36-303: Sampling, Surveys and Society

Variance Calculations for Weights
Brian W. Junker
132E Baker Hall
brian@stat.cmu.edu

Handouts

- These Lecture Notes
- Handout: Jackknife and Delta-Method (Taylor Series) Variance Calculations in R (what??)

05 April 2011

Outline/Announcements

- Today: Variance Calculations for Weights
 - Taylor Series
 - Jackknife
- Thursday

05 April 2011

- HW05 Due
- Review for Exam 2 (Tue Apr 12)

Schedule...

- Thu Apr 7:
 - $\hfill\square$ HW 05 due (last hw in class, except for peer reviews!)
 - Review for Exam 2
- Fri Apr 8: I will try to email feedback on talks and drafty drafts
- Tue Apr 12: Exam 2
- Tue Apr 19: Second peer evaluations will be due
- <u>April 21, 26, 28</u>: Final In-Class Project Presentations
- April 29: Submit Final Written Reports (email pdf!)
- May 4: MoM
 - 7 Teams signed up!
 - I will drop your lowest non-zero exam score if you present poster at MoM as a full group (per syllabus).

3

1

Variance Calculations for Weights

• Most survey sample estimates have a ratio form: $\sum_{i=1}^{n} w_i y_i$

$$\overline{v}_w = \frac{\sum_{i=1}^{n} w_i g_i}{\sum_{i=1}^{n} w_i}$$

- Two approaches to $Var(\overline{y}_w)$:
 - Use a <u>one-term Taylor approximation</u> to "linearize" the survey estimate, and apply CLT.
 - Use a <u>replication scheme</u> to create "replicate samples" by resampling the real sample and look at the variability among the replicates.
 - Non-overlapping replicates: E.g., <u>Random Partitions</u>
 - Overlapping replicates: E.g., Jackknife Method

Taylor Series Approximation (Bkgd)

The <u>Delta Method</u>

We know that if

$$\hat{ heta} - heta \sim N(0,\sigma^2/n)$$

then

$$a(\hat{ heta}- heta)\sim N(0,a^2\sigma^2/n)$$

We can extend this to a nonlinear function

 $f(\hat{\theta}) - f(\theta) = f'(\theta)(\hat{\theta} - \theta) + (remainder)$

so that

$$f(\hat{\theta}) - f(\theta) \approx f'(\theta)(\hat{\theta} - \theta) \sim N(0, [f'(\theta)]^2 \sigma^2/n)$$

05 April 2011

5

Taylor Series Approximation (Bkgd)

Univariate Delta Method

$$\begin{array}{ll} \mathrm{If} & \hat{\theta} - \theta \sim N(0, \sigma^2/n) \\ \mathrm{then} \ f(\hat{\theta}) - f(\theta) \sim N(0, [f'(\theta)]^2 \sigma^2/n) \end{array}$$

Multivariate Delta Method

$$\begin{split} & \text{If} \begin{pmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \end{pmatrix} - \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \frac{1}{n} \sum \right) \\ & \text{then} \\ & f\left(\hat{\theta}_1 \\ \hat{\theta}_2 \right) - f\left(\frac{\theta_1}{\theta_2} \right) \\ & \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \frac{1}{n} (\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial \theta_2}) \sum \begin{pmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial \theta_2} \end{pmatrix} \right) \end{split}$$

Taylor Series for Ratio Estimator

Now we consider

$$\overline{y}_w = \frac{\sum_{i=1}^n w_i y_i}{\sum_{i=1}^n w_i} = \frac{\hat{\theta}_1}{\hat{\theta}_2} = f(\hat{\theta}_1, \hat{\theta}_2)$$

The gradient of f has components

$$\frac{\partial f}{\partial \theta_1} \;=\; 1/\theta_2 \ , \quad \frac{\partial f}{\partial \theta_2} \;=\; -\, \theta_1/\theta_2^2$$

• The Variance/Covariance Matrix for (θ_1, θ_2) is

$$\sum = \begin{bmatrix} Var(\sum_{i} w_{i}y_{i}) & Cov(\sum_{i} w_{i}y_{i}, \sum_{i} w_{i}) \\ Cov(\sum_{i} w_{i}y_{i}, \sum_{i} w_{i}) & Var(\sum_{i} w_{i}) \end{bmatrix}$$

05 April 2011

Taylor Series Variance for Ratio Estimator

 Applying the Multivariate Delta Method we get

 $Var_{TS}(\overline{y}_w) \approx$

$$\frac{1}{\left(\sum_{i} w_{i}\right)^{2}} \left[Var(\sum_{i} w_{i}y_{i}) - 2\overline{y}_{w}Cov(\sum_{i} w_{i}y_{i}, \sum_{i} w_{i}) + (\overline{y}_{w})^{2}Var(\sum_{i} w_{i}) \right]$$

Need to calculate the variances and covariance above – see next slide...

Calculating the Variances for TS Method...

If we assume that each pair $(w_i y_i, w_i)$ is independent of every other pair (not quite true but close!) then

$$Var(\sum_{i=1}^{n} w_i) = \sum_{i=1}^{n} Var(w_i) = nVar(w) \approx n \cdot \frac{1}{n-1} \sum_{i=1}^{n} (w_i - \overline{w})^2 = n \cdot s_w^2$$

where $\overline{w} = \frac{1}{n} \sum_{i} w_i$. Similarly,

$$Var(\sum_{i=1}^{n} y_i w_i) \approx n \cdot \frac{1}{n-1} \sum_{i=1}^{n} (w_i y_i - \overline{wy})^2 = n \cdot s_{wy}^2$$

where $\overline{wy} = \frac{1}{n} \sum_{i} w_i y_i$, and

$$\underbrace{Cov(\sum_{i=1}^{n} y_i w_i, \sum_{i=1}^{n} w_i) \approx n \cdot \frac{1}{n-1} \sum_{i=1}^{n} (w_i y_i - \overline{wy})(w_i - \overline{w}) = n \cdot s_{wy,w}}_{i=1}$$

05 April 2011

9

11

Example: HSS Advising Survey...

	Adv'ing	Samp		Pop		
Post-Strat.	OK	Total	Prop	Total	Prop	Weights
Economics	28	40	0.132	126	0.128	0.97
$\operatorname{English}$	23	39	0.128	115	0.117	0.91
History	10	21	0.069	48	0.049	0.70
ModLang	3	8	0.026	16	0.016	0.62
Philosophy	1	4	0.013	7	0.007	0.54
Psychology	11	37	0.122	104	0.105	0.87
SDS	22	54	0.178	161	0.163	0.92
Statistics	3	6	0.020	8	0.008	0.41
Interdisc/IS	46	76	0.250	233	0.236	0.95
Undeclared	13	19	0.062	168	0.170	2.73
Total	160	304		986		

weight = (Population Proportion) / (Sample Proportion)

TS Variance Estimate, HSS Advising

Data...
$$y_i = 1 \text{ (yes) or } 0 \text{ (no)}$$

 $\overline{y}_w = 0.5507865$
 $\overline{w} = 1.001678$
 $\overline{wy} = 0.5517105$
 $Var(\sum_i w_i) = n \cdot s_w^2 = (304)(0.2124) = 64.57$
 $Var(\sum_i w_i y_i) = n \cdot s_{wy}^2 = (304)(0.4127) = 125.47$
 $Cov(\sum_i w_i y_i, \sum_i w_i) = n \cdot s_{wy,w} = (304)(0.1637) = 49.75$
So

 $Var_{TS}(\overline{y}_w) = (125.47 - 2(0.5507)(47.75) + (0.5507)^2 * (64.57) / (304 \cdot 1.0017)^2 = 0.000973$ This is larger (typical!) than the naive variance based on $\hat{p} = \overline{y}$:

 $\hat{p}(1-\hat{p})/n = (0.53)(1-0.53)/(304) = 0.000819$

We should also multiply by the fpc = 1 - 304/986 = 0.69!

05 April 2011

05 April 2011

Replication Scheme: Jackknife

- From the original sample we create r=1, 2, ... n <u>Jackknife samples</u> (of size n-1), by deleting one observation at a time from the original data.
- From each jackknife sample
 - Recalculate the weights
 - Recalculate

$$\overline{y}_{w}^{(r)} = \frac{\sum_{i=1}^{n} w_{i}^{(r)} y_{i}^{(r)}}{\sum_{i=1}^{n} w_{i}^{(r)}}$$

Now calculate

$$\overline{y}_{JK} = \frac{1}{n} \sum_{r=1}^{n} \overline{y}_{w}^{(r)} \qquad Var_{JK}(\overline{y}_{w}) = \frac{n-1}{n} \sum_{r=1}^{n} (\overline{y}_{w}^{(r)} - \overline{y}_{jk})^{2}$$

05 April 2011

Example: HSS Advising Data (Again)

Adv'ing	Samp		Pop		
OK	Total	Prop	Total	Prop	Weights
28	40	0.132	126	0.128	0.97
23	39	0.128	115	0.117	0.91
10	21	0.069	48	0.049	0.70
3	8	0.026	16	0.016	0.62
1	4	0.013	7	0.007	0.54
11	37	0.122	104	0.105	0.87
22	54	0.178	161	0.163	0.92
3	6	0.020	8	0.008	0.41
46	76	0.250	233	0.236	0.95
13	19	0.062	168	0.170	2.73
160	304		986		
	OK 28 23 10 3 1 11 22 3 46 13	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OK Total Prop 28 40 0.132 23 39 0.128 10 21 0.069 3 8 0.026 1 4 0.013 11 37 0.122 22 54 0.178 3 6 0.020 46 76 0.250 13 19 0.062	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

weight = (Population Proportion) / (Sample Proportion)

05 April 2011

13

15

JK Variance Estimate, HSS Advising

Data...

- There are 304 Jackknife samples, of size 303 each.
 - □ 28 jackknife samples omit one of the Econ 'yes' obs's
 - 12 jackknife samples omit one of the Econ 'no' obs's
 - 23 jackknife samples omit one of the English 'yes' obs's
 - I6 jackknife samples omit one of the English 'no' obs's
 - etc., etc. for the other 8 post-strata
- Calculate $\overline{y}_w^{(r)}$'s
 - The first few unique $\overline{y}_w^{(r)}$ are

0.5478, 0.5488, 0.5490, 0.5493, 0.5495 ...

(there are many duplicates!)

JK Variance Estimate, Continued

Now we calculate $\overline{y}_{JK} = \frac{1}{304} \sum_{r=1}^{304} \overline{y}_w^{(r)} = 0.5508 \ (= \overline{y}_w)$

and

$$Var_{JK}(\overline{y}_w) = \frac{304 - 1}{304} \sum_{r=1}^{304} (\overline{y}_w^{(r)} - \overline{y}_{JK})^2 = 0.000963$$

Very similar to TS Variance estimate:

$$Var_{TS}(\overline{y}_w) = 0.000973$$

05 April 2011

Actual Calculations...

- See R handout... (is there someone in every group that knows a little R?)
- My recommendation:
 - If you know the formula, <u>Taylor Series</u> approx is really easy to carry out. However, for a new statistic, have to reapply Delta Method.
 - Jackknife is harder to set up, but once it's done, it works for <u>all</u> possible statistics, not just weighted averages
 - $\hfill\square$ As sample size grows, TS and JK produce same answers
 - □ (again, we should multiply by fpc = (1-(samp)/(pop)))

Making a Confidence Interval

 Approx 95% confidence interval, based on the Jackknife standard error:

 $\begin{array}{rl} (0.5508-2*\sqrt{(1-304/986)(0.000963)} &, & 0.5508+2*\sqrt{(1-304/986)(0.000963)}) \\ & (0.4992 &, & 0.6024) \end{array}$

In our fictional example we know the true population proportion:

 $p_{pop} = 546/986 = 0.553$

18

• We capture the true mean in this case

05 April 2011

Review

05 April 2011

- Today: Variance Calculations for Weights
 - Taylor Series
 - Jackknife
- Thu: Review for <u>Exam 2, Tue Apr 12</u>
- Schedule of remaining "events"
 - Apr 19: Second peer-evaluations due
 - □ Apr 21, 26, 28: In-class presentations
 - □ Apr 29: Papers due
 - □ May 4: MoM!