36-303: Sampling, Surveys and Society

Exam, References, Graphs & Models
Brian W. Junker
132E Baker Hall
brian@stat.cmu.edu

Handouts & Announcements

- These Lecture Notes
- Additional handouts in the Week 13 area of the website!
- Second Round: Peer Citizenship Review
 - Please fill out for each (other) member of your team
 - EMAIL to me on Apr 29 Same day as final papers

2

4

19 Apr 2011

Outline

19 Apr 2011

- Exam Results
 - Solutions online in "exam2" area of website
- Upcoming Events
- References in Scholarly Articles
- Making Graphs with Weighted Data
- Regression Models with Weighted Data

Exam Results

- I did not have a chance to look over the graded exams
- I will hand graded exams back on Thurs
- Solutions will be posted later today.

Upcoming Events

- <u>Today</u> is the last formal lecture in the class
- Next three class periods final presentations
 - see order on next slide
 - attendance (and participation) is again mandatory

Fri April 29:

- Email me final reports (one pdf per group!)
- Email me second round of peer reviews for the course
 - Peer evaluation blanks are posted online as before
- May 4: Meeting of the Minds Research Conference
 - Seven groups from this class are presenting posters!
 - Please feel free to arrange meeting with me next week if you'd like advice on making a good poster

19 Apr 2011

References in Scholarly Articles

- Different fields have different conventions
- In Psychology, Social Sciences and Statistics there is a fairly common set of conventions:
 - "Note that Smedley (1887) previously conduced a survey like this..."
 - "In a survey similar to ours (Smedley, 1887), men reported more..."
- REFERENCES:
 - Smedley, F.T. (1887). A social survey of attitudes toward socalled "horseless carriages". *Social Survey Quarterly, 13,* 15-22. Obtained April 1, 2008 from http://www.irreproducible-results.org"
 Author (Data). Title, Saurea, pages, Web station
- Author (Date). Title. *Source*, pages. Web-citation.
- See Bem article (on writing research reports) for more examples!
- Good quick reference:
 - http://www.library.cornell.edu/resrch/citmanage/apa

Order of Final Presentations

Thu Apr 23

- □ Team F Caffiene consumption on campus
- Team C Faculty attitudes toward student attendance and performance
- □ Team G Faculty attitudes toward +/- grading
- Tue Apr 26
 - Team B Students' attitudes toward alcohlic energy drinks
 - □ Team A Students' choice of majors
 - Team H Undergrad prospects after graduation
- Thu Apr 28
 - Team D Student involvement at Carnegie Mellon
 - Team E Accuracy of Pittsburgh bus schedules
 - Team I School childrens' familiarity with architecture concepts

19 Apr 2011

Weights in Plots and Linear Regression

- Post-stratification weights are important when we are worried about "representativeness"
- We know they are a pain for variance calculations
 - Taylor Series
 - Jackknife
- How do we handle weights in
 - Plots (Boxplots, Histograms, Scatter plots)
 - Linear regression models: lm(), aov()

Example...

- I constructed a fake population of size N=2000
 - □ 1000 men
 - 1000 women
 - Fake heights and weights for each
- I took a biased sample of
 - 50 women
 - □ 150 men

Example (cont'd)

- Post-stratification weights
 - □ Men: (1000/2000)/(150/200) = 0.6667
 - □ Women: (1000/2000)/(50/200) = 2
- We will explore
 - Boxplots

19 Apr 2011

- Histograms
- Scatter Plots
- Linear Regression models

19 Apr 2011

Boxplots

- Three options:
 - □ Plot the unweighted, biased sample
 - Use the weights instead of raw counts to compute quartiles, and make boxplot based on "weighted quartiles"
 - Re-sample the data proportional to the weights
- Compare to population boxplot

Boxplots: Using the weights to calculate quartiles

- Quartiles: sort the data, then...
 - \square 1st quartile 25% of the data lie below this
 - nedian 50% of the data lie below this
 - $\hfill\square$ 3rd quartile 75% of the data lie below this
- Weighted quartiles: sort the data, then...
 - 1st quartile 25% of the <u>weights</u> lie below this
 - □ median 50% of the <u>weights</u> lie below this
 - □ 3rd quartile 75% of the *weights* lie below this

11

19 Apr 2011

Boxplots: Resampling proportional to weights

The weights are

0.667, 0.667, ..., 0.667, 2.000, ..., 2.000

- Convert them to probabilities by dividing by the sample size (200, = sum of the weights!) 0.003, 0.003, ..., 0.003, 0.010, ..., 0.010
- Take an SRS (with replacement) where each observation in the original sample can be in the new sample with probabilities p above

Compare the boxplots (for heights)...

Histograms...

19 Apr 2011

- We could use the weights to adjust the heights of the bars in a histogram
 - Just like using the weights to adjust the quartiles for a boxplot!
- But it is probably easier to just use the resampling idea

Compare the histograms (for heights)...

Scatterplots...

- We can resample proportional to the weights again
- Another approach would be to
 - plot the unweighted data, but
 - make plotting symbols that are proportional to the size of the post-stratification weights
 - (this allows us to "see" the real data in the sample, but also to see how much of the population each sampled data point is supposed to represent!)

Linear Regression

- Here there are (at least!) four options:
 - Run regression on the unweighted data
 - Most regression functions allow you to include weights for each data point, so run the regression on the weighted data
 - Use the jackknife method with weighted jackknife samples to improve point estimates and standard errors, for the weighted regression
 - Resample the data proportional to the weights and run the regression on the resampled data

If regression functions allow you to use weights, why jackknife or resample??

- Regression functions in most statistical packages (R, Minitab, SPSS) allow you to add weights for each observation
- The regression functions assume that the weights represent identical replicated observations
 - bigger weights -> bigger sample size -> smaller standard error
- But survey weights are like imputation: they tell you how many more people you are assigning this value (height, etc.). Since you cannot be sure this is the right value for them
 - <u>bigger weights</u> -> more uncertainty -> <u>bigger standard error</u>
- For survey weights, weighted regression gives the right point estimates but the wrong standard errors...

19 Apr 2011

Comparing Linear Regression Results

$(\textit{weight})_i = \beta_0 + \beta_1 (\textit{height})_i + \varepsilon_i$

Unweighted Regression:			Resampled Regression:		
	Estimate Std.	Error		Estimate Std	. Error
(Intercept)	-122.94	14.64	(Intercept)	-67.67	15.39
height	51.95	2.71	height	39.94	2.88
Weighted Regression:			Mean Resamp.	. Regr.'s:	
<i>(</i> -	Estimate Std.	Error		Estimate Std	Error
(Intercept)	-119.05	14.13		Docimace oca	. DITOI
height	50.00	2.67	(Intercept)	-91.33	12.61
			height	44.75	2.49
Jackknifed Regression:					
(Intercept)	Estimate Std. -91.84	Error 17.25	Population H	Regression:	
height 44.85 3.34			Estimate		
2			(Intercept)	-102.68	
			height	47.16	
19 Apr 2011					21

How can you do this??

- The plots are fairly easy to make "by hand" in Minitab, Excel, SPSS, R, etc.
- The regression stuff is a little more tricky
- If someone on your team knows R…
 - Online handout:
 "plotting and regression with weights.r"

19 Apr 2011

The R package "survey" from CRAN does all this and more, automagically!

D	•
\mathbf{R}	
11	

- Exam Results
- Upcoming Events Final Presentations
- Peer Reviews
 - Due on Apr 29 (along with final papers)
- Final Drafts of Papers
 - Email one pdf per team, Apr 29
- References in Scholarly Articles
- Making Graphs with Weighted Data
- Regression Models with Weighted Data