36-303: Sampling, Surveys and Society

Sample Size, Sampling Frame, Questions Brian W. Junker 132E Baker Hall Brian@stat.cmu.edu

Handouts & Other Things...

Handouts...

- These Lecture Notes
- Other Things...
 - Next week we have a midterm test!
 - I will talk a little about the midterm on Thursday, and more next Tuesday.
 - See last week's lectures for upcoming due dates
 - HW04 today; TWA Thu, Project Assignmen I.4 next Thursday...
- Later today or tomorrow I will EMAIL
 - Update on Team Project Assignments

Outline

- Team Project Progress
- Sample sizes for SRS's
- Population, Sampling Frame, Random
 Sample *[Important for Team Assig. I.4!]*
- Some Non-response Strategies
- Questions and Answers in Surveys
 [Important for Team Assig. I.5!]

Team Project Progress

- All teams have chosen projects
 - □ I will email feedback on I.3 shortly.
- The topics for this semester are:
 - A political survey of the CMU community
 - Music/movie internet piracy at CMU
 - How to improve our on-campus parking system?
 - Political Attitudes and Academic Major at CMU
 - Analysis of the Off-Campus Housing Search for CMU Students
 - Parking Meters at CMU
 - Spatial and Analytic Study of Student Housing at CMU

Survey Sample Size Estimation

Review: CLT-based conf. interval and sample size calculation for <u>SRS with replacement:</u>

• 100%(1- α) CI for μ :

$$\left(\overline{X} - z_{\alpha/2} \frac{SD}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{SD}{\sqrt{n}}\right)$$

Margin of error (ME) is ½ width of CI, so

$$ME = z_{\alpha/2} \frac{SD}{\sqrt{n}}$$

• For a given ME, get sample size by solving for n: $n \ge n_0$, where $n_0 = \frac{z_{\alpha/2}^2 (SD)^2}{(ME)^2}$

Survey Sample Size Estimation

<u>New</u>: CLT-based conf. interval and sample size calculation for <u>SRS w/o replacement:</u>

• 100%(1- α) CI for μ requires FPC:

$$\left(\overline{X} - z_{\alpha/2}\sqrt{1 - \frac{n}{N}}\frac{SD}{\sqrt{n}} , \quad \overline{X} + z_{\alpha/2}\sqrt{1 - \frac{n}{N}}\frac{SD}{\sqrt{n}}\right)$$

For a given ME, get sample size by solving

$$z_{\alpha/2}\sqrt{1-\frac{n}{N}\frac{SD}{\sqrt{n}}} < ME$$

After some algebra, get

$$n \ge \frac{Nn_0}{N+n_0}$$
, where $n_0 = \frac{z_{\alpha/2}^2 (SD)^2}{(ME)^2}$

Example: Sample Size Estimation

Estimate proportion of CMU undergrads who would prefer one week for carnival, to within +/-0.05, with 95% confidence. How large n?
 For SRS with replacement

$$n \ge n_0$$
, where $n_0 = \frac{z_{\alpha/2}^2 (SD)^2}{(ME)^2}$

- ME = 0.05; z = 1.96 (or 2); SD = $\sqrt{p(1-p)}$, but p is what we want to estimate!
 - Initial guess for p? Maybe p=0.9?
 - Worst-case guess for p? p=0.5.

Example: Sample Size Estimation (2)

• Go with ME = 0.05, z = 1.96, and SD = $(0.5^*(1-0.5))^{1/2} = 0.5$

For <u>SRS with replacement</u>, we get

$$n_0 = \frac{z_{\alpha/2}^2 (SD)^2}{(ME)^2} = \frac{(1.96)^2 (0.5)^2}{(0.05)^2} = 384.16$$

so, sample $n \ge 385$ students.

Example: Sample Size Estimation (3)

For SRS with replacement, we take n at least

$$n_0 = \frac{z_{\alpha/2}^2 (SD)^2}{(ME)^2} = \frac{(1.96)^2 (0.5)^2}{(0.05)^2} = 384.16$$

 For <u>SRS w/o replacement</u> (<u>www.cmu.edu</u> Factbook claims 6020 undergraduates at CMU), we take

$$n \ge \frac{N \cdot n_0}{N + n_0} = \frac{(6020)(384.16)}{6020 + 384.16} = 361.11$$

a savings of about 23 students.

Population, Sampling Frame, Random

Sample

- <u>Target Population</u>: The population about which you can make valid inferences from a well-designed survey within your means.
- <u>Sampling Frame</u>: A real or theoretical list of all possible individuals in the <u>target population</u>, that you could randomly sample in your survey.
 - Hopefully, differs <u>only in small ways</u> from target pop.
- <u>Random Sample</u>: A random, probability based sample (for us, usually SRS without replacement) from the sampling frame.

The only *guarantee* of a representative sample, that we trust statistical calculations with, is a truly <u>random</u>, probability-based sample from a <u>sampling frame</u> with <u>low coverage error</u> for the <u>target population</u>.

Population and Sampling Frame

- If your population is "all undergraduates at Carnegie Mellon", then your sampling frame should be one of these (most likely):
 - List of email addresses obtained from Hub or elsewhere; or
 - C-Book student directory
- If your population is "all residents of XYZ part of Pittsburgh" then your sampling frame should be (most likely):
 - A list of addresses that you can visit or send mail to; or
 - A list of phone numbers you can access via random digit dialing

A Good Sampling Frame Simplifies Representative Sampling

- It should be a real or theoretical list that has low coverage error
 - It should contain almost exactly the same individuals as the full target population
- It should be possible to select a real, live random sample from the frame
 - A frame like "all students passing the Fence between 12:00 and 1:00" has obvious problems (<u>coverage error</u> and <u>statistical calculations may not apply</u>).

Goals for the Random Sample

- For most of the projects, the Random Sample should be an <u>SRS without replacement</u> (urn model!) from an explicit sampling frame.
- Some projects may have natural <u>strata</u> (major department of student, fr/so/jr/sr, or 3-4 different college campuses). In that case take an <u>SRS w/o</u> <u>repl.</u> from each <u>stratum</u>.
- In some extreme cases it is not possible to build a frame and do random sampling (e.g. survey of panhandlers, survey of riders while they are on 28X).

Non-Response Strategies

- Once you have chosen the random sample, respondents can screw up representativeness by forgetting or refusing to respond to your survey.
- For mail and email surveys, common strategies are
 - Pre-survey announcements
 - Followup reminders
 - Other methods?
- For face to face and telephone surveys, <u>practice</u>:
 How to pull respondent in, in first 10-30 seconds;
 How to keep respondent engaged for whole interview
- How many times to re-contact a dead-end in sample?
- IRB: maintain right to refuse, quit early, etc.

Two Fractions: Sampling Fraction vs. Response Rate

- The <u>sampling fraction</u> f = n/N (n = sample size; N = population size)
 - Determines variability of sample;
 - FPC = $\sqrt{1-f}$ for SE's and similar quantities
- The <u>response rate</u> r/n (r = # who responded; n = number in sample).
 - $\hfill\square$ If the sample is random and r/n \approx 1, then the r respondents are probably representative of population
 - If <u>either</u> nonrandom sample, <u>or</u> r/n << 1, then the respondents are probably not representative of population
- r/n \approx 1 is much more important than n/N \approx 1.

Example: Student use/attitudes toward drug/alcohol use (Fictional!)

- <u>Target Population</u>: All currently enrolled undergrads at the Pittsburgh campus of CMU
- <u>Sampling Plan</u>: Advertise on Facebook inviting students to come to <u>www.surveymonkey.com</u> to fill out survey.
 - No sampling frame specified
 - Two sources of coverage errors
 - Not everyone is on Facebook
 - Volunteers are different
 - Nonrandom sample no way to claim representativeness unless n/N is <u>very</u> close to 1!
 - <u>No plan</u> to identify <u>nonresponders</u> or <u>followup</u> with reminders

Example: Student use/attitudes toward drug/alcohol use (Fictional!)

- <u>Target Population</u>: All currently enrolled undergrads at the Pittsburgh campus of CMU
- <u>Sampling Plan</u>: Take SRS w/o replacement from C-book, email those students to do Surveymonkey survey, email reminders to nonresponders after 1 week.
 - □ **Sampling Frame** C-Book is a list of individuals in target pop
 - Low Coverage Error
 - Students who provide wrong or late information for C-Book
 - <u>Random sample</u> makes sample representative of frame, and because of low coverage error, sample is also representative of target population
 - Followup Nonresponders with email reminder
 - Increase response rate
 - Decrease appearance of confidentiality

Example: Use/attitudes toward PAT bus service (Fictional!)

- <u>Target Population</u>: East End Residents (Oakland, Shadyside, Squirrel Hill, Point Breeze)
- <u>Sampling Plan</u>: Approach people at bus stop with questionnaire
 - No sampling frame specified
 - <u>Two sources of coverage error</u>
 - Time/place \rightarrow who is there (workers, single moms w/kids, ...)
 - Noncoverage of non-riders or infrequent riders
 - □ **Nonrandom sample** \rightarrow can't argue "representative"
 - No definition or followup plan for <u>nonresponders</u>

Example: Use/attitudes toward PAT bus service (Fictional!)

- <u>Target Population</u>: East End Residents (Oakland, Shadyside, Squirrel Hill, Point Breeze)
- Sampling Plan: Identify all East End phone prefixes (361, 362, 682, ...), randomly select prefix and 4digit suffix (ppp-ssss); phone interview starts by verifying residence and then asks about buses.
 - Sampling Frame East-end telephone land lines
 - Lower Coverage Error
 - Frame + location screen question → subset of target pop
 - Noncoverage of persons w/o landlines (Groves, sect 4.8!)
 - □ *Random sample* → Easy "representativeness" argument
 - <u>Nonresponders not mentioned</u> (but one could call back non-answering numbers [how many times?])

Accessible Sources of Sampling Frames: Face to Face or Mail-Back

Residential addresses

- Phone directories are easy, but may have under-coverage problems
- <u>Clustered</u> sampling based on random selection of block within area, & random selection of house within block

Commercial addresses

- Free online services provide addresses of specific business types within x miles of a particular location – undercoverage problems?
- For storefronts, the random block/random storefront scheme can work
- Man on the Street interviews
 - Coverage problems based on respondents' habits
 - Volunteer self-selection problems

Accessible Sources of Sampling Frames:

Telephone Interviews

Phone books

- Easy but can have under-coverage problems
- University directories can be better
- Random digit dialing
 - Easy to formulate select a valid prefix at random, then select a random 4-digit suffix (ppp-ssss)
 - Under-coverage (land-lines only)
 - Ineligible numbers (residential vs. business vs. fax, disconnected): Groves 4.8 estimates 6-7 dead-end calls needed for every "good" call
- Advertising a number for respondents to dial in
 - Coverage problems based on where you advertise
 - Volunteer self-selection problems

Accessible Sources of Sampling Frames: Email/Web Survey (Initial Considerations)

- Can be appropriate for "connected" populations (not yet for "general public") – University students, online workers, online entertainment users, etc.
- Sampling frame must be a list of email and/or paper mail addresses
 - University directories (e.g. C-Book)
 - Other email lists from registrar's office etc.
- <u>Good</u>: Take random sample from frame, then invite through email and/or paper mail
- <u>Bad</u>: Passive advertisement (Facebook etc.)
 - Under-coverage
 - Volunteer self-selection
 - Facebook can be ok to contact people you have sampled from some other frame, but is not itself a good frame.

Accessible Sources of Sampling Frames: Email/Web (Implementation)

- Can embed survey in email and ask respondents to email responses back to you
- Or use an online service, e.g.:
 - www.surveymonkey.com
 - www.infopoll.com
 - www.surveysaid.com
 - questionpro.com
 - Google Docs has forms that will work
- Decrease non-response with email and/or paper mail reminders
 - In order to have non-response followup, you need to know who in your sample has already responded!
 - Think of ways to assure confidentiality <u>anyway</u>.

Non-Framed, Non-Random Samples

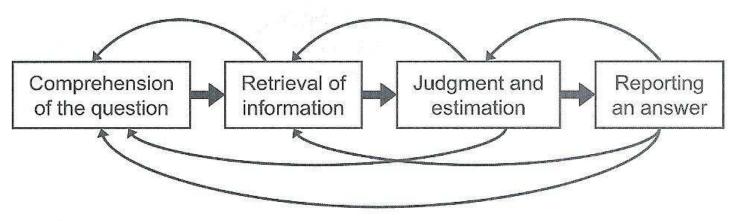
Non-Framed Samples

- Challenge: <u>Coverage error</u>
 - Why should anyone believe your sampling method provides good coverage of your target population?
- Non-Random Samples
 - Challenge #1: <u>Selection bias</u>
 - What makes people eligible for your survey?
 - How do you choose among the eligible units?
 - Challenge #2: <u>Using standard statistical formulae</u>
 - How can we be sure that the sample is large enough to provide good population estimates?
 - How can we be sure formulae for means, variances, confidence intervals, etc., do not need further modification?

Non-Framed Samples

- Describe all of the locations, times, and methods of approaching respondents (or objects) in great detail.
 - Coverage: Is everyone in your target population accessible at these times and places?
 - Equally-likely sampling: Is everyone equally likely to be there when you are there?
 - Eligibility: How will you determine whether to include this respondent in your survey.
 - Target population undergrads, this guy has grey hair and a paunch (are there undergrads like that?)
 - Are there reliable ways to determine eligibility?

Non-Random Samples: Selection Bias


- Volunteer bias (E.g. Facebook or general email invitation to a non-targeted sample)
- Interviewer bias (E.g. you never approach unattractive respondents at the Fence).
- Possible Fixes:
 - Decide on a rule for targeting subjects in advance (select every fifth person who passes by the Fence) and stick with it, no matter what.
 - Decide how you will follow-up nonrespondents (just like with a targeted random sample!)

Non-Random Samples: Using Standard Statistical Formulae

- Show that your non-random sample "behaves" like a random sample
 - Means match gender, age, college class, income, etc. features of the target population
 - Variances match variances you would expect from a random sample
- As further protection against coverage error, take a larger sample
 - □ (Sue & Ritter, 2007, *Conducting On-line Surveys*, p. 34):
 - Useful sample sizes are typically 30-500
 - Within that range, sample roughly 10% of total population
 - Sample should be roughly 10 times larger than number of variables being studied
 - Choose the largest sample you can afford

Questions and Answers

 A simple model of the response process (Groves, Ch 7):

Survey question should be written and refined to
 Increase validity (reduce errors and misunderstanding)
 Increase reliability (get the same answer every time)
 at every stage in the response process!

Comprehension of the Question

Does respondent understand what you intend by the question?

Some possible problems:

- Not possessing information needed for question
- Misunderstanding question wording
 - Grammatical errors or style
 - Too much complexity
 - Question contains false or unproductive assumptions or inferences
 - Vague or unfamiliar concepts, quantifiers, terms

Retrieval of Information

Can respondent recall information from long-term memory?

Some possible problems:

- Mismatches between terms in question and terms in respondent's memory
- Retrieval failures (I forget...)
- Distortion or poor reconstruction of remembered events as time goes by
 - Time dilation
 - Rehearsal (or avoidance!) of significant memories

Judgment and Estimation

- How does respondent combine, edit, fill in, information needed to answer question?
- Typical estimation methods for incomplete quantitative memories:
 - Exact answer: I just did my taxes, so I know my income is...
 - Recall-and-count: Recall events and count them up, add a few in case I forgot some
 - Rate-based: Recall the typical rate at which the events occur, and multiply by the time period
 - Impression-based: Start with a vague impression (few, some, a lot) and translate into a quantitative estimate
 - Over- & under-reporting collect validation data!

Judgment and Estimation (continued)

- Typical judgment methods for attitudes:
 - Deep impressions: respondent has thought a lot and has deep evidence and reasoning to support attitude
 - Shallow impressions: "Gee I was just reading about PAT buses and they don't sound very reliable."
 - Top-down judgement: "I believe in the free market generally, so I think everyone should pay for their own bus pass."
 - Bottom-up judgement: "I remember being a poor student without access to transportation, so I think people with means should be taxed to make free bus passes available for students."

Reaction to question wording:

- Do you think the United States made a mistake in deciding to defend Korea? [Gallup]
- Do you think the United States was right or wrong in sending American troops to stop the Communist invasion of South Korea? [NORC]

Reporting the Answer

- What does respondent select to respond?
- Question Format
 - Open-ended questions (numerical or verbal)
 - Closed questions with ordered scale (Likert scale)
 - Anchoring vignettes can help interpret responses in some cases!
 - Closed questions with categorical responses (M/C)
- Failure to Follow Instructions
 - Comprehension of instructions
- More or less deliberate misreporting & nonresponse
 - Sensitive questions
 - Desire to mislead polling organization
 - Undervalue poll or polling agent (*"it's just a student project…"*)

Review

- Team Project Progress
- Sample sizes for SRS's
- Population, Sampling Frame, Random Sample
- Some Non-response Strategies
- Questions and Answers in Surveys
- HW04 due today
- TWA due this Thursday
- I.4 Due next Thursday
- Midterm Exam Next Thurs