36-303: Sampling, Surveys and Society

Stratified Samples and Sample Size Calculations
Brian Junker
132E Baker Hall
brian@stat.cmu.edu

Handouts

- These Lecture Notes
- Homework 04
- Handout on Stratified Sampling
- Handout on Sampling Details
 - Selecting an SRS from C-Book
 - Contacting respondents
 - Nonresponse followup on surveymonkey.com
- Reading:
 - Stratified Sampling: Groves Sect 4.5,
 - Nonresponse: Groves Ch 6

Outline

- Team Projects This Week
- Midterm Progress Report
- Stratification
 - What is it; Notation
 - Weights and Proportionate Sampling
 - Variances and Design Effect
 - Examples

Team Projects This Week

- Team Working Agreements Due Today (email)
- II.5a Due Thursday (email)
 - Include a paragraph or so on your research question
 - Decide on a sampling scheme (e.g., SRS, Stratified random sample, etc.) and explain why you chose it.
 - Write a questionnaire with 20-30 questions. Some of you have already started this process. Pretend I haven't seen any of your previous attempts.
 - 10 or so demographic questions
 - 10-20 substantive questions
 - Give some idea of the sample size you will require and how you arrived at this number (talk about the margin of error for inferences you want to make).
 - Compromise between sample size calculation, and how big a sample you can afford to collect and process!
 - Good place for EVERYONE to start: SRS w/o replacement
 - Inflate your sample size estimate to account for response rate!

Midterm Exam Progress Report

Two makeup exams are still being graded

I have not had a chance to look at any of the graded exams yet, and I want to do that before handing the exams back.

22 February 2011 5

Stratified Sampling

- Strata are just subgroups of the target population that have some feature in common (gender, major, region, income, ...)
- Why stratify?
 - We need to make a separate inference for each stratum (e.g. we want to estimate men's and women's incomes separately)
 - Different sampling schemes would be used in each stratum (PA voters in PA, vs PA voters in Iraq)
 - Population is geographically diverse (Minnesota, Illinois, Ohio, Pennsylvania)
 - Reduce variance of estimates (and reduce <u>sample size</u>) by exploiting similarity among members of the same stratum

22 February 2011 6

What is Stratification?

Record	Name	Group	
1	Bradburn, N.	High	
2	Cochran, W.	Highest	
3	Deming, W.	High	
4	Fuller, W.	Medium	One SRS of Size 4
5	Habermann, H.	Medium	
6	Hansen, M.	Low	
7	Hunt, J.	Highest	
8	Hyde, H.	High	
9	Kalton, G.	Medium	Kalton, G.
10	Kish, L.	Low	
11	Madow, W.	Highest	
12	Mandela, N.	Highest	
13	Norwood, J.	Medium	Norwood, J.
14	Rubin, D.	Low	Rubin, D.
15	Sheatsley, P.	Low	*
16	Steinberg, J.	Low	
17	Sudman, S.	High	
18	Wallman, K.	High	→ Wallman, K.
19	Wolfe, T.	Highest	STITLOS (SESTERIOR VOI)
20	Woolsley, T.	Medium	

Record	Name	Group	
2	Cochran, W.	Highest	One Stratified Random
7	Hunt, J.	Highest	Sample of Total Size 4
11	Madow, W.	Highest	w
12	Mandela, N.	Highest	
19	Wolfe, T.	Highest	→ Wolfe, T.
1	Bradburn, N.	High	→ Bradburn, N.
3	Deming, W.	High	1992
8	Hyde, H.	High	
17	Sudman, S.	High	
18	Wallman, K.	High	
4	Fuller, W.	Medium	Fuller, W.
5	Habermann, H.	Medium	
9	Kalton, G.	Medium	
13	Norwood, J.	Medium	
20	Woolsley, T.	Medium	
6	Hansen, M.	Low	
10	Kish, L.	Low	
14	Rubin, D.	Low	Rubin, D.
15	Sheatsley, P.	Low	
16	Steinberg, J.	Low	

Unstratified Sample

Stratified Sample

22 February 2011 7

Some Basic Notation

H strata

- \square N_h = population size in each stratum N_h $N = \sum N_h$
- \Box $f_h = n_h/N_h = sampling fraction, each stratum$

■ The population average
$$\overline{y}_{pop} = \frac{1}{N} \sum_{i=1}^{N} y_i = \frac{1}{N} \sum_{h=1}^{H} \sum_{i=1}^{N_h} y_{hi} = \sum_{h=1}^{H} \frac{N_h}{N} \frac{1}{N_h} \sum_{i=1}^{N_h} y_{hi} = \sum_{h=1}^{H} \frac{N_h}{N} \overline{y}_{h,pop}$$
■ In stratified sampling we mimic this

$$\overline{y}_{st} = rac{1}{n} \sum_{i=1}^n y_i = \sum_{h=1}^H rac{N_h}{N} \overline{y}_h \ ext{where} \ \overline{y}_h = rac{1}{n_h} \sum_{i=1}^{n_h} y_{hi}$$

Weights, and Proportionate Sampling

Let $W_h = N_h/N$. Then

$$\overline{y}_{pop} = \sum_{h=1}^{H} W_h \overline{y}_{h,pop} \ and \ \overline{y}_{st} = \sum_{h=1}^{H} W_h \overline{y}_h$$

- In proportionate sampling we let $f_h = n_h/N_h = f$ for all strata h. Then $n_h/n = N_h/N$ (why??)
 - The sample is called "self-weighting"
 - Sample mean is "simple" for self-weighting

$$egin{array}{lll} \overline{y}_{srs} &=& rac{1}{n} \sum_{i=1}^{n} y_i \ = & rac{1}{n} \sum_{h=1}^{H} \sum_{i=1}^{n_h} y_{hi} \ = & \sum_{h=1}^{H} rac{n_h}{n} rac{1}{n_h} \sum_{i=1}^{n_h} y_{hi} \ = & \sum_{h=1}^{H} rac{n_h}{n} \overline{y}_h \ = & \sum_{h=1}^{N} W_h \overline{y}_h \ = & \overline{y}_{st} \end{array}$$

Sampling Variances (SRS w/o replacement in each stratum)

Within each stratum it's the same old answer

$$Var(\overline{y}_h) = (1 - f_h) \frac{s_h^2}{n_h} \text{ where } s_h^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (y_{hi} - \overline{y}_h)^2$$

Then we combine across strata using weights

$$(\mathsf{W}_{\mathsf{h}})^2 \colon \quad Var(\overline{y}_{st}) = Var\left(\sum_{h=1}^H W_h \overline{y}_h\right)$$

$$= \sum_{h=1}^H Var(W_h \overline{y}_h) = \sum_{h=1}^H W_h^2 Var(\overline{y}_h)$$

$$= \sum_{h=1}^H W_h^2 (1 - f_h) \frac{s_h^2}{n_h}$$

Design Effect

The <u>design effect</u> is a measure of how much better or worse <u>Stratified</u> is than <u>one SRS</u>:

$$d^{2} = \frac{Var(\overline{y}_{st})}{Var(\overline{y}_{srs})} = \frac{\sum_{h=1}^{H} W_{h}^{2} (1 - f_{h}) \frac{s_{h}^{2}}{n_{h}}}{(1 - f) \frac{s^{2}}{n}}$$

- Usually, d² < 1, i.e. stratified does better than one big SRS!
 - Usually best if:
 - Elements are more similar to each other within strata than between (e.g., substantively meaningful strata)
 - Proportionate sampling
 - Cochran (1961) suggests 2-6 strata usually give the best results; greater than 6 OK, but there are diminishing returns

Handout on Stratified Sampling

(Briefly) Handout on Sampling Details

Review

- Team Projects This Week
- Midterm Exam Progress
- Stratification
 - What is it; Notation
 - Weights and Proportionate Sampling
 - Variances and Design Effect
 - Handout on Stratified Sampling
- Handout on Sampling Details
- Reading:
 - Stratified Sampling: Groves Sect 4.5,
 - Nonresponse: Groves Ch 6