
36-303: Sampling, Surveys and Society Quality in Surveys Brian Junker 132E Baker Hall brian@stat.cmu.edu

Some Notation...

- μ_i = value of the *construct*. E.g. # of doctor visits for ith person in population, i=1, ..., N
- Y_i = <u>ideal value</u> of the <u>measurement</u> for the ith person in the sample, i=1, ..., n
- y_i = *observed value* (reported number of doctor visits) for ith sample person
- y_{ip} = <u>observed value after editing/processing</u>
- y_{it} = value on the tth "trial" (tth time we run the survey)

Validity

- Y_i = μ_i + ϵ_i μ_i is the "true value" for the population
 - Y_i is the "ideal measured" value
 - \Box ϵ_i is how much Y_i "deviates" from μ_i
- Deviation/error is natural. We just have to account for it
- If there are T trials (repeats of the survey), t=1, ..., T, we might write

And expect that the errors ϵ_{it} would "average out" over trials...

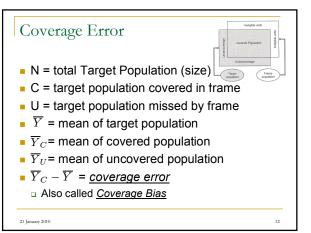
• A measure of the size of the errors ϵ_i is $Corr(Y_i, \mu_i)$

This correlation is a measure of the Validity of the measurement

Measurement Error

- y₁ Y₁ is the measurement error
 - □ Y_i is the ideal measurement
 - □ y_i is the observed measurement
- There are two kinds of measurement error to worry about
 - \Box <u>Variability</u>: $y_i = Y_i + error_i$, and the error "averages out" over repeated trials: $E_t[y_{it}] = Y_i$
 - □ *Bias*: y_i = Y_i + something that doesn't "average $E_t[y_{it}] \neq Y_i$

21 January 2010


21 January 2010

Processing Error

- y_{ip} y_i is the processing error
 - $\ \ \ \dot{\ \ }$ $\ \dot{\ \ }$ y_{ip} is the response after editing/processing
 - y is the 'raw' response to the measurement
- These errors come in when you have to code, check, or fix survey responses, e.g.
 - Coding a verbal response
 - Range check can this person have been in High School for 7 years?
 - □ Clumping, e.g. "income between \$10,000 and \$30,000"
- These are generally bias and not variability issues

21 January 2010

Representation Quality Working down the right side: □ Coverage Error □ Sampling Error Nonresponse Error (later lecture) □ Adjustment Error

2

Coverage Error (Cont'd)

$$\overline{Y}_C - \overline{Y} = \frac{U}{N} (\overline{Y}_C - \overline{Y}_U)$$

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i = \frac{1}{N} \left(\sum_{C} Y_i^C + \sum_{U} Y_i^U \right)$$

$$\begin{split} \overline{Y}_C - \overline{Y} &= \frac{1}{C} \sum_C Y_i^C - \frac{1}{N} \sum_{i=1}^N Y_i \\ &= \frac{1}{C} \sum_C Y_i^C - \frac{1}{N} \left(\sum_C Y_i^C + \sum_U Y_i^U \right) \\ &= \left(\frac{1}{C} - \frac{1}{N} \right) \sum_C Y_i^C - \frac{1}{N} \sum_C Y_i^U \end{split}$$

$$= \frac{U}{NC} \sum_{C} Y_i^C - \frac{U}{N} \cdot \frac{1}{U} \sum_{C} Y_i^U$$

 $= \frac{U}{N}(\overline{Y}_C - \overline{Y}_U)$

Coverage Error/Coverage Bias

- Suppose we are interested in Monthy Mortgage Payment (\$0 if you rent)
 - Total population is all adults in (US/Pgh/...)
 - Data collection method is random digit dialling
 - Sampling frame is callable land-line phone #'s
- Renters may be more likely to have only a cell phone than homeowners
 - Renters are undercovered by our frame

 - $_{\square}$ Our estimate of mean mortgage payment will be too high $_{\square}$ If we can get an estimate of $\ \frac{U}{N}(\overline{Y}_{C}-\overline{Y}_{U})$ Then we can estimate $\overline{Y}_C - \overline{Y}$ and fix the bias!

Sampling Error

- How well does the sample represent the sampling frame?
 - Sampling bias
 - Best to try to anticipate and avoid
 - Can be looked at similarly to coverage bias
 - Another way to deal with is with weights, but this can introduce "adjustment error" (more in a couple pages)
 - Sampling variability this is a more familiar issue! (see next page)

21 January 2010

15

Sampling Variability

- $\overline{y}_s = \frac{1}{n_s} \sum_{i=1}^{n_s} y_{si}$ is the mean of the sample
- $\overline{Y}_C = \frac{1}{C} \sum_C Y_i^C$ is the mean of the frame

The Standard Error for estimating \overline{Y}_C with \overline{y}_s is

$$SE = \sqrt{rac{1}{S}\sum_{s=1}^{S}(\overline{y}_s - \overline{Y}_C)^2}$$

in case of simple random sampling (next week!) we know that

$$SE = SD/\sqrt{n_s} pprox rac{\sqrt{rac{1}{n_s-1}\sum_{i=1}^{n_s}(y_{si}-\overline{y}_s)^2}}{\sqrt{n_s}}$$

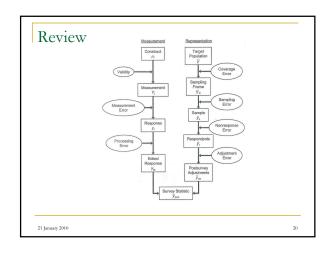
21 January 2010

Adjustment Error

- This usually comes in the forms of weights.
- If the proportion of units in the sample is systematically different from the population, we may weight each unit:

$$\overline{y}_w = \frac{\sum_{i=1}^{n_s} w_i y_i}{\sum_{i=1}^{n_s} w_i}$$

■ The main issues are (again) bias and variability of this estimate $\overline{y}_w - \overline{Y}$


21 January 2010

More on the Project Outline Handout

- We will go over some parts of the handout now
- This is your chance to ask questions about any parts of the handout that you read, and are concerned about.

21 January 2010

Review Quality in Surveys More on the Project Outline Handout Reading: Up to today: responsible for Groves Ch's 1, 2 Save Groves Ch 3 for later Next week: Groves Ch 5, 11, & 4, in that order Lecture notes online at http://www.stat.cmu.edu/~brian/303

