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1 Key ldeas
1.1 Why Use Clustering?

After stratification the most natural extension to simpled@m sampling involves the use of clus-
ters of the population of interest. In stratified sampling @ivide the population into distinct
subpopulations callestrata, and within each stratum we select a separate sample. liecheam-
pling, we divide the population up into clusters, and we &edesample of clusters and include all
of the elements from these clusters in the sample. Figuepitoduced from Lohr (1999), indicates
some similarities and fierences between these approaches.

There are two primary reasons for clustering:

1. Areliable list of elements of the population may be unavddand it may be unreasonably
expensive to try to compile such a li8¥e can, however, make a list of clusters and thus it is
sensible to use them as the sampling units. For example:

e This is often the case when we sample human populations andubters are house-
holds. This is because it is relatively easy to prepare andtaia a list of household
locations, whereas it is virtually impossible to maintailisaof individuals in identifi-
able locations.

¢ You could also imagine doing this on-campus. C-Book is a fthivame for CMU
undergraduates, but the Hub has an exhaustive list of dlasgktheir locations, so you
could take an SRS of classes from the Hub’s list, rather tma8RS of students: the
clusters are the classes.

2. Even if a reliable list of population elements is availalkitemay be dfficult, expensive or
disruptive to take an SRS of individual®n the other hand, and SRS of clusters may be
easier. For example:

e The travel costs associated in going from one housing urgintather for a random
sample of individuals may be substantial. Further, wherthirgter consists of a house-
hold, one individual (e.g. “head of household”) can providermation on all the other
members.

¢ Inthe National Assessment of Educational Progress, thvegfiorm is an achievement
test in math, science, or some other subject. While it woegbssible to pull out
individual students from a class and send them to a spe@al for testing, it is much
easier and less disruptive to sample classrooms (so theratass are the clusters) and
give the test to all eligible students in the class.

You might remember that stratification usually increasespitecision of our sample (reduces
standard errors), relative to an SR3ustering has the oppositgiect it tends to decrease the pre-
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Stratified Sampling

Cluster Sampling

Each element of the population is in exactly one stratum.

Each element of the population is in exactly one cluster.

Population of H strata; stratum A has ny, elements:

Take an SRS from every stratum;:

-
5
;

One-stage cluster sampling; population of N clusters:

Take an SRS of clusters; observe all elements within
the clusters in the sample:

Variance of the estimate of y,; depends on the
variability of values within strata.

The cluster is the sampling unit; the more clusters
we sample, the smaller the variance. The variance
of the estimate of 3, depends primarily on the
variability between cluster means.

For greatest precision, individual elements within each
stratum should have similar values, but stratum means
should differ from each other as much as possible.

For greatest precision, individual elements within
each cluster should be heterogeneous, and cluster
means should be similar to one another.

Figure 1: Similarities and Dierences Between Cluster Sampling and Stratified Samplirgm F

Lohr (1999).
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cision of the sample (increase the standard errors). Tlisdause individuals in the same cluster
tend to be more alike thanféierent, and this causes their responses to be positivelglated.

We will begin exploring the basic ideas of clustering by loakat examples of the influence
of clustering on estimating proportionpy6,s). Then we will look at how clustering impacts
estimationg numerical quantiti€g,(,'s).

One does not have to choose either clustering or stratditcaéind in large scale surveys the
two methods are often combined. In coming lectures, we waineine some actual surveys that
combine clustering and stratification to achieve the adged in cost from the former while pre-
serving some of the precision that stratification confers.

It is simpler to introduce the ideas when all the clusterslhthe same size (all families have
exactly 4 members, all classes have exactly 30 student$, &ice same ideas also work in the
more realistic situation of clusters offtéiring sizes, and we will look briefly at that situation as
well.

A key reference is Lohr’s (1999) textbook [recommended fexthe class].

1.2 Some Basic Elements of Cluster Sampling
Example 1: Using Family Clusters to Estimate the ProportionEligible for Medicare

Suppose we have a population of siZ¢ @omposed oN families of size 2, a husband and wife.
We say that the families are clusters of sMe= 2. Further suppose that the husband and wife
in any given pair are exactly the same age. We are interestédgiproportion of the population
eligible for Medicare corresponding to those over the aggbotind we take a samplemfamilies.
Since both members of each family have the same age wket @ave redundant information and
instead of ending up with an overall sample of sipertlividuals, our &ective sample size is only
n.

Now suppose that husbands and wives don't have identical ageon average older husbands
have older wives and younger husbands have younger wiveés pdkitive association or correla-
tion between the age of the husband and the age of the wife air again reduces the flective
sample size” associated with our cluster sampla tdmilies. We get an estimate that is more
accurate than a simple random samplenafdividuals from the population, but still less than a
simple random sample of size.2

This example illustrates the basic impact of clustering teawill tend to observe in the sam-
pling of human populations. In general we consider a pojuiaif NM elements subdivided into
N clusters of sizeM. We take a sample af of these clusters and incorporate into our sample
information on allM elements in each of the selected clusters. Thus we recavdmation on
nM units. If the information from individuals within a clustes positively related, then there is
less variation among individuals within a cluster than fog same number of individuals drawn
from different clusters. Thus we expect that our cluster sample wikbs accurate than a simple
random sample of the same sind/.
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After introducing some terminology and notation we willriuo the actual formulas for the
variance of an estimate for a proportion or for a mean fronuatet sample, which involve mea-
sures of variation within and between clusters.

1.3 Terminology and Notation

In cluster sampling the notation is a little bit messier tharSRS or even stratified sampling,
because of the need to keep track of which observations camevihich clusters, and the need
to keep track of posive correlations between elements frensame cluster.

¢ In a clustered sample, the clusters are sometimes cptlethry sampling unitor psu’s
The individuals within a cluster are callesdcondary sampling unite ssu’s

¢ In one-stage cluster samplinge first take an SRS of psu’s (clusters). Ttadinof the ssu’s
(individuals) within each cluster are included in the saenprlhis is the situation we will
focus on in these notes.

¢ In two-stage cluster samplingve first take an SRS of psu’s. Then within each psu, we take
an SRS of ssu’s.

For example in a survey of a school district we might take a8 $Rschools (psu’s, or clus-
ters) and then take another SRS of students (ssu’s, or thdilg) because it is too expensive
to go to every student in every sampled school.

| will try to stick with “clusters” and “individuals” or “clsters” and “units”, but keep in mind that
psu= cluster, and sst an individual or unit within a cluster.

In SRS, we talked of a population dF units. NowN will refer to the clusters or psu’s. Within
each cluster there are ssu’s. The basic data we observe looleservation is

yij = measure foij" element of™ cluster
measure fol™ ssu in theé™ psu

So,y;; might be 0 or 1 depending on which candidate jfienember of householdsupports, or
yij might be the GPA of thg¢"" member of classroom etc.

e Some population quantities for psu’s are:

N = number of psu’s (clusters) in the population
Mi = number of ssu’s (individuals) in cluster
N
K = ZM‘ = total number of ssu’s in the population

i=1
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e Some population quantities for ssu’s are:

1y .
Yoop = RZ = the population mean
i=1
M.
_ 1 : N
Yipop = 3 2V = population mean in thé" psu
i ]:l
1 N M
S? = - 12 (Y- Yp0p)> = population variance of ssu’s
i=1 j=1
1
St = M1 (Y- Vip0p)° = POpulation variance of ssu’s within a single psu
1

[N

J:

e Some sample quantities of interest are:

S = setofi’s (psu’s; clusters) sampled

S; = setofj’s (ssu’s; individuals) sampled ifff psu = set of all ssu’s in the sample
n = number of psu’s in sample (size &)

m = number of ssu’s in the sample from tiepsu (size ofS;)

1 ,
y, = EjZ;iyij = sample mean for thé' ssu

1.4 Basic Ideas for Estimating Means

From theN clusters in the population we take an SRS without replacéwfemof them. LetS be
the set of clusterssampled, so tha$ hasn elements.

e The size of each cluster M;. For simplicity we assumequal cluster sizedV; = M V i.

e We also will assume that every individual in the cluster i®ur sample; this i®ne-stage
cluster sampling

For example, we could consider all two-person househdtis:(2 for all clusters) in a survey to
estimate mean incomg; is the income of thg™ person in thé™ household.
For each clusterin S, we can calculate the cluster mean

1M
yizmjzzllyij
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In our exampley, = 2(y.1 +YVi»), the average of the two person’s incomes initheousehold.
Since we have an SRS of clusters, we can apply our formulé8R&’s to estimate population
quantities, but now we think of an SRS dtisters where the measurement on eatisteris y;:

ycl Z Yi

|eS

The standard error (SE) needed for constructing confiderieevals is thesquare root of

Var()_/m) = (1 f)Sclpop

(- )= [ iy. ypoa}

(-3 [ilzs]l mﬂ
1 —3)—[i1 > —w]

ny1l
= (1- _)_
( N n%i
Note that the cluster sample sizenidut the individual sample size Id - n = 2n. We might

compare our SE here with the SE we would calculate if this vaar&RS without replacemeat
individuals So let

Q

Ysrs = %Zyl] = anzyll
1]

jeS i=1
(Note that
_ 1w 1w
Ysrs = ﬁ Z M Z Yij
jeS i=1
_ 1 y
- i
n ieS
= ycl

so that cluster sampling with equal cluster sizesei$-weightingthe complex estimatgi, equals

the simpler estimatdyy,..)
The variance under SRS would be

Var(Yss) = (1- f)Sf)op/(Mn)

7
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1 [ N M
(1_f)W>MN 122% ypop)}

i=1

&

1] 1 v ,
= o | g 2 2 O~ Yerd
! ieS j=1
Mny 1
= (1) s

As with stratified sampling we can calculatdesign gect

Vargy) (- RiETO Y] ME TG M
var (yer) (1 - %) Mn [Mn 1 Z:IES Zj 1(y|J ysrs)z] ﬁ Z:iES Z:\il(ylj - ysrs)2 SSZ/ij

to see what thefect on precision of clustering is. In stratified sampling, al®o calculated a
design &ectDEFF (it has a diferent formula).

DEFF =

¢ In stratified sampling we usually gBXEFF < 1 if we design the strata carefully.
¢ In clustered sampling, we usually geEFF > 1.

We will see more about the desigfiext below.

Example 2: Estimating Average GPA (Lohr, 1999)

A student wants to estimate the average GPA in his dormifidrgre areN = 100 suites that hold
M = 4 students each. There are three random sampling schemesltaise:

e SRS without replacemenfErom a list (frame) of all 400 students in the dorm, take an SRS
without replacement of, say, 20 students.

¢ Stratified sampleFrom each of the 100 suites he could take an SRS without rplaat of,
say, 2 students (for a total sample size of 200= 200). Herethe suites are strata.

e Clustered sampleHe could take an SRS of, say= 5 suites from the list of suites, and then
take all four students in each suite. Again the sample sidns= 4 x 5 = 20. Herethe
suites are clusters.

In this case, the leastfert is probably the clustered sample, so that is what theesiiudbes. The
results are contained in Table 1 (page 9).

For the clustered sample we have

18
yc,:gz -:—(304+284+224+324+277) 2.826
i=1
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Person Suite (Cluster)i{
Number () | 1 2 3 4 5
1 3.08 2.36 2.00 3.00 2.68

2 260 3.04 256 288 1.92
3 3.44 3.28 2.52 3.44 3.28
4 3.04 268 1.88 3.64 3.20
Y, 3.04 284 224 324 277

Table 1: GPA data from a clustered random sample of dormssuite

and the sample variance of tiiés is
1

S =571 |(3.04-2.826Y +--- + (277 - 2.826¥| = 0.14098
Therefore . 51
n

S0SE= v0.0268= 0.164, and a 95% CI for the mean GPA in the dorm would be
(2.826- (1.96)- (0.164), 2.826+ (1.96)- (0.164))

which runs from about 2.51 to about 3.15.
If the data had been collected as an SRS of 8ize20 we would have gotten

Ve = 2.862

(same answer, since the cluster sample was self-weighteitth)sample varianéesjj = 2.648, so
that

Var (.0 = (1 - m) L2 = (1-20/400)=(2.648)= 0.126
et MN/ Mn™i ~ 20T

We can see that the desigffiext in this case is

_vary)  MS (4)(014098)
DEFF = Var(y) &, (0.2648) =2l

So we would need a little over twigas many observations in a clustered sample, in this case, to
get the same precision as an SRS.

Lohr (1999, p. 142) points out that the simple sample vag#h648 is an underestimate because the data was in
fact collected as a clustered sample. She proposes a |ssslld@atimator based on ANOVA sums of squares, but we

will use the simpler estimate for our purposes.
ZLohr (1999) calculateBEFF = 2.02 based on her less-biased estimatg;of

9
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It turns out that
Var ()_/cl)

Var (Vs

wherep (“rho”) is theintracluster correlation (ICC)The ICC is the correlation between all pairs of
observations within each cluster (remember that obsemnatvithin a cluster tend to be positively
correlated).

We can use this formula to see how correlated the obsergadianin this example, by solving
for p:

DEFF = ~1+(M-1)p

o~ (DEFF - 1)/(M - 1) = (213- 1)/3 = 0.38

That is to say, there is a correlation of abotu 0.38 betwegrvam people’s GPA in the same dorm
suite, in this survey!

2 Cluster Sampling for Attributes

We now consider the estimation of the proportjpof the population of siz& M possessing an
attribute. Letp; be the proportion of elements in tité cluster possessing the attribute. Then the
cluster sample estimate pf p., is just the average of the valuesmffor the sampled clusters,

LS ()

and, since the clusters are of equal size, this estimatenglgithe overall sample proportion of
individuals with the attribute of interest. Thus our clusgample selection procedure assigns each
individual in the sample the same chance of selection andaimple isself-weighting.

We get the variance op, by treating the values of; as a sample oh measurements and
looking at their variation when used to estimate the ovematiulation proportiorm, i.e.,

(ziNl(pi—mz)
_ N
Var(®) = (=1 @

We typically want to compare the accuracy of our estimptewith that of a simple random
sample of the same overall sample sizh, i.e.,
(NM-nM)p(1-p)

(NM-1) nM

Var(p) = 3)

One way to compare the variances involves the “correlatlmtiveen elements in the same
cluster,p. This quantityp is called thentracluster correlation cogicient. It turns out that

10
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Var(p,)
Var(p)

=1+(M-1)p. (4)

Since variances cannot be negative, the quantity(l¥ — 1)p can’t be negative and the minimum
possible value fop is (M‘—_ll which tends to 0 as the cluster sikkgets large. Unlike a regular
correlation coféficient which takes values between 1 and -1, the intraclusteelation coéicient
runs between 1 an ‘_11 . If p > 0, the cluster provides less precision than a random sanfiple o
M individuals, whereas whem < 0, something which occasionally happens, the use of cliger

more precise.

Example 3: Limited English Proficiency Students

The U. S. Department of Education is interested in detemgitihe number of elementary school
children in public schools with limited proficiency in Engfi (LEP). Suppose there ake= 20
schools in a given district and that each school Mas 100 students. Investigators take a sample
of n = 5 schools and gather information on the proportion of LERIestits in each school. The
total sample size is number of schools sampled times the aeuoflchildren in each school, i.e.,
500. Because of housing patterns we expect children in & gisleool to be more alike with respect
to their proficiency in English than those inflidirent schools. This is because immigrants to the
district from a given country often live close to one anotfoeleconomic or other reasons. Suppose
we can determine that the intra-school correlatiorfiocient for the attribute LEP is 0.0383. Then
the ratio of the variance of the cluster sample of 5 clustetke variance we would have had if we
had taken a simple random sample of students from a acrosslttbel district of size 500 is

1+(M—1)p =1+ 99x 0.0383= 4.79

i.e., the variance of the cluster sample is almost 5 timestgréhan that of a simple random sample
of equivalent size. Put another way, we could have taken plsilmndom sample of 100 children
from across the school district and achieved an estimatheoptoportion of LEP students with
equivalent accuracy.

Why then did investigators choose their sample in this wayfe answer is cost. Suppose
that the cost of going to a school and setting up a languagest&4000, whereas the cost of
administering the test to the student one set up is $10. gakirandom sample of 100 students
would have meant that they would have gone to at least, sag¢H@ols, perhaps more. The cost
of administering the test in 10 schools is

(10 x $1000)+ (100x $10) = $11, 000,

Instead, the investigators went to only 5 schools and theis tlost was

(5 x $1000)+ (100x $10) = $6,000,

11
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Thus, by taking a cluster sample the investigators incusrgy (6/11)th of the cost associated with
a simple random sample of equivalent precision.

When the population size is large and we can ignore the fiipgifation correction, and we
can rewrite the ratio of the variance for cluster sampleu®tbat for a simple random sample
directly as

Var(p) _ MXNi(pi - py’
Var(p) = Np(l-p)

What we have in these formulas for the variances is thr&erdnt measures of variability:
(i) the overall population variance, i.e., the variance e tbservations for samples of size 1,
p(1 - p); (ii) the subpopulation for theh cluster, i.e., variance of the observations for samples o
size 1 within theth cluster,p;(1 — p;); and (iii) the variation of the cluster proportions abdu t
overall population proportiory (pi — p)?.

A very famous formula in statistics links these quantitie$alows:

(5)

N n
NMpL-p) =M > (n-pP+M > p(l-p)
i=1 i=1

total SSSS between, clusterSS within clusters

(6)

By substituting for the sum of squares between clustersdimalfla for the ratio of variances
we get

Var(@) _ MIL(p - p)? @)
Var(p) Np(1- p)
NMp(l-p)- MY pi(l-p)
Np(1-p)
Np(1- p)

M(1

The fraction in expression (7) in brackets tends is alwags fean or equal to 1. Thus the vari-
ance of cluster sampling is never more than M times that ofcaiivalently sized simple random
sample. But often the fraction is non-negligible and we g#éldegradation from the clustering
relative to simple random sampling. In the other extremegmwall of the clusters are identical
andp; = p for all clusters, the fraction is 1 and ratio of the variantseapproximately equal to
0, i.e., cluster sampling has yielded a fantastic gain: is ithstance, once you've seen one clus-
ter you in dfect have seen them all' Williams (1978, Chapter 11) givesrgpka example of this
phenomenon.

12
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Example 4: Numerical Illustrations.

Suppose that the proportion of individuals in a populatioth\a specific attribute ip = 0.5. If
the population consists & = 20 clusters, where for 10 clusteps = 0.25 and for the other 10
pi = 0.75, then

var(p,) _ =Y pi(l - p)
var(p) M(l‘ N p) ) ®
- M1 10(025x 0.75)+ 10(075 % 0.25)
) (_ 20(05 x 0.5) )
3 M
= M(1-Z)=7

Thus for clusters of siz® = 2 andM = 3, there is less variability in a cluster sample than in a
simple random sample! Fdd > 4, however, cluster sampling is ledi@ent, since the ratio is less
than 1. As the cluster siZd increases in this example, we have greater and greaterdégignain
precision associated with cluster sampling.

Example 3 (Continued)

Suppose the distribution of the number of LEP students irRthechools in our school district is
as follows:

Number of School | Proportion of LEP Students
2 0.1
3 0.2
3 0.3
10 0.4
2 0.5

The overall proportion of LEP studentsps= 0.326. ThusNp(1 — p) = 20x 0.326x 0.674 =
4.39 and from the information in the table we calculate

N
D p(-p)=419 (©)
i=1

SinceM = 100 the ratio of the variances is

var(py) _ M(l_ Xty pi(d - pi)) _ 100( 419

13
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Thus we get the precision of the cluster sample is equivabahiat of a simple random sample
of about 20% the sample size. Théfdrence between the ratio of 4.56 computed here and that of
4.79 computed in our earlier look at this example is due toiiong the finite population correction
here.

3 Cluster Sampling for Measurements

The same ideas carry over for cluster samples of measurem&etnow consider the estimation
of the meanu of the population of siz& M. Lety; be the sum of measurements for tttecluster.
Then the cluster sample estimatewofy,, is just the average of the all of measurements for all n
sampled clusters

(11)

(t,<|
|
>
z|"
.M:
<

[N

Our cluster sample selection procedure assigns each dldiMin the sample the same chance
of selection and the sample self-weighting We get the variance gf, by treating the values of
y; as a sample of measurements and looking at their variation about theimnvedue for allN
clusters. As we did with attributes, we compare the accuddaur estimatey,, with that of a
simple random sampleof the same overall sample sizgyl, and the ratio turns out to be the same
as it was for attributes:

Var(y,)
Var(y)

1+(M-1)p, (12)
wherep is the intracluster correlation cfigient.

Example 5

Henry (1990, pp. 107-109) gives an example where and , iniwthie estimated variances are

$(y,.) = 3017
S$(y) = 20.23
Thus there is an increase in the variance of about 50% dueustecing. This means that a

simple random sample of equivalent precision to the clusaenple would have required only a
sample of size

14
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2023
(W)B ~ 1005

or 10. For this example, the estimated intracluster caioglaodficient is

1 (SZ(VC) ~ 1) _ 1(30.17

5=~ 222l _1)=012 1
P=M_1lgm) 2023 ) 0.123 (13)

4 Unequal Cluster Sizes

The results for clustering described here work out in a simivay when the clusters are not
of equal size although the actual formulas are somewhat gmwrelicated. Choosing compact
clusters of roughly equal size turns out to be the méstient way to do cluster sampling, but in
real life clusters often come in varying sizes and theretie e can do about this. For example,
households come in sizes that typically vary from 1 (for Brgerson households) to as many as
12, or even more. The ratio of the variance for a cluster sarapihat of a simple random sample
still takes approximately the same form,

Var(y,)
Var(y)

=1+ (M-1)p, (14)

whereM is the average cluster size.

15
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Historical Note: The formal ideas for the use of cluster sampling were intcedun the same the
pioneering paper by Jerzy Neyman in 1934 in which he advdddte use of optimal allocation
for stratified sampling, and it was his combination of sfiedtion and clustering this had such a
profound influence on subsequent developments in the fieddmopling and in large-scale survey
practice.

Note on Proofs of Results:Cochran (1977) provides formal derivations for some of trenulas
presented here for cluster sampling as well as for mulgestduster sampling and cluster sampling
when the clusters are of unequal size. Lohr (1999) also hasaailent presentation on the relevant
formulas and their derivation.
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