36-303: Sampling, Surveys and Society

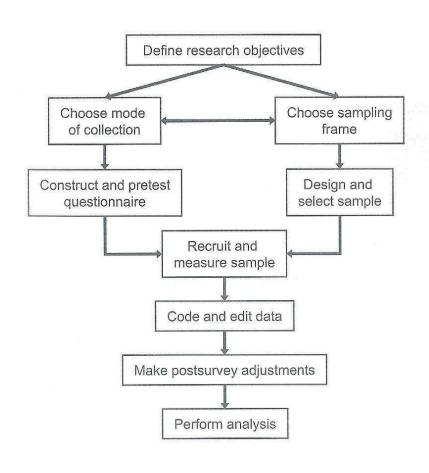
Quality in Surveys
Brian Junker
132E Baker Hall
brian@stat.cmu.edu

Handouts

- Lecture Notes
- Examples of I.1 Proposals[due Tue Jan 25]

20 January 2011 2

Outline

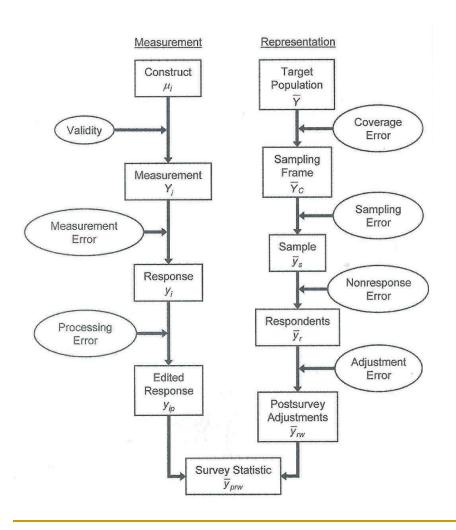

- Quality in Surveys
- Project Proposals: I.1 on the "Project Schedule" handout.
- Reading:
 - Up to today: responsible for Groves Ch's 1, 2, 3
 - Next week:
 - Groves Ch 5
 - Groves, Ch 11 (sections 1-6)
 - Groves Ch 4 (sections 1-3; we will do more later)

in that order

Lecture notes online at

http://www.stat.cmu.edu/~brian/303

Quality in Surveys

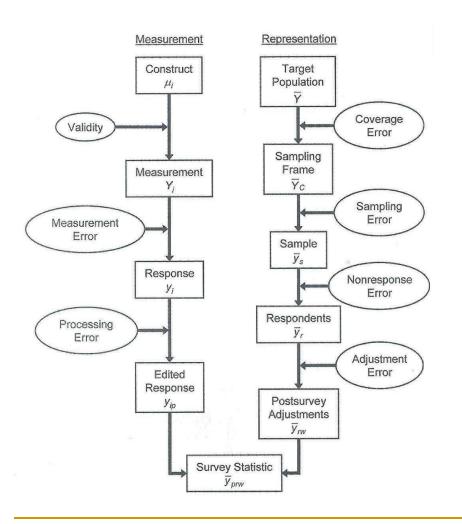


Measurement Representation Construct Target Population Coverage Validity Error Sampling Frame Measurement Yo Sampling Error Measurement Error Sample \bar{y}_s Response Nonresponse Error Respondents Processing Adjustment Error Edited Response Postsurvey Yip Adjustments Survey Statistic \overline{y}_{prw}

Process Perspective on Surveys

Quality Perspective on Surveys

Quality Overview



Total Survey Error

- Each of the Quality
 Components has a verbal description and a statistical formulation
- The Quality Components are properties of individual survey design and analysis decisions, not of whole surveys
- Our job is to make decisions to minimize error / maximize quality

20 January 2011 5

Measurement Quality

- Working down the left side:
 - Validity
 - MeasurementError
 - Processing Error

Some Notation...

- μ_i = value of the <u>construct</u>. E.g. # of doctor visits for ith person in population, i=1, ..., N
- Y_i = <u>ideal value</u> of the <u>measurement</u> for the ith person in the sample, i=1, ..., n
- y_i = <u>observed value</u> (reported number of doctor visits) for ith sample person
- y_{ip} = <u>observed value after editing/processing</u>
- y_{it} = value on the tth "trial" (tth time we run the survey)

Validity

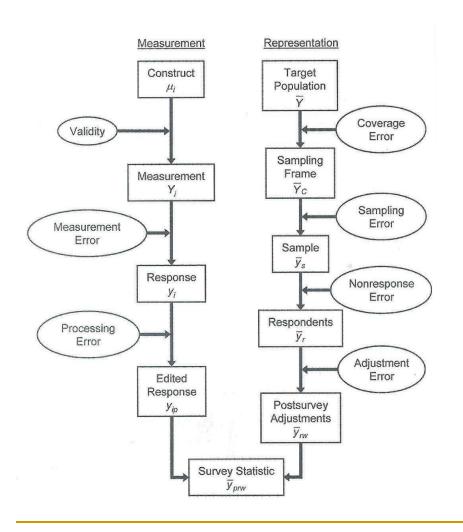
- $Y_i = \mu_i + \epsilon_i$
 - \square μ_i is the "true value" for the population
 - Y_i is the "ideal measured" value
 - $f \epsilon_i$ is how much Y_i "deviates" from μ_i
 - Deviation/error is natural. We just have to account for it
- If there are T trials (repeats of the survey), t=1, ..., T, we might write

$$Y_{it} = \mu_i + \epsilon_{it}$$

And expect that the errors ϵ_{it} would "average out" over trials...

• A measure of the size of the errors ϵ_i is $Corr(Y_i, \mu_i)$

This correlation is a measure of the Validity of the measurement


Measurement Error

- y_i − Y_i is the measurement error
 - Y_i is the ideal measurement
 - y_i is the observed measurement
- There are two kinds of measurement error to worry about
 - □ *Variability*: $y_i = Y_i + error_i$, and the error "averages out" over repeated trials: $E_t[y_{it}] = Y_i$
 - □ <u>Bias</u>: $y_i = Y_i + \text{something that doesn't "average out": } E_t[y_{it}] \neq Y_i$

Processing Error

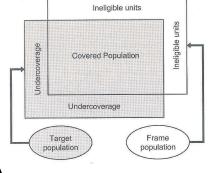
- y_{ip} y_i is the processing error
 - y_{ip} is the response after editing/processing
 - y_i is the 'raw' response to the measurement
- These errors come in when you have to code, check, or fix survey responses, e.g.
 - Coding a verbal response
 - Range check can this person have been in High School for 7 years?
 - □ Clumping, e.g. "income between \$10,000 and \$30,000"
- These are generally <u>bias</u> and not <u>variability</u> issues

Representation Quality

- Working down the right side:
 - Coverage Error
 - Sampling Error
 - NonresponseError (later lecture)
 - Adjustment Error

Coverage Error

- Covered Population


 Undercoverage

 Target population

 Frame population
- N = total Target Population (size)
- C = target population covered in frame
- U = target population missed by frame
- \overline{Y} = mean of target population
- ullet \overline{Y}_C = mean of covered population
- \overline{Y}_U = mean of uncovered population
- $\overline{Y}_C \overline{Y} = \underline{coverage\ error}$
 - Also called <u>Coverage Bias</u>

Coverage Error (Cont'd)

$$\left | \overline{Y}_C - \overline{Y} = rac{U}{N} (\overline{Y}_C - \overline{Y}_U)
ight |$$

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i = \frac{1}{N} \left(\sum_{C} Y_i^C + \sum_{U} Y_i^U \right)$$

$$\overline{Y}_C - \overline{Y} = \frac{1}{C} \sum_C Y_i^C - \frac{1}{N} \sum_{i=1}^N Y_i
= \frac{1}{C} \sum_C Y_i^C - \frac{1}{N} \left(\sum_C Y_i^C + \sum_U Y_i^U \right)
= \left(\frac{1}{C} - \frac{1}{N} \right) \sum_C Y_i^C - \frac{1}{N} \sum_U Y_i^U
= \frac{U}{NC} \sum_C Y_i^C - \frac{U}{N} \cdot \frac{1}{U} \sum_U Y_i^U
= \frac{U}{N} (\overline{Y}_C - \overline{Y}_U)$$

Coverage Error/Coverage Bias

- Suppose we are interested in Monthy Mortgage
 Payment (\$0 if you rent)
 - Total population is all adults in (US/Pgh/...)
 - Data collection method is random digit dialling
 - Sampling frame is callable land-line phone #'s
- Renters may be more likely to have only a cell phone than homeowners
 - Renters are undercovered by our frame
 - Our estimate of mean mortgage payment will be too high
 - □ If we can get an estimate of $\frac{U}{N}(\overline{Y}_C \overline{Y}_U)$ Then we can estimate $\overline{Y}_C - \overline{Y}$ and fix the bias!

Sampling Error

- How well does the sample represent the sampling frame?
 - Sampling bias
 - Best to try to anticipate and avoid
 - Can be looked at similarly to coverage bias
 - Another way to deal with is with weights, but this can introduce "adjustment error" (more in a couple pages)
 - Sampling variability this is a more familiar issue!
 (see next page)

Sampling Variability

- $\overline{y}_s = \frac{1}{n_s} \sum_{i=1}^{n_s} y_{si}$ is the mean of the sample
- $\overline{Y}_C = \frac{1}{C} \sum_C Y_i^C$ is the mean of the frame

The Standard Error for estimating \overline{Y}_C with \overline{y}_s is

$$SE = \sqrt{\frac{1}{S} \sum_{s=1}^{S} (\overline{y}_s - \overline{Y}_C)^2}$$

in case of simple random sampling (next week!) we know that

$$SE = SD/\sqrt{n_s} = \frac{\sqrt{\frac{1}{n_s - 1} \sum_{i=1}^{n_s} (y_{si} - \overline{y}_s)^2}}{\sqrt{n_s}}$$

Adjustment Error

- This usually comes in the forms of weights.
- If the proportion of units in the sample is systematically different from the population, we may weight each unit:

$$\overline{y}_w = \frac{\sum_{i=1}^{n_s} w_i y_i}{\sum_{i=1}^{n_s} w_i}$$

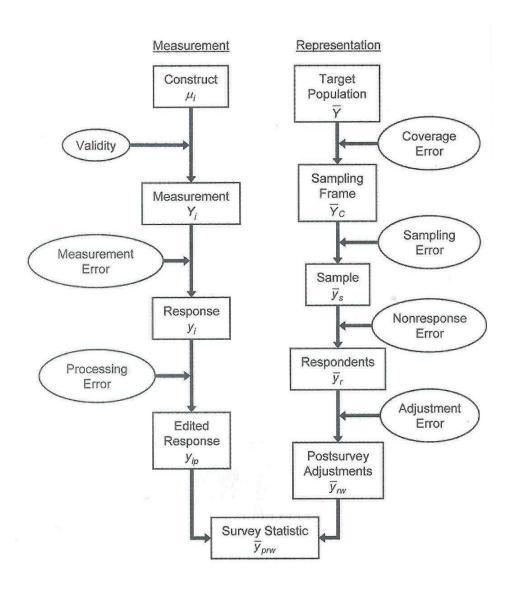
- The main issues are (again) bias and variability of this estimate $\ \overline{y}_w - \overline{Y}$

More on the Project Outline Handout

Some Examples of Proposals (I.1, due Jan 25)

- Shall we look at the whole project outline as well?
 - This is your chance to ask questions about any parts of the handout that you read, and are concerned about.

Review


- Quality in Surveys
- More on the Project Outline Handout
- Reading:
 - Up to today: responsible for Groves Ch's 1, 2, 3
 - Next week:
 - Groves Ch 5
 - Groves, Ch 11 (sections 1-6)
 - Groves Ch 4 (sections 1-3; we will do more later)

in that order

Lecture notes online at

http://www.stat.cmu.edu/~brian/303

Review

