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Statistical Computing and Graphies 
Scatterplots With Survey Data 

Edward L. KORN and Barry I. GRAUBARD 

We suggest various modifications to make scatterplots more 
informative when used with data obtained from a sample 
survey. Aspects of survey data leading to the plot mod- 
ifications include the sample weights associated with the 
observations, imputed data for item nonresponse, and large 
sample sizes. Examples are given using data from the 1988 
National Maternal Infant and Health Survey, the second Na- 
tional Health and Nutrition Examination Survey, and the 
epidemiologic follow-up of the first National Health and 
Nutrition Examination Survey. 

KEY WORDS: Added variable plot; Conditional per- 
centile; Graphical methods; Imputation; Influential points; 
Kernel smoothing; Nonparametric regression; Partial resid- 
ual plot; Sample weights; Survey methods. 

1. INTRODUCTION 

The scatterplot is one of the most useful graphical displays 
of bivariate data. It allows one to see general trends and 
atypical points simultaneously, as well as other aspects of 
the data. Data collected in a survey, however, have some 
additional features that can make a simple scatterplot less 
useful. One such feature is that individuals in the sample 
represent differing numbers of individuals in the population. 
The sample weights of the sampled individuals effectively 
estimate these numbers. A second feature of survey data is 
that some of it may be imputed to account for item nonre- 
sponse. A third feature is that the sample sizes can be large. 
As will be shown in the following, scatterplots that ignore 
these features can be misleading or hard to interpret. We 
know of no "super plot" that will be as successful in the 
survey setting as the simple scatterplot is in the nonsurvey 
setting. Instead, we present in this article different modifi- 
cations of the scatterplot, demonstrated by examples, that 
can improve the presentation of survey data. By and large, 
these modified plots are not new, but their application to 
survey data may not be well known. 

2. MODIFICATIONS OF SCATTERPLOTS FOR 
SURVEY DATA 

In this section we present some techniques that can be 
used to modify a scatterplot to incorporate various aspects 
of survey data. First, we describe the use of bubble plots 
in which the sizes of the plotted circles are proportional to 
the sample weights of the points. Examples are given show- 
ing that such bubble plots can perform better than a sim- 
ple scatterplot in (a) describing the population distribution, 
and (b) identifying influential points in a weighted analysis 
(which is typically used when analyzing survey data). How- 
ever, for moderate-to-large sample sizes, a bubble plot can 
be hard to interpret because of the overlapping bubbles. For 
this situation, we consider in section 2.2 using a "sampled 
scatterplot," in which the sampled data is resampled propor- 
tionally to the sample weights, yielding a data set that can 
be plotted without circles but still represent the population 
distribution. 

Plots of large data sets can be problematic because of 
overlapping plotted points. This can especially be a prob- 
lem when the raw data has been implicitly or explicitly 
rounded. An example is given in section 2.3, along with the 
possible solution of "jittering" the data-that is, adding a 
small amount of random noise to the data before plotting. 
In section 2.4, we discuss scatterplots in which some of the 
plotted points represent imputed data values to account for 
item nonresponse. The last modification to the scatterplot 
we consider is using conditional mean and percentile curves 
constructed using kernel smoothing for displaying the rela- 
tionship between Y and X when the sample sizes are large. 
Examples of this are given in section 2.5. 

2.1 Accounting for the Sample Weights: Bubble Plots 

Survey designs typically specify that individuals are to be 
sampled with unequal probabilities of selection. The sam- 
ple weight associated with an individual is the inverse of 
that individual's probability of being included in the sam- 
ple, adjusted, if necessary, for nonresponse. There is often 
an additional poststratification to ensure that the sum of the 
sample weights equals known population values for vari- 
ous subgroups (e.g., age/race/sex subgroups). The sample 
weights effectively represent the number of individuals in 
the population that the sampled individual represents. 

Figure 1 is a scatterplot of daughter's birthweight versus 
mother's birthweight for mothers aged 30-39 years at the 
time of birth. The data are from the 1988 National Mater- 
nal and Infant Health Survey which sampled vital records 
corresponding to live births, late fetal deaths, and infant 
deaths in the United States (Sanderson, Placek, and Keppel 
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Figure 1. Simple Scatterplot Based on Data from Mothers aged 
30-39 Surveyed in the 1988 National Maternal and Infant Health Survey 

1991). For the live birth component of the survey, mothers 
corresponding to sampled birth certificates were mailed a 
questionnaire. The birthweight of the child was taken from 
the birth certificate (reported in grams), and the birthweight 
of the mother was taken from the mother's questionnaire 
(reported in ounces, converted to grams for the plot). Re- 
lationships between the birthweights of mothers and their 
children have been studied previously using data from this 
survey (Wang, Zuckerman, Coffman, and Corwin 1995). 
We restrict attention to first births that were daughters, 
and mother-daughter pairs with nonmissing birthweights 
(n = 225). Figure 1 is a misleading representation of the 
population because it ignores the sample weights; this sur- 
vey oversampled low birthweight babies and black babies 
(Tab. 1). (Nonresponse and poststratification adjustments to 
the sample weights were relatively small.) One possibility 
to more accurately reflect the population is displayed by the 
bubble plot in Figure 2; the areas of the circles are propor- 
tional to the sample weights. 

Another reason to use the size of bubbles to designate 
sample weights is to help identify influential points in an 
analysis. We now give an example using an analysis of 
the association of developing cancer with baseline transfer- 
rin saturation values based on women participating in the 
epidemiologic follow-up of the first National Health and 
Nutrition Examination Survey (National Center for Health 
Statistics et al. 1987). This association was also studied by 
Korn and Graubard (1995) and others (e.g., Stevens, Jones, 
Micozzi, and Taylor 1988). We follow the previous analy- 
ses and remove women from the analysis who had cancer 
at the baseline or who developed it within four years of 
the baseline survey; this leaves 197 women who developed 
cancer and 5,073 who did not. The sample weights ranged 
from 611 to 186,062 (coefficient of variation =97%), with 
the distribution being similar for the women who devel- 

Table 1. Sampling Strata and Sampling Rates of 1988 
National Maternal and Infant Health Survey 

Strata 

Race Birth weight (grams) Sampling rate 

Black 
<1500 1/14 

1500-2499 1/55 
> 2500 1/113 

Nonblack 
<1500 1/29 

1500-2499 1/160 
> 2500 1/720 

oped cancer and for those who did not. We consider a lo- 
gistic regression of the probability of developing cancer on 
transferrin saturation and other covariates described in foot- 
note 1 of Table 2. A classical survey analysis uses weighted 
estimators; the weighted logistic regression coefficient for 
transferrin saturation is given in the first line of Table 2. 

An added variable plot, also known as a partial regres- 
sion leverage plot, is useful for identifying influential points 
in a multiple linear regression of Y on X and Z (Cook 
and Weisberg 1994, ch 12.1; Atkinson 1985, ch 5.2-3). It 
is a plot of the residuals from the regression of the depen- 
dent variable Y on the covariate vector Z (which includes 
the intercept) versus the residuals from the regression of 
the independent variable currently under study (X) on Z. 
The slope of the least-squares line based on this plot is 
the same as the regression coefficient for X in the multi- 
ple linear regression. For a multiple logistic regression of a 
binary Y on X and Z, O'Hara Hines and Carter (1993) 
suggested calculating the residuals from the linear re- 

gression of p~(l ~-p) [log P + YP on /p~(l ~-p)X 
and Tp~(l - p)~Z and plotting these residuals against the 
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Table 2. Weighted logistic regression coefficient (I standard error) for 
transferrin saturation from a multiple logistic regression of the 
probability of developing cancer on transferrin saturation and 

other covariates1, dropping certain data points 

Point 2 dropped 
from the analysis: Sample size /3 ? SE3 

None 5270 .025 ? .014 
Point A 5269 .009 ? .009 
Point B 5269 .024 ? .014 
Point C 5269 .028 ? .014 

1 Covariates included in the model are age at the baseline examination; smoking (never 
smoked, former smoker, current smoker, and unknown); race (white and nonwhite); senior status 
(age > 65 and age < 65 years); living in poverty census Enumeration District (yes, no); and 
family income (<$3,000, $3,000-6,999, $7,000-9,999, $10,000-14,999, and > $15,000 

2 Points are designated in Figure 3. 
3 To account for the complex sampling design, the computer program SUDAAN (Shah, Barn- 

well, and Bieler 1995) was used to calculate the standard errors. 

residuals from the linear regression of p(l X-p)X on 
p(l Z-p)Z, where p is the predicted probability that Y = 1 

based on the multiple logistic regression. The slope of the 
least-squares line through this plot will equal the logistic 
regression coefficient of X from the multiple regression. 

In our application, a weighted multiple logistic regres- 
sion is used because the observations have sample weights. 
To account for this in the added variable plot, the linear 
regressions used to obtain the residuals above need to be 
weighted linear regressions, and the predicted values p need 
to be obtained from the weighted logistic regression. With 
these modifications, the slope from a weighted least-squares 
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Figure 3. Added Variable Plot for Transferrin Saturation Based on 
Weighted Multiple Logistic Regression Described in Thble 2. Dashed 
line is weighted least-squares line; labeled points are described in the 
text. 

regression through the added variable plot will equal the 
regression coefficient of X from the weighted logistic re- 
gression of Y on X and Z. 

Figure 3 is the added variable plot for transferrin satu- 
ration; the areas of the circles are proportional to the sam- 
ple weights. The dashed line in Figure 3 is the weighted 
least-squares line; its slope is .025, the same as the logis- 
tic regression coefficient for transferrin saturation (Tab. 2). 
The mass of plotted points on the bottom left of the plot is 
not aesthetically pleasing, but for the purpose of identify- 
ing influential points is not troublesome. The point labeled 
A would appear to be highly influential. This is confirmed 
by noting that when this point is dropped from the analy- 
sis, the logistic regression coefficient for transferrin satura- 
tion changes from .025 to .009 (Tab. 2). This point is also 
highly influential for estimating the standard error of the 
coefficient; it changes from .014 to .009 with removal of 
the point. 

A simple scatterplot without the circles would not be as 
successful as Figure 3 in identifying influential points. For 
example, without the circles, the point labeled B might ap- 
pear about as influential as point A. However, because of 
its small sample weight, it has very little influence on the 
coefficient (Tab. 2). On the other hand, it is not sufficient 
to ignore the plot and assume that observations with large 
sample weights will be influential. For example, the ob- 
servation above the label C in Figure 3 has a larger sample 
weight than point A. From its plotted position, however, we 
would not expect it to be influential, and it is not (Tab. 2). 

2.2 Accounting for the Sample Weights: Sampled 
Scatterplots 

An alternative strategy to using a bubble plot is to use a 
"sampled scatterplot." The idea is to sample the data with 
probabilities proportional to the sample weights; the result- 
ing sampled data is then approximately representative of the 
population and can be plotted ignoring the sample weights. 
Figure 4 (n = 100) is a sampled scatterplot of the data dis- 
played in Figure 2. The ith observation from the original 
data set was included in Figure 4 if a uniform (pseudo-) 
random number was less than Wi/wmax, where wi is the 
sample weight of the ith observation and Wmax(= 1008.515) 
is the largest sample weight of the 225 observations in Fig- 
ure 2. In general, one samples the ith data point to be plotted 
an expected number of times equal to Wi/(CWmax), where 
c is chosen to control the expected sample size of the plot. 
The idea of resampling survey data to eliminate the effects 
of the sample weights in further analysis has been used by 
Murthy and Sethi (1965) and Hinkins, Oh, and Scheuren 
(1994) in order to use conventional nonsurvey methods of 
analysis for survey data. 

There is no question that there is a loss of information 
in going from Figure 2 to Figure 4. Therefore, Figure 2 
would be the preferred plot for data cleaning. Additionally, 
weighted estimation using the full data set should be used 
for estimating population parameters. However, as a visual 
display of the population, we prefer Figure 4 to Figure 2, 
and this preference would become stronger if the sample 
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Figure 4. Sampled Scatterplot of Data Plotted in Figure 2. Points 

were chosen for plotting with probability proportional to their sample 
weights. 

size were larger; see the height/age example given in the 
following. 

For some applications, it may be useful to sample points 
for a sampled scatterplot not just proportionally to the sam- 
ple weights. For example, suppose we are interested in the 
relationship of mother's and daughter's birthweights for 
black and nonblack daughters. Only four of the data points 
in Figure 4 correspond to black daughters; this is reflective 
of the population. Because black babies were oversampled 
in the survey, there is a lot more information available. Fig- 
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Figure 5. Sampled Scatterplot of Data Plotted in Figure 2. Black 
daughters (filled-in circles) were sampled for plotting at approximately 
six times the rate as nonbiack daughters (open circles). 

ure 5 is a sampled scatterplot in which data points corre- 
sponding to black daughters were sampled with probabil- 
ity wi/166.642 (166.642 is the largest sample weight corre- 
sponding to a black baby in the original data), whereas data 
points corresponding to nonblack daughters were sample 
with probability wi/1008.515. Therefore, although Figure 
5 is not representative of the population, it is representa- 
tive of the black and nonblack populations separately. It 
appears from Figure 5 that there is a stronger positive cor- 
relation among the nonblack mother-daughter pairs than 
among the black mother-daughter pairs. This can also be 
demonstrated numerically by comparing the weighted cor- 
relations using all the sampled data for the nonblack and 
black pairs: .32 (n = 170) versus .07 (n = 55), respectively. 

Figure 5 also displays an additional characteristic of 
the data that may not have been apparent before-there 
are many observations with mother's birthweight equal to 
3175.133 grams, converted from 7 pounds, 0 ounces. A bet- 
ter representation of the population might be obtained by 
randomly jittering the data to account for the rounding in 
the reporting; see Section 2.3. 

Another application of the sampled scatterplot is when 
the sample size is large. Figure 6 is a simple scatterplot 
of height versus age for the 3,667 boys aged 2 to 19 years 
sampled in the second National Health and Nutrition Exam- 
ination Survey. The sample weights for these boys ranged 
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Figure 6. Simple Scatterplot of Height Versus Age for Boys Aged 
Less Than 19 Years Sampled in the Second National Health and Nutri- 
tion Examination Survey. 
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Figure 7. Sampled Scatterplot of Data Plotted in Figure 6. Points 
were chosen for plotting with probability proportional to their sample 
weights. 

from 1,359 to 47,385, with a coefficient of variation of 71%; 
see McDowell, Engel, Massey, and Maurer (1981) for full 
details of this survey. Besides being an unappealing plot 
because of the mass of points being plotted, the plot is also 

not representative of the population because of the differ- 
ing sample weights. In particular, boys aged five years or 
younger were sampled in this survey at three times the rate 
of boys six years or older. This is reflected in Figure 6 in 
the increased density of plotted points for age less than six. 
Because of the large number of plotted points, a bubble plot 
version of Figure 6 would not be useful. We can solve the 
two problems of excessive density and representativeness at 
once by using a sampled scatterplot; see Figure 7 in which 
n= 699 points are plotted. 

2.3 Accounting for Overlap and Rounding: Jittering 

In plotting a small number of observations, occasionally 
multiple observations will have values so close (or identical) 
so that their plotted points are indistinguishable. The easy 
solution to this problem is to displace by a small amount 
such points. With larger data sets, the problem can become 
more acute. For example, Figure 8 is a bubble plot of sys- 
tolic blood pressure versus the logarithm of blood lead val- 
ues for 595 white males aged 40-59 years. The data are 
from the second National Health and Nutrition Examina- 
tion Survey, with the areas of the bubble being proportional 
to the sample weights (range=11601 to 79176, coefficient 
of variation = 41%). The relationship of blood pressure and 
lead levels has been previously studied using these data by 
Pirkle, Schwartz, Landis, and Harlan (1985). The lattice pat- 
tern of Figure 8 is because blood pressure was recorded to 
the nearest mm Hg and blood lead values were recorded to 
the nearest microgram/deciliter. The overlap of the circles 
gives a misleading impression of the distribution of values. 
With this type of "rounding" of the data, a natural solution 
to the problem of overlapping points is to jitter the data 
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(Chambers, Cleveland, Kleiner, and Tukey 1983, pp 107- 
107): In this case random uniform (- 1/2,+ 1/2) variates are 
added to the blood pressure and lead values before plotting 
because it is reasonable to assume that the observed values 
had been rounded to the nearest integer from the true val- 
ues. The jittered plot displayed in Figure 9 not only avoids 
the overlap of plotted points, but also gives a better repre- 
sentation of the pre-rounded blood lead levels. 

An alternative solution to the overlap problem is to sum 
the sample weights for points that are plotted at the same 

location. Figure 10 is the bubble plot using these summed 
sample weights. This approach has been suggested in the 
non-survey setting, in which "sunflowers" (with the num- 
ber of lines in the sunflowers equal to the number of data 
points at the location) are used instead of bubbles (Cleve- 
land and McGill 1984). Additionally, continuous data can 
be artificially rounded to apply this approach (Cleveland 
and McGill 1984). In the survey setting, this approach is 
less attractive than jittering because one cannot distinguish 
in the plot single individuals with large sample weights ver- 
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sus many individuals with small sample weights plotted at 
the same location. 

2.4 Accounting for Missing Data: Imputation 

Although missing data can be a problem in any data anal- 
ysis, survey data are especially susceptible because of the 
possibility of nonresponse. Data can be missing completely 
from a sampled individual (unit nonresponse), or partially 
missing because some questions remain unanswered (item 
nonresponse). A nonresponse adjustment to the sample 
weights is frequently used for unit nonresponse; the sample 
weights are adjusted upwards for respondents with values 
of other variables similar to those of nonrespondents. The 
sample weights can be accounted for in a scatterplot as de- 
scribed in sections 2.1-2.2. Item nonresponse is sometimes 
handled by imputing values for the missing values. There 
are many ways to do this (Little and Rubin 1987, ch 4.5), 
one of which is described in the following. 

As a preliminary, it can be useful to plot the data without 
any imputations. Returning to the mother-daughter birth- 
weight data (Fig. 2), the full sample size is 286 of which 
225 observations have both mother's and daughter's birth- 
weight nonmissing. Sixty observations are solely missing 
mother's birthweight, and one observation is solely miss- 
ing daughter's birthweight. Figure 11 displays the sam- 
pled scatterplot of Figure 4, but now also contains (mod- 
ified) box plots for the estimated distributions of daugh- 
ter's birthweight for observations not missing, and missing, 
mother's birthweight. (For plotting, the single observation 
missing daughter's birthweight is ignored.) For these box 
plots, the edges of the boxes represent the 25th and 75th 
percentiles, the line in the box represents the median, and 
the lines extending from the box represent the 10th and 
90th percentiles. These percentiles are estimated from us- 
ing weighted percentiles of the complete samples, and not 
just the (re-)sampled observations displayed on the left side 

of Figure 11. The box plots suggest that missingness of 
mother's birthweight may be less prevalent for high birth- 
weight daughters, but the two-sided p value for comparing 
the means is .18. An alternative to using the box plots in 
Figure 11 would be to display weighted histograms of the 
distributions. 

As mentioned previously, there are many ways for imput- 
ing values for missing data. For graphical displays, it is im- 
portant that the variability of the imputed values should be 
consistent with the population variability. We will demon- 
strate the point with the mother-daughter birthweight data 
(no imputed values were supplied on the National Center 
for Health Statistics data tapes for mother's birthweight). 
We use the regression model 

mother's birthweight = o + 3M-HTXM-HT 

+ 4OM-RACEXM-RACE + /D-BWXD-BW + error, (1) 

where XM-HT and XM-RACE denote mother's, height 
and race (1= nonblack, 2=black), and XD-BW denotes the 
daughter's birthweight. The regression coefficients in model 
(1) are estimated using (sample-)weighted least squares for 
those observations with nonmissing mother's birthweight 
(the one observation missing daughter's birthweight was 
assigned the mean daughter's birthweight). The fitted re- 
gression was 

predicted mother's birthweight -202 + 37.3XM-HT 

+ 123XM-RACE + .27OXD-BW (2) 

To impute a mother's missing birthweight, we substitute the 
mother's height and race and her daughter's birthweight 
into (2) to obtain the predicted mnother's birthweight, and 
then add on an error term obtained as follows. The error 
terms for the imputed values were obtained by sampling 
the residuals from the fitted model (2) using probability- 
proportional-to-size sampling, where the inclusion proba- 
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Figure 11. Sampled Scatterplot of Nonmissing Data With Weighted Box Plots of Nonmissing and Missing Data. Data are from mothers aged 
30-39 surveyed in the 1988 National Maternal and Infant Health Survey 
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bilities were proportional to the sampling weights. Figure 
12 is a sampled scatterplot of the mother-daughter pairs 
in which the pairs with imputed mothers' birthweights are 
designated by o's and the nonimputed values by +'s. If one 
used for the imputed values the predicted mothers' birth- 
weights from (2) without adding the error term, the sampled 
scatterplot would be Figure 13. The spread of the imputed 
values is misleadingly small in Figure 13, demonstrating 
the importance of including an error term in the imputed 
values. 

In both Figures 12 and 13, the imputed values were high- 
lighted by using a dramatically different symbol in the plots. 
For many applications, we may want the distinction be- 
tween imputed and nonimputed values to be visible, but 
not to overpower the display. This can be accomplished 
by using different symbols that are somewhat similar. For 
example, one could use x's instead of o's to denote the im- 
puted values in Figure 12. 

2.5 Conditional Mean and Percentile Curves: Kernel 
Smoothing 

Although one might typically use a polynomial regression 
to display the X-Y relationship on a scatterplot of a small- 
to-moderate number of observations, the large number of 
observations sometimes available with survey data allows 
for the consideration of less model-dependent approaches. 
As a simple example, Figure 14 is a strip box plot (Cham- 
bers et al. 1983, pp 87-91) of height as a function of age; see 
Figure 7 for a sampled scatterplot of this data. Each box 
plot displays the sample-weighted 10th, 25th, 50th, 75th, 
and 90th percentiles of height of those individuals at a par- 
ticular year of age at the time of examination. The number 
of observations included for each year of age range from 
144 to 429. Figure 14 is not a particularly pleasing display 
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Figure 12. Sampled Scatterplot Based on Data From Mothers Aged 

30-39 Surveyed in the 1988 National Maternal and Infant Health Survey 
(circles = imputed values, + 's = nonimputed values). 
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Figure 13. Sampled Scatterplot Based on Data From Mothers Aged 
30-39 Surveyed in the 1988 National Maternal and Infant Health Sur- 
vey (circles = imputed values without error included, + 's = nonimputed 
values). 

of the percentiles as a function of age. One can remove the 
boxes and generate smooth curves through the percentiles 
for the different ages for a better plot. For example, Fig- 
ure 15 displays a cubic spline through the percentiles (SAS 
1990); this was the approach used in an early presentation 
of growth curves by the National Center for Health Statis- 
tics (1976). Guo et al. (1990),discussed alternative methods 
for smoothing percentiles for this type of grouped data. 

More direct approaches to estimating smooth conditional 
percentile or mean curves are possible using the original 
ungrouped data. There are many different ways to do this 
(Hardle 1990); we briefly describe a kernel method. Let 
{(x, yi, wi)li = 1, .. ., n} be the sampled (X, Y) data with 
their corresponding sample weights. The idea behind a ker- 
nel estimator of the conditional mean of Y given X = x 
is to evaluate the weighted mean of the y, whose corre- 
sponding xi are near x. We describe in the Appendix how 
to incorporate the sample weights into a particular kernel 
smoother. The end result is that one can express an estima- 
tor of the conditional mean as 

n 

mean(y|x) - Fy, (3) 
i=1 

where the kernel weights wF incorporate the sample 
weights as well as the choice of the kernel function, local 
regression smoothing and bandwidth. Figure 16 is a replot 
of the sampled scatterplot of Figure 7 with the local linear 
kernel estimator of the conditional mean using a triangular 
kernel with a bandwidth determined by a one-sided sample 
size of 350; see the Appendix for details. 

A benefit of the development of the conditional mean 
estimator (3) as a weighted mean of the y's is that the ap- 
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Figure 14. Strip Box Plot of Height Versus Age for Data Plotted in 
Figure 6. Box plots show weighted 10th, 25th, 50th, 75th, and 90th per- 
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proach extends naturally to other functionals of the condi- 
tional distribution of Y given X, for example, percentiles. 
This was suggested by Stone (1977) and studied extensively 
by Owen (1987). The idea is to estimate the cumulative dis- 
tribution function (CDF) for Y using the y- whose xi are 
near x. In the present context, to estimate the conditional 
percentiles, one can use for each x the (weighted) percentile 
estimated from the weighted empirical cumulative distribu- 
tion function (CDF) of the y- using the wF weights. Unfor- 
tunately, this approach has a serious drawback for quantiles 
other than the median: Even if the relationship of the quan- 
tiles and x were linear (but not horizontal), the larger the 
bandwidth the more the quantiles will be biased away from 
the median. This is because the changing values of the con- 
ditional percentiles as a function of x, causes the spread of 
y values to be larger when a larger bandwidth is considered. 

To avoid this bias in the estimated conditional percentiles 
other than the median, we modify the approach analogously 
to that used for estimating "upper and lower smoothings" 
based on conditional means (Cleveland and McGill 1984). 
We first estimate the conditional median using the weighted 
CDF as described previously; denote it by med(ylx) and let 
z- = v4 - med(ylxi). To estimate a conditional percentile 
greater than the median, say the 90th percentile, use the 
weighted CDF approach to estimate the conditional 80th 
percentile of the z's given x using only the data points for 
which zi > 0. If we denote this conditional 80th percentile 
by h80(z x), then the desired conditional 90th percentile is 
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Figure 15. Cubic Spline Interpolation of Weighted Percentiles 
Shown in Figure 14. Solid line is the median, dashed lines are the quar- 
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Conditional percentiles are estimated using a local linear kernel estima- 
tor using a triangular kernel with a bandwidth determined by a one-sided 
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estimated by mned(yIx) + h8O(zIx). This modification works 
for conditional percentiles less than the median in the ob- 
vious fashion. Figure 17 displays selected conditional per- 
centiles for the height/age data using a local linear kernel 
estimator using a triangular kernel with a bandwidth deter- 
mined by a one-sided sample size of 350. 

With large data sets, the discreteness of the scale of 
the measurement of Y can sometimes become noticeable 
in the conditional percentile curves. For example, consider 
the blood lead data described in Section 2.3. A plot of the 
smoothed conditional percentiles of blood lead versus age 
will take on only integer values since blood lead is recorded 
to the nearest integer (plot not shown). If this is a problem, 
the weighted empirical CDF calculated at each can itself be 
smoothed before estimating the percentiles; see Woodruff 
(1952) and Korn, Midthune, and Graubard (1997) for some 
simple methods of doing this. 

We end this section with an example showing how to ex- 
amine whether a smoothed conditional mean or percentile 
curves is reflecting a property of the underlying distribu- 
tions rather than just noise. As an example, Figure 18 is a 
partial residual plot for the logarithm of blood lead from a 
(sample-) weighted linear regression of systolic blood pres- 
sure on loglead, age, and body mass index using the data de- 
scribed previously. Partial residual plots for an independent 
variable x, also known as component-plus-residual plots, 
are plots of the residuals plus x times the estimated re- 
gression coefficient of x versus the independent variable 
(Atkinson 1985, chap. 5.4; Cook and Weisberg 1994, chap. 
9). These plots are useful for examining possible needed 
transformations of the independent variable. The dotted line 
in Figure 18 is the weighted least-squares line; its slope is 
identical to the estimated regression coefficient of loglead 
in the weighted multiple linear regression. 

The smooth curve in Figure 18 is a local linear kernel 
estimator of the conditional mean using a triangular kernel 
with the fixed bandwidth of ?1.5 units of loglead. The curve 
shows no great nonlinearity,, although there is the sugges- 
tion of a rise and then fall of the curve for loglead values 
greater than 3.5. To check the reality of this nonlinearity, 
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From Figure 18 (solid curve) With Kernel Estimators of the Conditional 
Mean Based on Five Simulated Data Sets for Which the Conditional 
Mean Should be Linear (dashed and dotted curves, translated in the 
vertical direction to avoid overlapping curves). 

we simulated five data sets in which the linear regression 
model holds exactly-the values of the independent vari- 
ables and the sample weights were taken as in the observed 
data set, and values were simulated with normal distribu- 
tions around the predicted values (with standard deviation 
equal to the residual standard deviation from the observed 
data set). There should be no structure in the residuals from 
the weighted linear regressions using these simulated data 
sets. The top five curves in Figure 19 are the estimated con- 
ditional mean plots from the partial residuals from these 
five simulated data sets; the bottom curve is a replot of the 
conditional mean curve from Figure 18. The structure seen 
in these curves is at least as great as that seen in the curve 
calculated from the actual data, suggesting that the struc- 
ture seen in the curve based on the actual data can be safely 
ignored. 

3. DISCUSSION 

In the nonsurvey setting, the simple scatterplot is an ex- 
cellent overall graphical display of bivariate data. In the 
survey setting, different purposes may be best suited by dif- 
ferent plots. For example, is the plot to describe the sample 
for data cleaning purposes, or to describe the population for 
population inference? With large sample sizes, is the plot 
to describe general trends, or is to identify possible outliers 
and influential points? We have given examples in this arti- 
cle of some modifications of the simple scatterplot that we 
have found useful for displaying survey data. Other modi- 
fications are possible, and may be advisable, depending on 
the survey and the purpose of the display. 

APPENDIX 

Let the kernel function K(u) be a nonnegative symmetric 
function that integrates to one; for example, the triangular 
kernel K(u) = (1 - ul)I(lul ? 1). One possible kernel 

estimator of the conditional mean is given by 
72 

meanK(y x) ZWi, (A.1) 
i=l 

where wK = K(ij) x i l K (Xi) and hx is the 
bandwidth that essentially determines how far the xi can be 
from x and still be included in the estimator meanK(ylx). 
A potential problem with the curve meanK(ylx) is at the 
boundaries of the X data. To avoid this problem, one can 
use a locally weighted regression (Cleveland 1979), with a 
local linear smoother being a special case: Instead of using 
the weighted mean (A. 1), one fits a weighted linear regres- 
sion to the data around x using the wN weights. Then, one 
defines meanL(ylx) to be the predicted value of Y at X = x 
from this regression. The estimator meanL(ylx) can still be 
defined as a weighted mean, namely, 

n 

meanL(ylx) Z EWLYi (A.2) 
i=1 

with weights equal to 

yK En Wi WK+En K( -K2 

where j=K j <xj. The additional possibility of 
downweighting points with large residuals ("lowess," Cleve- 
land 1979) is not pursued here. 

To account for the sample weights (wi), one lets 

KS TZXi\ -~7Xxi~ Wi s=wiK (X . 
x 

/xwjK (X-X ) 

and 

W. w51+ k7 WiF= 1 +k > w; S(xj -X Xj)_ 9 

where X KS L 7- wKSxj. The local linear smoother is 
then defined by (3). The use of the sample weights implies 
that (3) is estimating what (A.2) would be estimating if all 
the population values were available and used for the esti- 
mation. 

The choice of the bandwidth is critical in determining 
how smooth the resulting conditional mean curve will be. 
There are various ways to choose the bandwidth (Hardle 
1990, chap. 5); we describe two simple approaches here. 
One approach is to fix hx to be a constant that is meaning- 
ful to the scale of the data at hand. A second approach is 
to choose hx so that a certain minimum sample size is con- 
tained in x?hx, for example, 100 observations. A modifica- 
tion of this second approach, which we prefer, is to choose 
hx so that a certain minimum sample size is contained in 
either [x, x - hx or [x, x + hx1, for example, 50 observa- 
tions. (Without this modification, hx will tend to increase 
as x approaches a boundary of the data.) We shall refer to 
this as a bandwidth determined by a one-sided sample size 
of 50. 
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