36-303: Sampling, Surveys and Society

Statistics of Surveys II Brian Junker 132E Baker Hall brian@stat.cmu.edu

Class Schedule

- For some reason I'm almost exactly a week behind where the "schedule of topics" says I should be
- I propose to delay the first midterm by one week
 - Old Midterm Date: 2/23
 - New Midterm Date: 3/01

14 February 2012

Handouts

- In Class:
 - Lecture Notes
- Online:
 - Team Working Agreements
 - □ HW04

Upcoming Team Activities

- Team Project Assignment I.3 [Due Thu Feb 16]
 - CHOOSE a single project to do this semester, based on my feedback to I.2
 - TURN IN on Blackboard: a revised version of A-G for the single project you choose, Feb 16.
- Team Working Agreement [Due Thu Feb 23]
 - GET the TWA pdf from the "twa" directory on the class website.
 - IURN IN on blackboard: final TWA Feb 23
- Team Project Assignment II.4 [Due Thu Mar 01]
 Sampling scheme questionnaire sample size

1

14 February 2012

Outline

14 February 2012

- Urn Models
- A Survey Sampling Experiment
- Elementary Statistics
 - SRS with replacement
- Survey Sampling
 - SRS (and other probability samples) without replacement
- FOR NEXT WEEK Groves Ch's 7 & 8: Question Design

Urn Models

14 February 2012

- Draw n=10 balls from the urn
 - What proportion are yellow?
 - How much variability in the proportion, if I repeat the experiment?
- The properties of the sample depend on how the sample was drawn.

A Survey Sampling Experiment

Sampling From Urns

Urn I

- Take a sample of size n=10, by shaking urn and moving 10 balls into neck.
- Repeat process 20 times.
- Write down the number of yellows you got for each time.

Repeat for Urns II and III

7

Sampling From Urns (cont.)

 Circulate all three urns 	Brian Junker		
Each student should mix the			
balls: then draw a sample	10/90 Urn	20/80 Urn	30/70 Urn
and record # of vellows out of	2	1	3 5
	0	1	2
10	0	2	5
Turn in a piece of paper with your	3	2	4
name, and 3 neat columns of 20	1	2	2
results each (20 for each urn!)	0	0	4
- Today: Preliminary look at Lin	2	5	2
	1	2	3
3	1	2	1
Thursday: Compare our	1	3	1
regulta with the patual	2	1	3
results with the actual	1	4	3
probability distribution for	0	1	4
each urn.	1	1	3
	0	5	2
	0	0	3
 A shakes, B records 	0	2	3
B shakes, A records	Ŭ	0	0
14 E L			
14 redruary 2012			

What do we remember from Elementary Statistics?

For simple random sampling (SRS) with replacement,

$$E[\overline{X}] = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n}$

The Central Limit Theorem then tells us

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

- σ is the SD of X_i; σ/\sqrt{n} is the SE of X
- But in survey sampling we sample w/o replacement!

14 February 2012

SRS With Replacement

- Draw one ball at a time
- Replace ball and re-shake urn for next draw
- Stop when you get n balls
- The composition of the urn never changes

SRS With Replacement

Let X_i = 1 if ith ball in sample is yellow, else X_i=0, i=1, 2, ..., n

•
$$E[X_i] = 1 \cdot P[X_i=1] + 0 \cdot P[X_i=0] = p = 30/100$$
, so
 $E[\hat{p}] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}np = p$

 Because we always replace the ball, one draw cannot affect the next, and so Cov(X_i, X_j)=0. So

$$Var(\hat{p}) = Var(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n^{2}}\left[\sum_{i=1}^{n}Var(X_{i}) + \sum_{i=1}^{n}\sum_{j\neq i}^{n}Cov(X_{i},X_{j})\right]$$

= $\frac{1}{n^{2}}np(1-p) + \sum \sum_{i=1}^{n}0 = p(1-p)/n$
So $SE(\hat{p}) = \sqrt{p(1-p)/n}$

14 February 2012

SRS Without Replacement

- Draw one ball at a time
- Do not replace ball after you draw it
- Stop when you draw n balls
- The composition changes with every draw

14 February 2012

13

Results of Experiment

SRS Without Replacement

- Let X_i = 1 if ith ball in sample is yellow, else X_i=0, i=1, 2, ..., n
- E[X₁] = 30/100 = p
- What about X₂?

$$E[X_2] = E[X_2|X_1 = 1]P[X_1 = 1] + E[X_2|X_1 = 0]P[X_1 = 0]$$

= $\frac{29}{99}\frac{30}{100} + \frac{30}{99}\frac{70}{100}$
= $\frac{30}{100}\left(\frac{29}{99} + \frac{70}{99}\right) = \frac{30}{100} = p, \text{ *whew*}$

- What about X_3 ?
- What about $E[\hat{p}]$ and $Var(\hat{p})$?

14 February 2012

Conjectures from the Experiment

Review

- Elementary Statistics: SRS with replacement
- Survey Sampling: SRS without replacement
- Our Survey Sampling Experiment
 Will look at results further on Thursday
- Please read Groves Ch 7, 8
 - Team Assignments I.4 and I.5 are about question design!
- See HW and team due dates at beginning of lecture

14 February 2012