 0% or 100% right?

• The likelihood for 0% 

• The MLE is -∞
(negative infinity)

• Most (ideal) test scores should be 
“in the middle”, with a few low and 
a few high ones.  We might have 
a prior distribution like this:
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Fixing infinite test scores
• When we multiply the troublesome likelihood by this prior, 

we get a posterior distribution like this:

• And the maximum of this becomes our new estimate.
• R: test.score.both()
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×
=



Bayesian Regularization
• Incorporating prior “beliefs” makes the problem of finding 

the ideal score manageable.  
• It doesn’t make infinite scores impossible, just very unlikely.

• Much practical Bayesian statistics is like this. 
• The prior distribution “regularizes” the problem enough to make it 

solvable.  

• This “regularization” is how I first became acquainted with 
Bayesian methods!
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Advantages of Bayes in Science
• Regularization

• Borrowing strength from past experience (or concurrent 
data-rich settings) to improve inferences

• Language of probability
• Common approach to formulating problems and solutions
• Tools to find optimal solutions
• Vast expressive power to formulate many scientific problems in 

probabilistic terms
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Bayesian Successes
• In small to medium-sized problems, there has been a Bayesian 

revolution
• Enabled by cheap, fast computers with capacious memory

• Some examples:
• Fair methods for scoring tests and extracting as much information as 

possible from them
• Analysis of complex federal surveys
• Analysis of face to face (or online!) social networks
• Pooling information from multiple raters (e.g. in radiology or job 

performance), and learning about individual differences among raters
• Describing and understanding trajectories toward Alzheimers’ Disease

• Other examples:
• Inferring treatment success from historical medical records
• Nate Silver’s 538 (and PEC, and …) predictions!
• Spam detection, email/word completion, …
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Bayesian Limitations
• “Computational scalability”

• We know how to solve small problems but when the same problem 
gets large, we can’t do the computation

• Thomas Bayes experienced this:
• For small p, q, any freshman in calculus could solve the problem of 

estimating where the black ball was
• For large p, q, this solution is tedious, and too slow for a human to 

carry out

• With modern computers, we can extend the reach of 
Bayes theorem to modestly large problems
• N = # observations
• P = # features per observation

• N ~ 1,000,000, P ~ 1,000 is sort of the Bayes ballpark
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Big Data and Bayes
• Many current “Big Science” & “Big Commerce” projects involve 

truly big data (large N, large P!), e.g.
• Sloan digital sky survey (N=500,000,000 objects)
• Online recommender systems (N=300,000 of purchases/day)
• Google search logs (N=400,000,000 searches/day)
• Large Hadron Collider at Fermilab (N=103--109 or more collisions per 

second)
• Microarray (gene expression) data (N=103 observations, P=106 features)

• Three problems
• Computation may be too slow (Thomas Bayes’ problem for 

supercomputers!)
• Likelihood may be too complex to be represented in the computer
• Curse of dimensionality: as P grows, the number of probes needed to 

search a volume of radius R is proportional to RP
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Strategies for Big Data
• Reduce P: Dimension Reduction & Feature Extraction
• Reduce N: Subsampling

• Focus computation on a narrow inferential goal
• Don’t try to represent the whole likelihood or the whole posterior

• Scalable computation – take at most one pass through 
the data!

• Hastie, Tibshirani & Freedman (2009) survey some basic 
methods
• Some methods are “provably correct”; others are just heuristic
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Aside: Bayesian Brains?
• “All people are Bayesians, some just haven’t figured that 

out about themselves yet”
• I kind of doubt it

• The same problems with representing models, and doing 
exact computations on them, exist for computers or 
human brains
• Human brains are not especially fast or efficient at computation

• Most likely, humans adopt heuristics that reduce to 
(approximately) Bayesian thinking, for small problems.
• In this sense, we probably handle inference the way big data 

inferences area handled
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