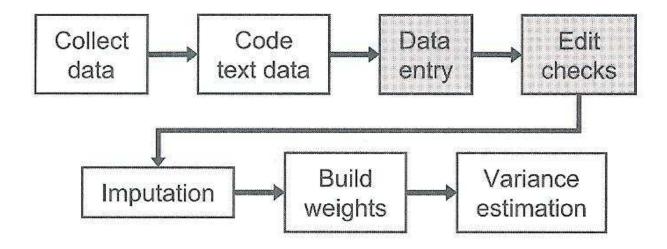
36-303: Sampling, Surveys & Society

Post-survey Processing Brian Junker 132E Baker Hall brian@stat.cmu.edu


Handouts

- These Lecture Notes
- Handout on post-stratification challenges
 - [reading for Thursday]
- Reminders:
 - HW 5 is due Thu Apr 5
 - But I will accept Fri Apr 6 also due to confusion about due date!
 - There is a place to submit it on Blackboard
 - First Drafty Draft is due Fri Apr 6
 - Submit one pdf or doc file per group, on Blackboard

Outline

- Post-survey Processing [Groves Ch 10]
 - Coding
 - Weighting
 - Imputation
 - Variance Estimation
- Review/Summary

Post-survey Processing

- Top row: Raw data collection process
 - The order of Coding, Data Entry and Editing will depend on the data collection design (FTF, phone, www, computer assisted, ...)
 - Computer-based surveys require you to design the Data Entry and Edit Checks when you build the form in surveymonkey.com, questionpro.com, Google Docs, etc.
- Bottom row: Calculations based on the data and/or design

Coding

- Translating non-quantitative or non-categorical data into quantities and categories
- M/C and Likert items <u>usually</u> require no coding
 - Indicate your status (check one box only):
 - Full-time student
 - Part-time student
 - Applicant, acceptance letter received
 - Applicant, acceptance letter not received
- When might an M/C item require some coding anyway?

Coding

- Short answer, long answer, graphical response, performance, etc., all require some coding
 - Team F: Coding sheets for make & type of car, etc.
 - Team A: What is your Religious Affiliation? (open answer)
- On the job crime in the NCVS:
 - What is the name of the (company/government agency/business/nonprofit organization) for which you worked at the time of the accident?
 - What kind of business or industry is this? (What do they make or do where you worked at the time of the incident?)
 - What kind of work did you do; that is, what was your occupation at the time of the incident? (For example: plumber, typist, farmer)
 - What were your usual activities or duties at this job?

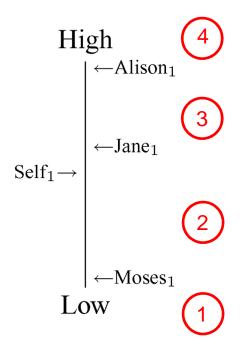
Coding System (Code Structure, Rubric)

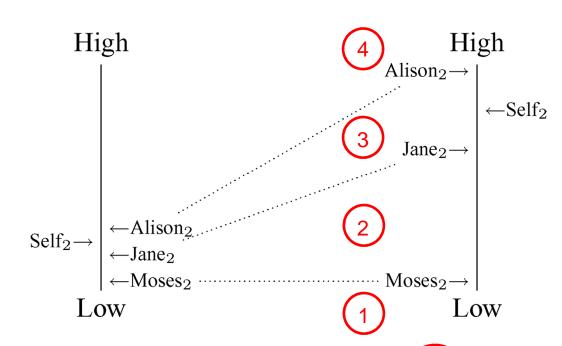
Each code should include:

- A <u>number or category</u>, used in statistical analysis
- A <u>text label</u>, describing all answers in that category

The set of codes for a response should be:

- <u>Exhaustive:</u> Every response should be codable into one of the categories
 - Separate codes are needed for skipped, not-asked, off-topic, etc.
- <u>Exclusive:</u> No response should be codable into more than one category
- Appropriate to the purposes of the research
 - Use codes that help you answer your research question(s)
 - If you have more than one research question, you might code the same response using different coding systems


Different coders using the same system will produce different codes for the same response


- Introduces a kind of "cluster structure" (by coder) into the data
- Want to construct codes to minimize this (reduce ICC!)

Coding Anchoring Vignettes

Respondent 1

Respondent 2

- Respondent 1 would be coded in category (2
- Respondent 2 would be coded in category (3)

Standard Classification Systems

- If the survey will be compared with other surveys, they should use the same coding scheme
- An ongoing longitudinal or panel survey like NCVS tries to use the same categories in each survey cycle or wave.
- Government or international agencies maintain standard coding systems for common types of information
 - Race/Ethnicity (US Census)
 - Standard Occupational Classification (US Dept of Labor)
 - North American Industry Classification System (US Economic Classification Policy Committee)

Weighting

- Many different sources of weighting in a survey, e.g.
 - Survey design weights
 - In stratified sampling, weights are used to combine stratum means & variance into overall means & variances
 - Other survey designs require weights to account for unequal sampling probabilities, etc.
 - Compute these weights <u>before the data is collected</u>
 - Nonresponse and post-stratification weights
 - Try to adjust sample proportions to equal population proportions
 - Compute these weights <u>after you see the data</u>
- These are discussed in detail in Groves; below I will only talk about post-stratification weights

Post-Stratification Weights

- As part of survey data collection it is a good idea to get general demographic information (e.g. in our surveys: sex, age, class, major, hometown, etc.)
- After data collection we compare the proportions in each of these categories in our sample with the same proportions in the population
- If they agree, great. If the disagree, we may reweight the sample to make them agree
- These categories are called "post-strata", and the weights are called "post-stratification weights"

Post-Stratification Example

- The 2007 HSS advising satisfaction survey was a simple (no strata, no clusters) web survey of all 986 students in HSS.
- We can separate the responding students by major to see how representative the survey was of each department in HSS.
- If the representativeness was not the same in each department, and if we assume that the <u>nonresponse</u> <u>is ignorable</u> (??) within department, we can reweight the sample data to get more accurate estimates of population quantitites.

HSS Response Rate in Dept Post-Strata

Post-Stratum	Sample	Population	Resp Rate
Economics	40	126	0.32
English	39	115	0.34
History	21	48	0.44
$\operatorname{ModLang}$	8	16	0.50
Philosophy	4	7	0.57
Psychology	37	104	0.36
SDS	54	161	0.34
Statistics	6	8	0.75
${ m Interdisc/IS}$	76	233	0.33
Undeclared	19	168	0.11
Total	304	986	0.31

HSS Post-Strata Proportions & Weights

Post-Stratum	Sample	Prop	Population	Prop	Weights
Economics	40	0.132	126	0.128	0.97
English	39	0.128	115	0.117	0.91
History	21	0.069	48	0.049	0.70
ModLang	8	0.026	16	0.016	0.62
Philosophy	4	0.013	7	0.007	0.54
Psychology	37	0.122	104	0.105	0.87
SDS	54	0.178	161	0.163	0.92
Statistics	6	0.020	8	0.008	0.41
Interdisc/IS	76	0.250	233	0.236	0.95
Undeclared	19	0.062	168	0.170	2.73
Total	304		986		

weight = (Population Proportion) / (Sample Proportion)

Fictional Example: What proportion of students think advising is OK?

		Гotal	Think Advising is OK		
Post-stratum	Sample	Population	Sample	Population	
Economics	40	126	28	88	
English	39	115	23	69	
History	21	48	10	24	
$\operatorname{ModLang}$	8	16	3	6	
Philosophy	4	7	1	2	
Psychology	37	104	11	31	
SDS	54	161	22	64	
Statistics	6	8	3	4	
Interdisc/IS	76	233	46	140	
Undeclared	19	168	13	118	
Total	304	986	160	546	

Population proportion, vs. Unweighted and Weighted sample proportion

• Population proportion:

$$p_{pop} = 546/986 = 0.553$$

• Unweighted Sample proportion:

$$\hat{p} = 160/304 = 0.526$$

• Weighted Sample Proportion

Weighted Total =
$$(0.97)(40) + (0.91)(39) + \cdots + (2.73)(19) = 304(!!)$$

Weighted OK's = $(0.97)(28) + (0.91)(23) + \cdots + (2.73)(13) = 167.45$
 $\hat{p} = 167.45/304 = 0.551$

Post-Stratification Weights – Pros & Cons

- Post-stratification weights can fix
 - disproportionate sampling of post strata
 - disproportionate nonresponse across poststrata
- Only works if the sampling/nonresponse process is <u>ignorable</u> within post-strata
 - That is, nonresponse does not depend on the answer you would have gotten if the person had responded
- If the sampling/nonresponse process is non-ignorable then these weights don't work; other weights have to be used
- The weights are only as good as your model for nonresponse
 - These weights are a very big deal in pre-election phone surveys for example (resp. rate 5-20%; weights account for ignorable and nonignorable nonresponse)

Imputation

- Weights are a good solution for unit nonresponse (missed that whole person)
- Imputation is a good solution for item nonresponse (person never answered question #17).
- Basic ideas of imputation:
 - Build a model for <u>what sort of person wouldn't respond</u>, and use the model to fill in a value for this person
 - Find one or more other people like this person who <u>did</u> answer #17, and use their answers for this person
- Alternative to imputation: <u>Case-wise deletion</u>
 - Delete this person from the survey so you don't have to deal with the nonresponse to question #17
 - Pro's and con's of case-wise deletion??
 - MCAR: Missing Completely at Random

Mean-value Imputation

- If question #17 is a numerical item, take the average of everyone else's answer to #17, and fill that in for this person
- If question #17 is a yes/no, fill in the proportion of yes's for everyone else (or do a flip of a coin with that probability of "heads")
- Pro's and con's?

MCAR

Hot-Deck Imputation

- Among all the other people who answered question #17, find the one person who matches this person on important variables
 - age, sex, occupation, answers to other questions, etc. (whatever you think is important to understand this non-response!)
- Fill in that person's answer for this person's #17.
- Pro's? Cons?
- MAR: Missing at Random (within covariates)

Regression Imputation

Among all the people who answered question #17, fit a regression model (or logistic regression, or whatever) for response to question #17 as a function of other variables:

```
y_{17} = \beta_0 + \beta_1(age) + \beta_2(sex) + \beta_3(occupation) + \beta_4(answer to Q3) + ... + \epsilon
```

- Use the fitted model to predict what this person would have answered to #17, and fill that value in
- Pro's? Con's?
- MAR

Limitations of Imputation

- You have to have other variables in the survey that help you build a model for the nonresponse (MAR, or better MCAR)
- Nonignorable missingness (MNAR, missing not at random) is much harder
- After you have filled in the missing data
 - You have NOT increased the sample size; this will matter a lot if you are doing a lot of imputation
 - There is some uncertainty in what value to fill in; this can be accounted for by a technique called "multiple imputation"

Variance Calculations

- Final weights in a survey will be a combination (usually multiply together) of
 - Design Weights
 - Nonresponse Weights
 - Post-stratification Weights
- They each improve the point estimate (\bar{y}) but they have different effects on the variance $(Var(\bar{y}))$ and standard error
- Additional variance adjustments are made for imputation
- There are not usually closed-form variance formulas (like our simple formulas for strata and clusters)
- More on this next time!

Review/Summary

- The entire survey process consists of
 - Collect/Code/Enter/Edit the data
 - Post-processing of the data
- <u>Coding</u> is the process of summarizing complex responses into numbers or categories – subject to bias (bad categories) and variability (coder variation)
- Post-processing includes (usually in this order)
 - Imputation
 - Weighting
 - Variance Calculation

These are calculations on the data to account for various weaknesses of the data.