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Abstract

We present an algorithm that infers the model structure of a mix-
ture of factor analysers using an efficient and deterministic varia-
tional approximation to full Bayesian integration over model pa-
rameters. This procedure can automatically determine the opti-
mal number of components and the local dimensionality of each
component (i.e. the number of factors in each factor analyser).
Alternatively it can be used to infer posterior distributions over
number of components and dimensionalities. Since all parameters
are integrated out the method is not prone to overfitting. Using a
stochastic procedure for adding components it is possible to per-
form the variational optimisation incrementally and to avoid local
maxima. Results show that the method works very well in practice
and correctly infers the number and dimensionality of nontrivial
synthetic examples.
By importance sampling from the variational approximation we
show how to obtain unbiased estimates of the true evidence, the
exact predictive density, and the KL divergence between the varia-
tional posterior and the true posterior, not only in this model but
for variational approximations in general.

1 Introduction

Factor analysis (FA) is a method for modelling correlations in multidimensional
data. The model assumes that each p-dimensional data vector y was generated by
first linearly transforming a k < p dimensional vector of unobserved independent
zero-mean unit-variance Gaussian sources, x, and then adding a p-dimensional zero-
mean Gaussian noise vector, n, with diagonal covariance matrix Ψ: i.e. y = Λx+n.
Integrating out x and n, the marginal density of y is Gaussian with zero mean
and covariance ΛΛT + Ψ. The matrix Λ is known as the factor loading matrix.
Given data with a sample covariance matrix Σ, factor analysis finds the Λ and Ψ
that optimally fit Σ in the maximum likelihood sense. Since k < p, a single factor
analyser can be seen as a reduced parametrisation of a full-covariance Gaussian.1

1Factor analysis and its relationship to principal components analysis (PCA) and mix-
ture models is reviewed in [10].
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A mixture of factor analysers (MFA) models the density for y as a weighted average
of factor analyser densities

P (y|Λ,Ψ,π) =
S∑
s=1

P (s|π)P (y|s,Λs,Ψ), (1)

where π is the vector of mixing proportions, s is a discrete indicator variable, and
Λs is the factor loading matrix for factor analyser s which includes a mean vector
for y.

By exploiting the factor analysis parameterisation of covariance matrices, a mix-
ture of factor analysers can be used to fit a mixture of Gaussians to correlated high
dimensional data without requiring O(p2) parameters or undesirable compromises
such as axis-aligned covariance matrices. In an MFA each Gaussian cluster has in-
trinsic dimensionality k (or ks if the dimensions are allowed to vary across clusters).
Consequently, the mixture of factor analysers simultaneously addresses the prob-
lems of clustering and local dimensionality reduction. When Ψ is a multiple of the
identity the model becomes a mixture of probabilistic PCAs. Tractable maximum
likelihood procedure for fitting MFA and MPCA models can be derived from the
Expectation Maximisation algorithm [4, 11].

The maximum likelihood (ML) approach to MFA can easily get caught in local
maxima.2 Ueda et al. [12] provide an effective deterministic procedure for avoiding
local maxima by considering splitting a factor analyser in one part of space and
merging two in a another part. But splits and merges have to be considered simul-
taneously because the number of factor analysers has to stay the same since adding
a factor analyser is always expected to increase the training likelihood.

A fundamental problem with maximum likelihood approaches is that they fail to
take into account model complexity (i.e. the cost of coding the model parameters).
So more complex models are not penalised, which leads to overfitting and the in-
ability to determine the best model size and structure (or distributions thereof)
without resorting to costly cross-validation procedures. Bayesian approaches over-
come these problems by treating the parameters θ as unknown random variables
and averaging over the ensemble of models they define:

P (Y ) =
∫
dθ P (Y |θ)P (θ). (2)

P (Y ) is the evidence for a data set Y = {y1, . . . ,yN}. Integrating out parameters
penalises models with more degrees of freedom since these models can a priori
model a larger range of data sets. All information inferred from the data about the
parameters is captured by the posterior distribution P (θ|Y ) rather than the ML
point estimate θ̂.3

While Bayesian theory deals with the problems of overfitting and model selec-
tion/averaging, in practice it is often computationally and analytically intractable to
perform the required integrals. For Gaussian mixture models Markov chain Monte
Carlo (MCMC) methods have been developed to approximate these integrals by
sampling [8, 7]. The main criticism of MCMC methods is that they are slow and

2Technically, the log likelihood is not bounded above if no constraints are put on the
determinant of the component covariances. So the real ML objective for MFA is to find
the highest finite local maximum of the likelihood.

3We sometimes use θ to refer to the parameters and sometimes to all the unknown
quantities (parameters and hidden variables). Formally the only difference between the two
is that the number of hidden variables grows with N , whereas the number of parameters
usually does not.



it is usually difficult to assess convergence. Furthermore, the posterior density over
parameters is stored as a set of samples, which can be inefficient.

Another approach to Bayesian integration for Gaussian mixtures [9] is the Laplace
approximation which makes a local Gaussian approximation around a maximum a
posteriori parameter estimate. These approximations are based on large data limits
and can be poor, particularly for small data sets (for which, in principle, the advan-
tages of Bayesian integration over ML are largest). Local Gaussian approximations
are also poorly suited to bounded or positive parameters such as the mixing pro-
portions of the mixture model. Finally, it is difficult to see how this approach can
be applied to online incremental changes to model structure.

In this paper we employ a third approach to Bayesian inference: variational ap-
proximation. We form a lower bound on the log evidence using Jensen’s inequality:

L ≡ lnP (Y ) = ln
∫
dθ P (Y, θ) ≥

∫
dθ Q(θ) ln

P (Y, θ)
Q(θ)

≡ F , (3)

which we seek to maximise. Maximising F is equivalent to minimising the KL-
divergence between Q(θ) and P (θ|Y ), so a tractable Q can be used as an approx-
imation to the intractable posterior. This approach draws its roots from one way
of deriving mean field approximations in physics, and has been used recently for
Bayesian inference [13, 5, 1].

The variational method has several advantages over MCMC and Laplace approxi-
mations. Unlike MCMC, convergence can be assessed easily by monitoring F . The
approximate posterior is encoded efficiently in Q(θ). Unlike Laplace approxima-
tions, the form of Q can be tailored to each parameter (in fact the optimal form
of Q for each parameter falls out of the optimisation), the approximation is global,
and Q optimises an objective function. Variational methods are generally fast, F
is guaranteed to increase monotonically and transparently incorporates model com-
plexity. To our knowledge, no one has done a full Bayesian analysis of mixtures of
factor analysers.

Of course, vis-a-vis MCMC, the main disadvantage of variational approximations
is that they are not guaranteed to find the exact posterior in the limit. However,
with a straightforward application of sampling, it is possible to take the result of
the variational optimisation and use it to sample from the exact posterior and exact
predictive density. This is described in section 5.

In the remainder of this paper we first describe the mixture of factor analysers in
more detail (section 2). We then derive the variational approximation (section 3).
We show empirically that the model can infer both the number of components and
their intrinsic dimensionalities, and is not prone to overfitting (section 6). Finally,
we conclude in section 7.

2 The Model

Starting from (1), the evidence for the Bayesian MFA is obtained by averaging the
likelihood under priors for the parameters (which have their own hyperparameters):

P (Y ) =
∫
dπP (π|α)

∫
dνP (ν|a, b)

∫
dΛ P (Λ|ν) ·

N∏
n=1

[
S∑

sn=1

P (sn|π)
∫
dxnP (xn)P (yn|xn, sn,Λs,Ψ)

]
. (4)



Here {α, a, b,Ψ} are hyperparameters4, ν are precision parameters (i.e. inverse vari-
ances) for the columns of Λ. The conditional independence relations between the
variables in this model are shown graphically in the usual belief network represen-
tation in Figure 1.

While arbitrary choices could be made for the
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Figure 1: Generative model for
variational Bayesian mixture of
factor analysers. Circles denote
random variables, solid rectangles
denote hyperparameters, and the
dashed rectangle shows the plate
(i.e. repetitions) over the data.

priors on the first line of (4), choosing priors that
are conjugate to the likelihood terms on the sec-
ond line of (4) greatly simplifies inference and
interpretability.5 So we choose P (π|α) to be
symmetric Dirichlet, which is conjugate to the
multinomial P (s|π).

The prior for the factor loading matrix plays a
key role in this model. Each component of the
mixture has a Gaussian prior P (Λs|νs), where
each element of the vector νs is the precision of
a column of Λ. If one of these precisions νsl →∞,
then the outgoing weights for factor xl will go to
zero, which allows the model to reduce the in-
trinsic dimensionality of x if the data does not
warrant this added dimension. This method of
intrinsic dimensionality reduction has been used
by Bishop [2] for Bayesian PCA, and is closely
related to MacKay and Neal’s method for auto-
matic relevance determination (ARD) for inputs
to a neural network [6].

To avoid overfitting it is important to integrate out all parameters whose cardinality
scales with model complexity (i.e. number of components and their dimensionali-
ties). We therefore also integrate out the precisions using Gamma priors, P (ν|a, b).

3 The Variational Approximation

Applying Jensen’s inequality repeatedly to the log evidence (4) we lower bound it
using the following factorisation of the distribution of parameters and hidden vari-
ables: Q(Λ)Q(π,ν)Q(s,x). Given this factorisation several additional factorisations
fall out of the conditional independencies in the model resulting in the variational
objective function:

F=
∫
dπQ(π) ln

P (π|α)
Q(π)

+
S∑
s=1

∫
dνsQ(νs)

[
ln
P (νs|a, b)
Q(νs)

+
∫
dΛsQ(Λs) ln

P (Λs|νs)
Q(Λs)

]

+
N∑
n=1

S∑
sn=1

Q(sn)
[∫

dπ Q(π) ln
P (sn|π)
Q(sn)

+
∫
dxnQ(xn|sn) ln

P (xn)
Q(xn|sn)

+
∫
dΛsQ(Λs)

∫
dxnQ(xn|sn) lnP (yn|xn, sn,Λs,Ψ)

]
(5)

The variational posteriors Q(·), as given in the Appendix, are derived by performing
a free-form extremisation of F w.r.t. Q. It is not difficult to show that these extrema
are indeed maxima of F . The optimal posteriors Q are of the same conjugate forms
as the priors. The model hyperparameters which govern the priors can be estimated
in the same fashion (see the Appendix).

4We currently do not integrate out Ψ, although this can also be done.
5Conjugate priors have the same effect as pseudo-observations.



4 Birth and Death

When optimising F , occasionally one finds that for some s:
∑
nQ(sn) = 0. These

zero responsibility components are the result of there being insufficient support from
the local data to overcome the dimensional complexity prior on the factor loading
matrices. So components of the mixture die of natural causes when they are no
longer needed. Removing these redundant components increases F .

Component birth does not happen spontaneously, so we introduce a heuristic.
Whenever F has stabilised we pick a parent-component stochastically with prob-
ability proportional to e−βFs and attempt to split it into two; Fs is the s-specific
contribution to F with the last bracketed term in (5) normalised by

∑
nQ(sn).

This works better than both cycling through components and picking them at ran-
dom as it concentrates attempted births on components that are faring poorly. The
parameter distributions of the two Gaussians created from the split are initialised
by partitioning the responsibilities for the data, Q(sn), along a direction sampled
from the parent’s distribution. This usually causes F to decrease, so by monitoring
the future progress of F we can reject this attempted birth if F does not recover.

Although it is perfectly possible to start the model with many components and let
them die, it is computationally more efficient to start with one component and allow
it to spawn more when necessary.

5 Exact Predictive Density, True Evidence, and KL

By importance sampling from the variational approximation we can obtain unbiased
estimates of three important quantities: the exact predictive density, the true log
evidence L, and the KL divergence between the variational posterior and the true
posterior. Letting θ = {Λ,π}, we sample θi ∼ Q(θ). Each such sample is an instance
of a mixture of factor analysers with predictive density given by (1). We weight
these predictive densities by the importance weights wi = P (θi, Y )/Q(θi), which
are easy to evaluate. This results in a mixture of mixtures of factor analysers, and
will converge to the exact predictive density, P (y|Y ), as long as Q(θ) > 0 wherever
P (θ|Y ) > 0. The true log evidence can be similarly estimated by L = ln〈w〉, where
〈·〉 denotes averaging over the importance samples. Finally, the KL divergence is
given by: KL(Q(θ)‖P (θ|Y )) = ln〈w〉 − 〈lnw〉.
This procedure has three significant properties. First, the same importance weights
can be used to estimate all three quantities. Second, while importance sampling
can work very poorly in high dimensions for ad hoc proposal distributions, here the
variational optimisation is used in a principled manner to pick Q to be a good ap-
proximation to P and therefore hopefully a good proposal distribution. Third, this
procedure can be applied to any variational approximation. A detailed exposition
can be found in [3].

6 Results

Experiment 1: Discovering the number of components. We tested the
model on synthetic data generated from a mixture of 18 Gaussians with 50 points
per cluster (Figure 2, top left). The variational algorithm has little difficulty finding
the correct number of components and the birth heuristics are successful at avoiding
local maxima. After finding the 18 Gaussians repeated splits are attempted and
rejected. Finding a distribution over number of components using F is also simple.

Experiment 2: The shrinking spiral. We used the dataset of 800 data points
from a shrinking spiral from [12] as another test of how well the algorithm could



Figure 2: (top) Exp 1: The frames from left to right are the data, and the 2 S.D. Gaussian
ellipses after 7, 14, 16 and 22 accepted births. (bottom) Exp 2: Shrinking spiral data
and 1 S.D. Gaussian ellipses after 6, 9, 12, and 17 accepted births. Note that the number
of Gaussians increases from left to right.
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Figure 3: (left) Exp 2: F as function of iteration for the spiral problem on a typical run.
Drops in F constitute component births. Thick lines are accepted attempts, thin lines are
rejected attempts. (middle) Exp 3: Means of the factor loading matrices. These results
are analogous to those given by Bishop [2] for Bayesian PCA. (right) Exp 3: Table with
learned number of Gaussians and dimensionalities as training set size increases. Boxes
represent model components that capture several of the clusters.

escape local maxima and how robust it was to initial conditions (Figure 2, bottom).
Again local maxima did not pose a problem and the algorithm always found between
12-14 Gaussians regardless of whether it was initialised with 0 or 200. These runs
took about 3-4 minutes on a 500MHz Alpha EV6 processor. A plot of F shows that
most of the compute time is spent on accepted moves (Figure 3, left).

Experiment 3: Discovering the local dimensionalities. We generated a syn-
thetic data set of 300 data points in each of 6 Gaussians with intrinsic dimension-
alities (7 4 3 2 2 1) embedded in 10 dimensions. The variational Bayesian approach
correctly inferred both the number of Gaussians and their intrinsic dimensionalities
(Figure 3, middle). We varied the number of data points and found that as expected
with fewer points the data could not provide evidence for as many components and
intrinsic dimensions (Figure 3, right).

7 Discussion

Search over model structures for MFAs is computationally intractable if each factor
analyser is allowed to have different intrinsic dimensionalities. In this paper we have
shown that the variational Bayesian approach can be used to efficiently infer this
model structure while avoiding overfitting and other deficiencies of ML approaches.
One attraction of our variational method, which can be exploited in other models,
is that once a factorisation of Q is assumed all inference is automatic and exact.
We can also use F to get a distribution over structures if desired. Finally we derive



a generally applicable importance sampler that gives us unbiased estimates of the
true evidence, the exact predictive density, and the KL divergence between the
variational posterior and the true posterior.

Encouraged by the results on synthetic data, we have applied the Bayesian mixture
of factor analysers to a real-world unsupervised digit classification problem. We
will report the results of these experiments in a separate article.

Appendix: Optimal Q Distributions and Hyperparameters

Q(xn|sn) ∼ N (xn,s,Σs) Q(Λsq) ∼ N (Λ
s
q,Σ

q,s) Q(νsl ) ∼ G(asl , b
s
l ) Q(π) ∼ D(ωu)

lnQ(sn) = [ψ(ωus)− ψ(ω)] +
1

2
ln |Σs|+ 〈lnP (yn|xn, sn,Λs,Ψ)〉+ c

xn,s= ΣsΛ
s>

Ψ
−1

yn, Λ
s
q =

[
Ψ
−1

N∑
n=1

Q(sn)ynxn,s>Σq,s
]
q

, asl =a+
p

2
, bsl =b+

1

2

p∑
q=1

〈Λsql2〉

Σs
−1

= 〈Λs>Ψ
−1

Λs〉+ I, Σq,s
−1
=Ψ

−1

qq

N∑
n=1

Q(sn)〈xnxn>〉+diag〈νs〉, ωus =
α

S
+

N∑
n=1

Q(sn)

where {N ,G,D} denote Normal, Gamma and Dirichlet distributions respectively, 〈·〉 de-
notes expectation under the variational posterior, and ψ(x) is the digamma function
ψ(x) ≡ ∂

∂x
ln Γ(x). Note that the optimal distributions Q(Λs) have block diagonal co-

variance structure; even though each Λs is a p× q matrix, its covariance only has O(pq2)
parameters. Differentiating F with respect to the parameters, a and b, of the precision prior
we get fixed point equations ψ(a) = 〈lnν〉+ ln b and b = a/〈ν〉. Similarly the fixed point
for the parameters of the Dirichlet prior is ψ(α)− ψ(α/S) +

∑
[ψ(ωus)− ψ(ω)] /S = 0.
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