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1 Key Ideas

1.1 Why Use Clustering?

After stratification the most natural extension to simple random sampling involves the use of clus-
ters of the population of interest. In stratified sampling, we divide the population into distinct
subpopulations calledstrata, and within each stratum we select a separate sample. In cluster sam-
pling, we divide the population up into clusters, and we select a sample of clusters and include all
of the elements from these clusters in the sample. Figure 1, reproduced from Lohr (1999), indicates
some similarities and differences between these approaches.

There are two primary reasons for clustering:

1. A reliable list of elements of the population may be unavailable and it may be unreasonably
expensive to try to compile such a list.We can, however, make a list of clusters and thus it is
sensible to use them as the sampling units. For example:

• This is often the case when we sample human populations and the clusters are house-
holds. This is because it is relatively easy to prepare and maintain a list of household
locations, whereas it is virtually impossible to maintain alist of individuals in identifi-
able locations.

• You could also imagine doing this on-campus. C-Book is a flawed frame for CMU
undergraduates, but the Hub has an exhaustive list of classes and their locations, so you
could take an SRS of classes from the Hub’s list, rather than an SRS of students: the
clusters are the classes.

2. Even if a reliable list of population elements is available,it may be difficult, expensive or
disruptive to take an SRS of individuals.On the other hand, and SRS of clusters may be
easier. For example:

• The travel costs associated in going from one housing unit toanother for a random
sample of individuals may be substantial. Further, when thecluster consists of a house-
hold, one individual (e.g. “head of household”) can provideinformation on all the other
members.

• In the National Assessment of Educational Progress, the survey form is an achievement
test in math, science, or some other subject. While it would be possible to pull out
individual students from a class and send them to a special room for testing, it is much
easier and less disruptive to sample classrooms (so the classrooms are the clusters) and
give the test to all eligible students in the class.

You might remember that stratification usually increases the precision of our sample (reduces
standard errors), relative to an SRS.Clustering has the opposite effect: it tends to decrease the pre-
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Figure 1: Similarities and Differences Between Cluster Sampling and Stratified Sampling. From
Lohr (1999).
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cision of the sample (increase the standard errors). This isbecause individuals in the same cluster
tend to be more alike than different, and this causes their responses to be positively correlated.

We will begin exploring the basic ideas of clustering by looking at examples of the influence
of clustering on estimating proportions (ppop’s). Then we will look at how clustering impacts
estimationg numerical quantities (ypop’s).

One does not have to choose either clustering or stratification, and in large scale surveys the
two methods are often combined. In coming lectures, we will examine some actual surveys that
combine clustering and stratification to achieve the advantages in cost from the former while pre-
serving some of the precision that stratification confers.

It is simpler to introduce the ideas when all the clusters have the same size (all families have
exactly 4 members, all classes have exactly 30 students, etc.). The same ideas also work in the
more realistic situation of clusters of differing sizes, and we will look briefly at that situation as
well.

A key reference is Lohr’s (1999) textbook [recommended textfor the class].

1.2 Some Basic Elements of Cluster Sampling

Example 1: Using Family Clusters to Estimate the ProportionEligible for Medicare

Suppose we have a population of size 2N composed ofN families of size 2, a husband and wife.
We say that the families are clusters of sizeM = 2. Further suppose that the husband and wife
in any given pair are exactly the same age. We are interested in the proportion of the population
eligible for Medicare corresponding to those over the age of65, and we take a sample ofn families.
Since both members of each family have the same age we in effect have redundant information and
instead of ending up with an overall sample of size 2n individuals, our effective sample size is only
n.

Now suppose that husbands and wives don’t have identical ages, but on average older husbands
have older wives and younger husbands have younger wives. This positive association or correla-
tion between the age of the husband and the age of the wife in a pair again reduces the “effective
sample size” associated with our cluster sample ofn families. We get an estimate that is more
accurate than a simple random sample ofn individuals from the population, but still less than a
simple random sample of size 2n.

This example illustrates the basic impact of clustering that we will tend to observe in the sam-
pling of human populations. In general we consider a population of NM elements subdivided into
N clusters of sizeM. We take a sample ofn of these clusters and incorporate into our sample
information on allM elements in each of the selected clusters. Thus we record information on
nM units. If the information from individuals within a clusteris positively related, then there is
less variation among individuals within a cluster than for the same number of individuals drawn
from different clusters. Thus we expect that our cluster sample will be less accurate than a simple
random sample of the same size,nM.
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After introducing some terminology and notation we will turn to the actual formulas for the
variance of an estimate for a proportion or for a mean from a cluster sample, which involve mea-
sures of variation within and between clusters.

1.3 Terminology and Notation

In cluster sampling the notation is a little bit messier thanin SRS or even stratified sampling,
because of the need to keep track of which observations come from which clusters, and the need
to keep track of posive correlations between elements from the same cluster.

• In a clustered sample, the clusters are sometimes calledprimary sampling unitsor psu’s.
The individuals within a cluster are calledsecondary sampling unitsor ssu’s.

• In one-stage cluster sampling, we first take an SRS of psu’s (clusters). Thenall of the ssu’s
(individuals) within each cluster are included in the sample. This is the situation we will
focus on in these notes.

• In two-stage cluster sampling, we first take an SRS of psu’s. Then within each psu, we take
an SRS of ssu’s.

For example in a survey of a school district we might take an SRS of schools (psu’s, or clus-
ters) and then take another SRS of students (ssu’s, or individuals) because it is too expensive
to go to every student in every sampled school.

I will try to stick with “clusters” and “individuals” or “clusters” and “units”, but keep in mind that
psu= cluster, and ssu= an individual or unit within a cluster.

In SRS, we talked of a population ofN units. NowN will refer to the clusters or psu’s. Within
each cluster there are ssu’s. The basic data we observe on each observation is

yi j = measure forj th element ofi th cluster

= measure forj th ssu in thei th psu

So,yi j might be 0 or 1 depending on which candidate thej th member of householdi supports, or
yi j might be the GPA of thej th member of classroomi, etc.

• Some population quantities for psu’s are:

N = number of psu’s (clusters) in the population

Mi = number of ssu’s (individuals) in clusteri

K =

N
∑

i=1

Mi = total number of ssu’s in the population
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• Some population quantities for ssu’s are:

ypop =
1
K

N
∑

i=1

Mi
∑

j=1

yi j = t/K = the population mean

yi,pop =
1
Mi

Mi
∑

j=1

yi j = population mean in thei th psu

S2 =
1

K − 1

N
∑

i=1

Mi
∑

j=1

(y− ypop)
2 = population variance of ssu’s

S2
i =

1
Mi − 1

Mi
∑

j=1

(y− yi,pop)
2 = population variance of ssu’s within a single psu

• Some sample quantities of interest are:

S = set ofi’s (psu’s; clusters) sampled

Si = set of j’s (ssu’s; individuals) sampled ini th psu = set of all ssu’s in the sample

n = number of psu’s in sample (size ofS)

mi = number of ssu’s in the sample from thei th psu (size ofSi)

yi =
1
mi

∑

j∈Si

yi j = sample mean for thei th ssu

1.4 Basic Ideas for Estimating Means

From theN clusters in the population we take an SRS without replacement of n of them. LetS be
the set of clustersi sampled, so thatS hasn elements.

• The size of each cluster isMi. For simplicity we assumeequal cluster sizes: Mi ≡ M ∀ i.

• We also will assume that every individual in the cluster is inour sample; this isone-stage
cluster sampling.

For example, we could consider all two-person households (M = 2 for all clusters) in a survey to
estimate mean income.yi j is the income of thej th person in thei th household.

For each clusteri in S, we can calculate the cluster mean

yi =
1
M

M
∑

j=1

yi j
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In our example,yi =
1
2(yi1 + yi2), the average of the two person’s incomes in thei th household.

Since we have an SRS of clusters, we can apply our formulas forSRS’s to estimate population
quantities, but now we think of an SRS ofclusters, where the measurement on eachclusteris yi:

ycl =
1
n

∑

i∈S
yi

The standard error (SE) needed for constructing confidence intervals is thesquare root of

Var (ycl) = (1− f )S2
cl,pop/n

= (1− f )
1
n















1
N − 1

N
∑

i=1

(yi − ypop)
2















≈ (1− f )
1
n















1
n− 1

∑

i∈S
(yi − ycl)

2















=

(

1− n
N

) 1
n















1
n− 1

∑

i∈S
(yi − ycl)

2















=

(

1− n
N

) 1
n

s2
yi

Note that the cluster sample size isn but the individual sample size isM · n = 2n. We might
compare our SE here with the SE we would calculate if this werean SRS without replacementof
individuals. So let

ysrs =
1

Mn

∑

i, j

yi j =
1

Mn

∑

j∈S

M
∑

i=1

yi j

(Note that

ysrs =
1
n

∑

j∈S

1
M

M
∑

i=1

yi j

=
1
n

∑

i∈S
yi

= ycl

so that cluster sampling with equal cluster sizes isself-weighting: the complex estimatorycl equals
the simpler estimatorysrs.)

The variance under SRS would be

Var (ysrs) = (1− f )S2
pop/(Mn)
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= (1− f )
1

Mn

















1
MN − 1

N
∑

i=1

M
∑

j=1

(yi j − ypop)
2

















≈ (1− f )
1

Mn

















1
Mn− 1

∑

i∈S

M
∑

j=1

(yi j − ysrs)
2

















=

(

1− Mn
MN

) 1
Mn

s2
yi j

As with stratified sampling we can calculate adesign effect

DEFF =
Var (ycl)
Var (ysrs)

=

(

1− n
N

)

1
n

[

1
n−1

∑

i∈S(yi − ycl)
2
]

(

1− Mn
MN

)

1
Mn

[

1
Mn−1

∑

i∈S
∑M

j=1(yi j − ysrs)2
] =

M 1
n−1

∑

i∈S(yi − ycl)
2

1
Mn−1

∑

i∈S
∑M

j=1(yi j − ysrs)2
=

Ms2
yi

s2
yi j

to see what the effect on precision of clustering is. In stratified sampling, wealso calculated a
design effectDEFF (it has a different formula).

• In stratified sampling we usually getDEFF < 1 if we design the strata carefully.

• In clustered sampling, we usually getDEFF > 1.

We will see more about the design effect below.

Example 2: Estimating Average GPA (Lohr, 1999)

A student wants to estimate the average GPA in his dormitory.There areN = 100 suites that hold
M = 4 students each. There are three random sampling schemes he could use:

• SRS without replacement:From a list (frame) of all 400 students in the dorm, take an SRS
without replacement of, say, 20 students.

• Stratified sample:From each of the 100 suites he could take an SRS without replacement of,
say, 2 students (for a total sample size of 2× 100= 200). Here,the suites are strata.

• Clustered sample:He could take an SRS of, say,n = 5 suites from the list of suites, and then
take all four students in each suite. Again the sample size isMn = 4 × 5 = 20. Here,the
suites are clusters.

In this case, the least effort is probably the clustered sample, so that is what the student does. The
results are contained in Table 1 (page 9).

For the clustered sample we have

ycl =
1
5

5
∑

i=1

yi =
1
5

(3.04+ 2.84+ 2.24+ 3.24+ 2.77)= 2.826
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Person Suite (Cluster) (i)
Number (j) 1 2 3 4 5

1 3.08 2.36 2.00 3.00 2.68
2 2.60 3.04 2.56 2.88 1.92
3 3.44 3.28 2.52 3.44 3.28
4 3.04 2.68 1.88 3.64 3.20
yi 3.04 2.84 2.24 3.24 2.77

Table 1: GPA data from a clustered random sample of dorm suites.

and the sample variance of theyi ’s is

s2
yi
=

1
5− 1

[

(3.04− 2.826)2 + · · · + (2.77− 2.826)2
]

= 0.14098

Therefore

Var (ycl) =
(

1− n
N

) 1
n

s2
yi
=

(

1− 5
100

)

1
5

(0.14098)= 0.0268

SoS E=
√

0.0268= 0.164, and a 95% CI for the mean GPA in the dorm would be

(2.826− (1.96) · (0.164), 2.826+ (1.96) · (0.164))

which runs from about 2.51 to about 3.15.
If the data had been collected as an SRS of sizen = 20 we would have gotten

ysrs = 2.862

(same answer, since the cluster sample was self-weighted!), with sample variance1 s2
yi j
= 2.648, so

that

Var (ysrs) =
(

1− Mn
MN

) 1
Mn

s2
yi j
= (1− 20/400)

1
20

(2.648)= 0.126

We can see that the design effect in this case is

DEFF =
Var (ycl)
Var (ysrs)

=
Ms2

yi

s2
yi j

=
(4)(0.14098)

(0.2648)
= 2.13

So we would need a little over twice2 as many observations in a clustered sample, in this case, to
get the same precision as an SRS.

1Lohr (1999, p. 142) points out that the simple sample variance 2.648 is an underestimate because the data was in
fact collected as a clustered sample. She proposes a less biased estimator based on ANOVA sums of squares, but we
will use the simpler estimate for our purposes.

2Lohr (1999) calculatesDEFF = 2.02 based on her less-biased estimate ofs2
yi j

.
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It turns out that

DEFF =
Var (ycl)
Var (ysrs)

≈ 1+ (M − 1)ρ

whereρ (“rho”) is the intracluster correlation (ICC). The ICC is the correlation between all pairs of
observations within each cluster (remember that observations within a cluster tend to be positively
correlated).

We can use this formula to see how correlated the observations are in this example, by solving
for ρ:

ρ ≈ (DEFF − 1)/(M − 1) = (2.13− 1)/3 = 0.38

That is to say, there is a correlation of abotu 0.38 between any two people’s GPA in the same dorm
suite, in this survey!

2 Cluster Sampling for Attributes

We now consider the estimation of the proportionp of the population of sizeNM possessing an
attribute. Letpi be the proportion of elements in theith cluster possessing the attribute. Then the
cluster sample estimate ofp, pc, is just the average of the values ofpi for the sampled clusters,

pc =
1
n

n
∑

i=1

pi (1)

and, since the clusters are of equal size, this estimate is simply the overall sample proportion of
individuals with the attribute of interest. Thus our cluster sample selection procedure assigns each
individual in the sample the same chance of selection and thesample isself-weighting.

We get the variance ofpc by treating the values ofpi as a sample ofn measurements and
looking at their variation when used to estimate the overallpopulation proportionp, i.e.,

Var(pc) =
(N − n)
(N − 1)

(

∑N
i=1(pi−p)2

N

)

n
. (2)

We typically want to compare the accuracy of our estimate,pc, with that of a simple random
sample of the same overall sample size,nM, i.e.,

Var(p) =
(NM − nM)
(NM − 1)

p(1− p)
nM

. (3)

One way to compare the variances involves the “correlation”between elements in the same
cluster,ρ. This quantityρ is called theintracluster correlation coefficient. It turns out that
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Var(pc)
Var(p)

= 1+ (M − 1)ρ. (4)

Since variances cannot be negative, the quantity 1+ (M − 1)ρ can’t be negative and the minimum
possible value forρ is −1

(M−1), which tends to 0 as the cluster sizeM gets large. Unlike a regular
correlation coefficient which takes values between 1 and -1, the intracluster correlation coefficient
runs between 1 and−1

(M−1) . If ρ > 0, the cluster provides less precision than a random sample of
M individuals, whereas whenρ < 0, something which occasionally happens, the use of clusters is
more precise.

Example 3: Limited English Proficiency Students

The U. S. Department of Education is interested in determining the number of elementary school
children in public schools with limited proficiency in English (LEP). Suppose there areN = 20
schools in a given district and that each school hasM = 100 students. Investigators take a sample
of n = 5 schools and gather information on the proportion of LEP students in each school. The
total sample size is number of schools sampled times the number of children in each school, i.e.,
500. Because of housing patterns we expect children in a given school to be more alike with respect
to their proficiency in English than those in different schools. This is because immigrants to the
district from a given country often live close to one anotherfor economic or other reasons. Suppose
we can determine that the intra-school correlation coefficient for the attribute LEP is 0.0383. Then
the ratio of the variance of the cluster sample of 5 clusters to the variance we would have had if we
had taken a simple random sample of students from a across theschool district of size 500 is

1+ (M − 1)ρ = 1+ 99× 0.0383= 4.79

i.e., the variance of the cluster sample is almost 5 times greater than that of a simple random sample
of equivalent size. Put another way, we could have taken a simple random sample of 100 children
from across the school district and achieved an estimate of the proportion of LEP students with
equivalent accuracy.

Why then did investigators choose their sample in this way? The answer is cost. Suppose
that the cost of going to a school and setting up a language test is $1000, whereas the cost of
administering the test to the student one set up is $10. Taking a random sample of 100 students
would have meant that they would have gone to at least, say, 10schools, perhaps more. The cost
of administering the test in 10 schools is

(10× $1000)+ (100× $10)= $11, 000.

Instead, the investigators went to only 5 schools and thus their cost was

(5× $1000)+ (100× $10)= $6, 000.
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Thus, by taking a cluster sample the investigators incurredonly (6/11)th of the cost associated with
a simple random sample of equivalent precision.

When the population size is large and we can ignore the finite population correction, and we
can rewrite the ratio of the variance for cluster sample versus that for a simple random sample
directly as

Var(pc)
Var(p)

�

M
∑N

i=1(pi − p)2

Np(1− p)
(5)

What we have in these formulas for the variances is three different measures of variability:
(i) the overall population variance, i.e., the variance of the observations for samples of size 1,
p(1− p); (ii) the subpopulation for theith cluster, i.e., variance of the observations for samples of
size 1 within theith cluster,pi(1 − pi); and (iii) the variation of the cluster proportions about the
overall population proportion,

∑

(pi − p)2.
A very famous formula in statistics links these quantities as follows:

NMp(1− p) = M
N

∑

i=1

(pi − p)2 + M
n

∑

i=1

pi(1− pi)

total SS=SS between, clusters+SS within clusters

(6)

By substituting for the sum of squares between clusters the formula for the ratio of variances
we get

Var(pc)
Var(p)

�

M
∑N

i=1(pi − p)2

Np(1− p)
(7)

=
NMp(1− p) − M

∑N
i=1 pi(1− pi)

Np(1− p)

= M

(

1−
∑N

i=1 pi(1− pi)

Np(1− p)

)

The fraction in expression (7) in brackets tends is always less than or equal to 1. Thus the vari-
ance of cluster sampling is never more than M times that of an equivalently sized simple random
sample. But often the fraction is non-negligible and we get little degradation from the clustering
relative to simple random sampling. In the other extreme, when all of the clusters are identical
and pi = p for all clusters, the fraction is 1 and ratio of the variancesis approximately equal to
0, i.e., cluster sampling has yielded a fantastic gain: in this instance, once you’ve seen one clus-
ter you in effect have seen them all! Williams (1978, Chapter 11) gives a simple example of this
phenomenon.
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Example 4: Numerical Illustrations.

Suppose that the proportion of individuals in a population with a specific attribute isp = 0.5. If
the population consists ofN = 20 clusters, where for 10 clusterspi = 0.25 and for the other 10
pi = 0.75, then

Var(pc)
Var(p)

� M

(

1−
∑N

i=1 pi(1− pi)

Np(1− p)

)

(8)

= M

(

1− 10(0.25× 0.75)+ 10(0.75× 0.25)
20(0.5× 0.5)

)

= M
(

1− 3
4

)

=
M
4
.

Thus for clusters of sizeM = 2 andM = 3, there is less variability in a cluster sample than in a
simple random sample! ForM ≥ 4, however, cluster sampling is less efficient, since the ratio is less
than 1. As the cluster sizeM increases in this example, we have greater and greater degradation in
precision associated with cluster sampling.

Example 3 (Continued)

Suppose the distribution of the number of LEP students in the20 schools in our school district is
as follows:

Number of School Proportion of LEP Students
2 0.1
3 0.2
3 0.3
10 0.4
2 0.5

The overall proportion of LEP students isp = 0.326. ThusNp(1− p) = 20× 0.326× 0.674=
4.39 and from the information in the table we calculate

N
∑

i=1

pi(1− pi) = 4.19. (9)

SinceM = 100 the ratio of the variances is

Var(pc)
Var(p)

� M

(

1−
∑N

i=1 pi(1− pi)

Np(1− p)

)

= 100

(

1− 4.19
4.39

)

= 4.56. (10)
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Thus we get the precision of the cluster sample is equivalentto that of a simple random sample
of about 20% the sample size. The difference between the ratio of 4.56 computed here and that of
4.79 computed in our earlier look at this example is due to ignoring the finite population correction
here.

3 Cluster Sampling for Measurements

The same ideas carry over for cluster samples of measurements. We now consider the estimation
of the meanµ of the population of sizeNM. Let yi be the sum of measurements for theith cluster.
Then the cluster sample estimate ofµ, yc, is just the average of the all of measurements for all n
sampled clusters

yc =
1

nM

n
∑

i=1

yi . (11)

Our cluster sample selection procedure assigns each individual in the sample the same chance
of selection and the sample isself-weighting. We get the variance ofyc by treating the values of
yi as a sample ofn measurements and looking at their variation about their mean value for allN
clusters. As we did with attributes, we compare the accuracyof our estimate,yc, with that of a
simple random sampley of the same overall sample size,nM, and the ratio turns out to be the same
as it was for attributes:

Var(yc)
Var(y)

= 1+ (M − 1)ρ, (12)

whereρ is the intracluster correlation coefficient.

Example 5

Henry (1990, pp. 107-109) gives an example where and , in which the estimated variances are

s2(yc) = 30.17

s2(y) = 20.23

Thus there is an increase in the variance of about 50% due to clustering. This means that a
simple random sample of equivalent precision to the clustersample would have required only a
sample of size
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(20.23
30.17

)

15= 10.05

or 10. For this example, the estimated intracluster correlation coefficient is

ρ =
1

M − 1

(s2(yc)
s2(y)

− 1
)

=
1
4

(30.17
20.23

− 1
)

= 0.123. (13)

4 Unequal Cluster Sizes

The results for clustering described here work out in a similar way when the clusters are not
of equal size although the actual formulas are somewhat morecomplicated. Choosing compact
clusters of roughly equal size turns out to be the most efficient way to do cluster sampling, but in
real life clusters often come in varying sizes and there is little we can do about this. For example,
households come in sizes that typically vary from 1 (for single person households) to as many as
12, or even more. The ratio of the variance for a cluster sample to that of a simple random sample
still takes approximately the same form,

Var(yc)
Var(y)

� 1+ (M − 1)ρ, (14)

whereM is the average cluster size.
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Historical Note: The formal ideas for the use of cluster sampling were introduced in the same the
pioneering paper by Jerzy Neyman in 1934 in which he advocated the use of optimal allocation
for stratified sampling, and it was his combination of stratification and clustering this had such a
profound influence on subsequent developments in the field ofsampling and in large-scale survey
practice.

Note on Proofs of Results:Cochran (1977) provides formal derivations for some of the formulas
presented here for cluster sampling as well as for multi-stage cluster sampling and cluster sampling
when the clusters are of unequal size. Lohr (1999) also has anexcellent presentation on the relevant
formulas and their derivation.
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