36-303: Sampling, Surveys and Society

Stratified Samples and Sample Size Calculations Brian Junker 132E Baker Hall brian@stat.cmu.edu

22 February 2011

Outline

- Team Projects This Week
- Midterm Progress Report
- Stratification
 - What is it; Notation
 - Weights and Proportionate Sampling
 - Variances and Design Effect
 - Examples

Handouts

- These Lecture Notes
- Homework 04
- Handout on Stratified Sampling
- Handout on Sampling Details
 - Selecting an SRS from C-Book
 - Contacting respondents
 - Nonresponse followup on surveymonkey.com
- Reading:
 - Stratified Sampling: Groves Sect 4.5,
 - Nonresponse: Groves Ch 6

22 February 2011 2

Team Projects This Week

- Team Working Agreements Due Today (email)
- II.5a Due Thursday (email)
 - Include a paragraph or so on your research question
 - Decide on a sampling scheme (e.g., SRS, Stratified random sample, etc.) and explain why you chose it.
 - Write a questionnaire with 20-30 questions. Some of you have already started this process. Pretend I haven't seen any of your previous attempts.
 - 10 or so demographic questions
 - 10-20 substantive questions
 - Give some idea of the sample size you will require and how you arrived at this number (talk about the margin of error for inferences you want to make).
 - Compromise between sample size calculation, and how big a sample you can afford to collect and process!
 - Good place for EVERYONE to start: SRS w/o replacement
 - Inflate your sample size estimate to account for response rate!

22 February 2011 3 22 February 2011 4

Midterm Exam Progress Report

- Two makeup exams are still being graded
- I have not had a chance to look at any of the graded exams yet, and I want to do that before handing the exams back.

22 February 2011

What is Stratification?

Record	Name	Group		Record	Name	Group	
1	Bradburn, N.	High		2	Cochran, W.	Highest	One Stratified Random
2	Cochran, W.	Highest		7	Hunt, J.	Highest	Sample of Total Size 4
3	Deming, W.	High		11	Madow, W.	Highest	v v
4	Fuller, W.	Medium	One SRS of Size 4	12	Mandela, N.	Highest	
5	Habermann, H.	Medium		19	Wolfe, T.	Highest	→ Wolfe, T.
6	Hansen, M.	Low		1	Bradburn, N.	High	→ Bradburn, N.
7	Hunt, J.	Highest		3	Deming, W.	High	
8	Hyde, H.	High		8	Hyde, H.	High	
9	Kalton, G.	Medium	Kalton, G.	17	Sudman, S.	High	
10	Kish, L.	Low		18	Wallman, K.	High	
11	Madow, W.	Highest		4	Fuller, W.	Medium	Fuller, W.
12	Mandela, N.	Highest		5	Habermann, H.	Medium	
13	Norwood, J.	Medium	Norwood, J.	9	Kalton, G.	Medium	
14	Rubin, D.	Low	Rubin, D.	13	Norwood, J.	Medium	
15	Sheatsley, P.	Low		20	Woolsley, T.	Medium	
16	Steinberg, J.	Low		6	Hansen, M.	Low	
17	Sudman, S.	High		10	Kish, L.	Low	
18	Wallman, K.	High	→ Wallman, K.	14	Rubin, D.	Low	Rubin, D.
19	Wolfe, T.	Highest		15	Sheatsley, P.	Low	
20	Woolsley, T.	Medium		16	Steinberg, J.	Low	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Unstratified Sample					Stratified S	Sample	

Stratified Sampling

- Strata are just subgroups of the target population that have some feature in common (gender, major. region, income, ...)
- Why stratify?
 - We need to make a separate inference for each stratum (e.g. we want to estimate men's and women's incomes separately)
 - Different sampling schemes would be used in each stratum (PA voters in PA, vs PA voters in Irag)
 - Population is geographically diverse (Minnesota, Illinois, Ohio, Pennsylvania)
 - Reduce variance of estimates (and reduce sample size) by exploiting similarity among members of the same stratum

22 February 2011

Some Basic Notation

H strata

 \square N_h = population size in each stratum $_H$ $N = \sum_{h} N_h$

 $n_h = \text{sample size in each stratum } n = \sum n_h$

 \Box f_b = n_b/N_b = sampling fraction, each stratum

The population average $\overline{y}_{pop} = \frac{1}{N} \sum_{i=1}^{N} y_i = \frac{1}{N} \sum_{h=1}^{H} \sum_{i=1}^{N_h} y_{hi} = \sum_{h=1}^{H} \frac{N_h}{N} \frac{1}{N_h} \sum_{i=1}^{N_h} y_{hi} = \sum_{h=1}^{H} \frac{N_h}{N} \overline{y}_{h,pop}$

In stratified sampling we mimic this

$$\overline{y}_{st} = rac{1}{n} \sum_{i=1}^n y_i = \sum_{h=1}^H rac{N_h}{N} \overline{y}_h \ where \ \overline{y}_h = rac{1}{n_h} \sum_{i=1}^{n_h} y_{hi}$$

22 February 2011 22 February 2011

Weights, and Proportionate Sampling

Let $W_h = N_h/N$. Then

$$\overline{y}_{pop} = \sum_{h=1}^{H} W_h \overline{y}_{h,pop} \ and \ \overline{y}_{st} = \sum_{h=1}^{H} W_h \overline{y}_h$$

- In proportionate sampling we let $f_h = n_h/N_h = f$ for all strata h. Then $n_h/n = N_h/N$ (why??)
 - □ The sample is called "self-weighting"
 - □ Sample mean is "simple" for self-weighting

$$\overline{y}_{srs} = \frac{1}{n} \sum_{i=1}^{n} y_{i} = \frac{1}{n} \sum_{h=1}^{H} \sum_{i=1}^{n_{h}} y_{hi} = \sum_{h=1}^{H} \frac{n_{h}}{n} \frac{1}{n_{h}} \sum_{i=1}^{n_{h}} y_{hi}$$

$$= \sum_{h=1}^{H} \frac{n_{h}}{n} \overline{y}_{h} = \sum_{h=1}^{H} \frac{N_{h}}{N} \overline{y}_{h} = \sum_{h=1}^{N} W_{h} \overline{y}_{h} = \overline{y}_{st}$$

22 February 2011

Sampling Variances (SRS w/o replacement in each stratum)

Within each stratum it's the same old answer

$$Var(\overline{y}_h) = (1 - f_h) rac{s_h^2}{n_h} ext{ where } s_h^2 = rac{1}{n_h - 1} \sum_{i=1}^{n_h} (y_{hi} - \overline{y}_h)^2$$

Then we combine across strata using weights

$$(W_{h})^{2}: Var(\overline{y}_{st}) = Var\left(\sum_{h=1}^{H} W_{h}\overline{y}_{h}\right)$$

$$= \sum_{h=1}^{H} Var(W_{h}\overline{y}_{h}) = \sum_{h=1}^{H} W_{h}^{2}Var(\overline{y}_{h})$$

$$= \sum_{h=1}^{H} W_{h}^{2}(1 - f_{h})\frac{s_{h}^{2}}{n_{h}}$$

22 February 2011 10

Design Effect

The <u>design effect</u> is a measure of how much better or worse <u>Stratified</u> is than <u>one SRS</u>:

$$d^2 = \frac{Var(\overline{y}_{st})}{Var(\overline{y}_{srs})} = \frac{\sum_{h=1}^{H} W_h^2 (1 - f_h) \frac{s_h^2}{n_h}}{(1 - f) \frac{s^2}{n}}$$

- Usually, d² < 1, i.e. stratified does better than one big SRS!
 - Usually best if:
 - Elements are more similar to each other within strata than between (e.g., substantively meaningful strata)
 - Proportionate sampling
 - Cochran (1961) suggests 2-6 strata usually give the best results; greater than 6 OK, but there are diminishing returns

Handout on Stratified Sampling

22 February 2011 11 22 February 2011 12

(Briefly) Handout on Sampling Details

Review

- Team Projects This Week
- Midterm Exam Progress
- Stratification
 - What is it; Notation
 - Weights and Proportionate Sampling
 - Variances and Design Effect
 - Handout on Stratified Sampling
- Handout on Sampling Details
- Reading:
 - □ Stratified Sampling: Groves Sect 4.5,
 - Nonresponse: Groves Ch 6

22 February 2011 13 22 February 2011 14