Motives

Characteristics

Reported analyses

Summary

Scale construction and evaluation in practice: Factor analysis versus item response theory

Janke C. ten Holt Marijtje A. J. van Duijn Anne Boomsma

University of Groningen

FCAP conference / June 26, 2008

Outline

- 2 Explicit motives for model choice
- Characteristics of the data and applied models
- 4 Statistical analyses reported
- 5 Summary, recommendations, and future research

introduction	111011100	Characteriotios	Reported analyses	Odifinitary
		Outline		
1 Intro	oduction			

2 Explicit motives for model choice

Induced up the m

- Oharacteristics of the data and applied models
- 4 Statistical analyses reported
 - 5 Summary, recommendations, and future research

Motives

Characteristics

Reported analyse

Summary

FA and IRT

Statistical models in scale construction and evaluation:

- Factor analysis (FA)
- Item response theory (IRT)

Motives

Characteristics

Reported analyses

Summary

FA vs IRT

Both latent variable (LV) models linking items to LVs (factors)

(Standard) FA

- Continuous item variables
- Linear relation between LV and items
- Model examples: CCFA, ECFA, OMG, PCA

IRT

- Categorical item variables
- Nonlinear relation between LV and items
- Model examples: Rasch, 2PLM, GRM, Mokken

Past research comparing FA and IRT

- Mathematically: Mehta & Taylor, 2006; Takane & De Leeuw, 1987; see also Kamata & Bauer, 2008
- Simulated data: Knol & Berger, 1991; Wirth & Edwards, 2007
- Empirical data: Glöckner-Rist & Hoijtink, 2003; Moustaki, Jöreskog, & Mavridis, 2004
- Simulated and empirical data: Jöreskog & Moustaki, 2001
- With regard to measurement equivalence: Meade & Lautenschlager, 2004; Raju, Laffitte, & Byrne, 2002; Reise, Widaman & Pugh, 1993

Motives

Characteristics

Reported analyse

Summary

Central question

Research question:

What is done in practice and why?

Motives

Characteristics

Reported analyse

Summary

Method

Review of 41 studies

- Concerning scale construction/evaluation
- Published in 2005 in
- Psychological Assessment (n = 13)
- European Journal of Psychological Assessment (n = 13)
- Educational and Psychological Measurement (n = 15)

Motives

Characteristics

Reported analyses

Summary

Method

Review of 41 studies

- Concerning scale construction/evaluation
- Published in 2005 in
- Psychological Assessment (n = 13)
- European Journal of Psychological Assessment (n = 13)
- Educational and Psychological Measurement (n = 15)

Motives

Characteristics

Reported analyse

Summary

Outline

Explicit motives for model choice

3 Characteristics of the data and applied models

Statistical analyses reported

Summary, recommendations, and future research

Frequencies of motives in FA and IRT studies

Motives mentioning both FA and IRT

- Skewed item distribution -> Rasch models
- IRT better suited for dichotomous data

Characteristics Outline Characteristics of the data and applied models

Characteristics

Table: No. of categories in studies applying FA, IRT, or both

		Type of applied analysis		
		FA	IRT	FA & IRT
		(<i>n</i> = 32)	(<i>n</i> = 6)	(<i>n</i> = 3)
No. of categories	2	4	1	1
	> 2	28	5	2

IRT not more often used for dichotomous data, as might have been suspected

Number of dimensions

Table: No. of dimensions in studies applying FA, IRT, or both

		Type of applied analysis			
		FA	IRT	FA & IRT	
		(<i>n</i> = 32)	(<i>n</i> = 6)	(<i>n</i> = 3)	
No. of dimensions	1	1	5	1	
	2	4		1	
	3	8			
	> 3	13	1	1	

IRT more often used for unidimensional data

14/28

<ロ> <同> <同> <同> < 同> < 同>

Exploratory vs confirmatory

Software use

	Type of applied analysis				
Software	FA (<i>n</i> EFA	= 32) CFA	IRT (<i>n</i> = 6)	FA & IRT (<i>n</i> = 3)	
LISREL		12		1	
AMOS		4			
EQS		2			
MPLUS		2			
SCA		1			
NOHARM				1	
MSP			2		
RSP				1	
TESTGRAF			1		
MULTILOG				1	
PARSCALE			1		
WINSTEPS			1		
POLY-SIBTEST			1		
EQUATE				1	
DFITPS6				1	
SAS	1	1		1	
SPSS	1				
STATVIEW	1				
SYSTAT	1				university of
No information	15	2		1	groningen

16/28

Reported analyses Outline 4 Statistical analyses reported

Model assumptions: FA (n = 32)

- 19 studies: no investigation
- 9 studies: investigated properly
- 4 studies: considered to some extent

Model assumptions: FA (n = 32)

- 19 studies: no investigation
- 9 studies: investigated properly
 - Item distributions are examined and reported.
 - Adequate methods (robust) are applied.
- 4 studies: considered to some extent

Model assumptions: FA (n = 32)

- 19 studies: no investigation
- 9 studies: investigated properly
- 4 studies: considered to some extent
 - Item distributions are not investigated, but robust estimators used.
 - Both robust and nonrobust analyses, but only reported nonrobust because of similar parameter estimates.

Model assumptions: IRT (n = 6)

- 4 studies: investigated properly
 - Unidimensionality assumption investigated
 - IRFs examined for monotonicity
 - Empirical IRFs compared to estimated IRFs
- 2 studies: no investigation

Motives

Characteristics

Reported analyses

Summary

Model fit: FA

CFA: Model fit tested formally usually with measures such as

• RMSEA, GFI, CFI, TLI (NNFI)

EFA: No formal test, but criteria to determine #factors and assignment of items to factors:

- loadings > 0.30 or 0.40
- # factors determined by screeplot, parallel analysis, eigenvalue > 1
- in merely 5 (of 21) studies: interpretability as criterion

Motives

Characteristics

Reported analyses

Summary

Model fit: FA

CFA: Model fit tested formally usually with measures such as

• RMSEA, GFI, CFI, TLI (NNFI)

EFA: No formal test, but criteria to determine #factors and assignment of items to factors:

- loadings > 0.30 or 0.40
- # factors determined by screeplot, parallel analysis, eigenvalue > 1
- in merely 5 (of 21) studies: interpretability as criterion

Motives

Characteristics

Reported analyses

Summary

Model fit: IRT (n = 6)

No formal tests reported

Mokken analysis: Loevinger's H for scale strength

Unidimensionality tested in 3 studies

Motives

Characteristics

Reported analyses

Summary

Model fit: IRT (n = 6)

- No formal tests reported
- Mokken analysis: Loevinger's H for scale strength
- Unidimensionality tested in 3 studies

Methodological expert as co-author

Methodological expert as co-author: Motives

		,	
	Outline		
1	Introduction		
2	Explicit motives for model choice		
3	Characteristics of the data and ap	plied models	
4	Statistical analyses reported		
5	Summary, recommendations, and	I future research	

Summary

Reported analyses

Motives

Characteristics

Reported analyses

Summary

Summary

- FA applied far more often than IRT
- Little explicit motivation in studies
- Possible implicit motives:
 - Expectations about dimensionality
 - FA is more accessible

Recommendations

• Researchers can take better advantage of their theories:

- More frequent application of confirmatory techniques.
 When applying an exploratory model → cross-validate.
- Add interpretability of factors and content of items to criteria of model evaluation.
- Evaluate model assumptions and report in the paper or on a website.

Future research

- Both simulated and empirical comparisons of FA and IRT
 - Examine impact of violation of model assumptions
 - Extend past research by including nonparametric IRT in the comparison
- Examine differences between latent variable (factor) scores produced by different types of models
- Examine how to combine exploratory and confirmatory approaches in FA and IRT

Motives

Characteristics

Reported analyses

Summary

THANK YOU FOR YOUR ATTENTION

Any questions?

Motives

Characteristics

Reported analyses

Summary

THANK YOU FOR YOUR ATTENTION

Any questions?

