36-303: Sampling, Surveys and Society

Stratified Samples and Sample Size Calculations
Brian Junker
132E Baker Hall
brian@stat.cmu.edu

Handouts

- These Lecture Notes
- Handout on Stratified Sampling
- Handout on Sampling Details
 - Selecting an SRS from C-Book
 - Contacting respondents
 - Nonresponse followup on surveymonkey.com
- Reading:
 - Stratified Sampling: Groves Sect 4.5,
 - Nonresponse: Groves Ch 6

Outline

- Team Projects This Week
- Midterm
- Stratification
 - What is it; Notation
 - Weights and Proportionate Sampling
 - Variances and Design Effect
 - Examples

Team Projects This Week

II.5 Due Thursday (Blackboard)

- Include a paragraph or so on your research question
- Pretest a version of your questionnaire (or observation protocol) on a group of possible respondents/units.
- Write 2-4 paragraphs: how many respondents/units you used in the pretest; how similar they were to units in the population; and the changes you made in the survey based on this pretest.
- Include both old and revised questionnaire/protocol

IRB Form Due Thursday (Blackboard)

- If you are surveying people, and you have not turned one in to me yet, you need to do this by Thursday.
- Form at http://www.stat.cmu.edu/~brian/303. You don't need to include any attachments

Peer Evaluations Due Thursday (email to me)

 Each person should email me forms for all other members of their team, in one email with subject "36303 Peer Evaluations"

4

Form at http://www.stat.cmu.edu/~brian/303

Team Projects After Spring Break

- II.6 Project Plan (Tue Mar 20, Blackboard)
 - Final, full project proposal (items A-M on the "designing a sample survey" handout, except don't include the IRB form [item I]).
 - This should be easy: copy and update the latest thing you have done for each of the items A-M up to now into a single electronic file to submit on blackboard. for each team.
 - From this proposal, anyone outside our class should be able to read and understand completely what you are proposing to do
- Get started Collecting Data!

Midterm Exam ...

Seemed to go well...

```
> summary(exam1)
  Min. 1st Qu. Median Mean 3rd Qu.
                                           Max.
                                                   NA's
  64.00
       76.00
                85.00
                          82.41
                                  89.00
                                          99.00
                                                   3.00
> stem(exam1)
 6
                            C (11)
  6
     8999
      2
      567799
                            B (11)
 8
      04
      566778899
 8
 9
                            A (6)
      224
      559
  9
```

Stratified Sampling

- Strata are just subgroups of the target population that have some feature in common (gender, major, region, income, ...)
- Why stratify?
 - We need to make a separate inference for each stratum (e.g. we want to estimate men's and women's incomes separately)
 - Different sampling schemes would be used in each stratum (PA voters in PA, vs PA voters in Afganistan)
 - Population is geographically diverse (Minnesota, Illinois, Ohio, Pennsylvania)
 - Reduce variance of estimates (and reduce <u>sample size</u>) by exploiting similarity among members of the same stratum

What is Stratification?

Record	Name	Group		Record	Name	Group	
1	Bradburn, N.	High		2	Cochran, W.	Highest	One Stratified Random
2	Cochran, W.	Highest		7	Hunt, J.	Highest	Sample of Total Size 4
3	Deming, W.	High		11	Madow, W.	Highest	V.
4	Fuller, W.	Medium	One SRS of Size 4	12	Mandela, N.	Highest	
5	Habermann, H.	Medium		19	Wolfe, T.	Highest	───── Wolfe, T.
6	Hansen, M.	Low		1	Bradburn, N.	High	→ Bradburn, N.
7	Hunt, J.	Highest		3	Deming, W.	High	192
8	Hyde, H.	High		8	Hyde, H.	High	
9	Kalton, G.	Medium	Kalton, G.	17	Sudman, S.	High	
10	Kish, L.	Low		18	Wallman, K.	High	
11	Madow, W.	Highest		4	Fuller, W.	Medium	Fuller, W.
12	Mandela, N.	Highest		5	Habermann, H.	Medium	
13	Norwood, J.	Medium	Norwood, J.	9	Kalton, G.	Medium	
14	Rubin, D.	Low	Rubin, D.	13	Norwood, J.	Medium	
15	Sheatsley, P.	Low	8	20	Woolsley, T.	Medium	
16	Steinberg, J.	Low		6	Hansen, M.	Low	
17	Sudman, S.	High		10	Kish, L.	Low	
18	Wallman, K.	High	→ Wallman, K.	14	Rubin, D.	Low	Rubin, D.
19	Wolfe, T.	Highest		15	Sheatsley, P.	Low	
20	Woolsley, T.	Medium		16	Steinberg, J.	Low	

Unstratified Sample

Stratified Sample

Some Basic Notation

H strata

- \square N_h = population size in each stratum N_h $N = \sum N_h$
- \neg n_h = sample size in each stratum $n = \sum n_h$
- \Box $f_h = n_h/N_h = sampling fraction, each stratum$

■ The population average
$$\overline{y}_{pop} = \frac{1}{N} \sum_{i=1}^{N} y_i = \frac{1}{N} \sum_{h=1}^{H} \sum_{i=1}^{N_h} y_{hi} = \sum_{h=1}^{H} \frac{N_h}{N} \frac{1}{N_h} \sum_{i=1}^{N_h} y_{hi} = \sum_{h=1}^{H} \frac{N_h}{N} \overline{y}_{h,pop}$$
■ In stratified sampling we mimic this

$$\overline{y}_{st} = \frac{1}{n} \sum_{i=1}^{n} y_i = \sum_{h=1}^{H} \frac{N_h}{N} \overline{y}_h \text{ where } \overline{y}_h = \frac{1}{n_h} \sum_{i=1}^{n_h} y_{hi}$$

Weights, and Proportionate Sampling

Let $W_h = N_h/N$. Then

$$\overline{y}_{pop} = \sum_{h=1}^{H} W_h \overline{y}_{h,pop} \ and \ \overline{y}_{st} = \sum_{h=1}^{H} W_h \overline{y}_h$$

- In proportionate sampling we let $f_h = n_h/N_h = f$ for all strata h. Then $n_h/n = N_h/N$ (why??)
 - The sample is called "self-weighting"
 - Sample mean is "simple" for self-weighting

$$\overline{y}_{st} = \sum_{h=1}^{N} W_h \overline{y}_h = \sum_{h=1}^{H} \frac{N_h}{N} \overline{y}_h = \sum_{h=1}^{H} \frac{n_h}{n} \overline{y}_h = \sum_{h=1}^{H} \frac{n_h}{n} \frac{1}{n_h} \sum_{i=1}^{n_h} y_{hi} = \frac{1}{n} \sum_{h=1}^{H} \sum_{i=1}^{n_h} y_{hi} = \frac{1}{n} \sum_{i=1}^{n} y_i \overline{y}_{srs}$$

Sampling Variances (SRS w/o replacement in each stratum)

Within each stratum it's the same old answer

$$Var(\overline{y}_h) = (1 - f_h) \frac{s_h^2}{n_h} \text{ where } s_h^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (y_{hi} - \overline{y}_h)^2$$

Then we combine across strata using weights

$$(W_{h})^{2}: Var(\overline{y}_{st}) = Var\left(\sum_{h=1}^{H} W_{h}\overline{y}_{h}\right)$$

$$= \sum_{h=1}^{H} Var(W_{h}\overline{y}_{h}) = \sum_{h=1}^{H} W_{h}^{2}Var(\overline{y}_{h})$$

$$= \sum_{h=1}^{H} W_{h}^{2}(1 - f_{h})\frac{s_{h}^{2}}{n_{h}}$$

Design Effect

The <u>design effect</u> is a measure of how much better or worse <u>Stratified</u> is than <u>one SRS</u>:

$$d^{2} = \frac{Var(\overline{y}_{st})}{Var(\overline{y}_{srs})} = \frac{\sum_{h=1}^{H} W_{h}^{2} (1 - f_{h}) \frac{s_{h}^{2}}{n_{h}}}{(1 - f) \frac{s^{2}}{n_{h}}}$$

- Usually, d² < 1, i.e. stratified does better than one big SRS!
 - Usually best if:
 - Elements are more similar to each other within strata than between (e.g., substantively meaningful strata)
 - Proportionate sampling
 - Cochran (1961) suggests 2-6 strata usually give the best results; greater than 6 OK, but there are diminishing returns

Handout on Stratified Sampling

(Briefly) Handout on Sampling Details

Review

- Team Projects This Week
- Midterm Exam
- Stratification
 - What is it; Notation
 - Weights and Proportionate Sampling
 - Variances and Design Effect
 - Handout on Stratified Sampling
- Handout on Sampling Details
- Reading:
 - Stratified Sampling: Groves Sect 4.5,
 - Nonresponse: Groves Ch 6