36-303: Sampling, Surveys and Society

Variance Calculations for Weights Brian W. Junker 132E Baker Hall brian@stat.cmu.edu

05 April 2012

Outline

- Variance Calculations for Weights
 - Taylor Series
 - Random Partition
 - Jackknife

Handouts & Announcements

- These Lecture Notes
- R Handout
- HW06 is online
 - This really is the last hw!
 - Due next Thu Apr 12
 - Contains updated list of due dates for rest of semester
- Last Midterm Exam Apr 17
 - Review Apr 12

05 April 2012

Variance Calculations for Weights

■ Most survey sample estimates have a ratio form:
\(\sum_{i}^{n}\), \(w_{i}u_{i}\)

$$\overline{y}_w = \frac{\sum_{i=1}^n w_i y_i}{\sum_{i=1}^n w_i}$$

- Two approaches to $Var(\overline{y}_w)$:
 - Use a <u>one-term Taylor approximation</u> to "linearize" the survey estimate, and apply CLT.
 - Use a <u>replication scheme</u> to create "replicate samples" by resampling the real sample and look at the variability among the replicates.
 - Non-overlapping replicates: E.g., Random Partitions
 - Overlapping replicates: E.g., Jackknife Method

05 April 2012 3 05 April 2012 4

Taylor Series Approximation (Bkgd)

The Delta Method

We know that if

$$\hat{\theta} - \theta \sim N(0, \sigma^2/n)$$

then

$$a(\hat{\theta} - \theta) \sim N(0, a^2 \sigma^2 / n)$$

We can extend this to a nonlinear function

$$f(\hat{\theta}) - f(\theta) = f'(\theta)(\hat{\theta} - \theta) + (remainder)$$

so that

$$f(\hat{\theta}) - f(\theta) \approx f'(\theta)(\hat{\theta} - \theta) \sim N(0, [f'(\theta)]^2 \sigma^2 / n)$$

05 April 2012

Taylor Series Approximation (Bkgd)

Univariate Delta Method

If
$$\hat{\theta} - \theta \sim N(0, \sigma^2/n)$$

then $f(\hat{\theta}) - f(\theta) \sim N(0, [f'(\theta)]^2 \sigma^2/n)$

Multivariate Delta Method

If
$$\begin{pmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \end{pmatrix} - \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \frac{1}{n} \sum \right)$$

then
$$f \begin{pmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \end{pmatrix} - f \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$$

$$\sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \frac{1}{n} (\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial \theta_2}) \sum \begin{pmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial \theta_2} \end{pmatrix}\right)$$

05 April 2012 6

Taylor Series for Ratio Estimator

Now we consider

$$\overline{y}_{w} = \frac{\sum_{i=1}^{n} w_{i} y_{i}}{\sum_{i=1}^{n} w_{i}} = \frac{\hat{\theta}_{1}}{\hat{\theta}_{2}} = f(\hat{\theta}_{1}, \hat{\theta}_{2})$$

The gradient of f has components

$$\frac{\partial f}{\partial \theta_1} = 1/\theta_2 , \quad \frac{\partial f}{\partial \theta_2} = -\theta_1/\theta_2^2$$

■ The Variance/Covariance Matrix for (θ_1, θ_2) is

$$\sum = \begin{bmatrix} Var(\sum_{i} w_{i}y_{i}) & Cov(\sum_{i} w_{i}y_{i}, \sum_{i} w_{i}) \\ Cov(\sum_{i} w_{i}y_{i}, \sum_{i} w_{i}) & Var(\sum_{i} w_{i}) \end{bmatrix}$$

Taylor Series Variance for Ratio Estimator

Applying the Multivariate Delta Method we get

$$\begin{split} &Var_{TS}(\overline{y}_w) \approx \\ &\frac{1}{\left(\sum_i w_i\right)^2} \left[Var(\sum_i w_i y_i) - 2\overline{y}_w Cov(\sum_i w_i y_i, \sum_i w_i) + (\overline{y}_w)^2 Var(\sum_i w_i) \right] \end{split}$$

Need to calculate the variances and covariance above – see next slide…

05 April 2012 7 05 April 2012 8

Calculating the Variances for TS Method...

If we assume that each pair $(w_i y_i, w_i)$ is independent of every other pair (not quite true but close!) then

$$Var(\sum_{i=1}^{n} w_i) = \sum_{i=1}^{n} Var(w_i) = nVar(w) \approx n \cdot \frac{1}{n-1} \sum_{i=1}^{n} (w_i - \overline{w})^2 = n \cdot s_w^2$$

where $\overline{w} = \frac{1}{n} \sum_{i} w_{i}$. Similarly,

$$Var(\sum_{i=1}^{n} y_{i}w_{i}) \approx n \cdot \frac{1}{n-1} \sum_{i=1}^{n} (w_{i}y_{i} - \overline{wy})^{2} = n \cdot s_{wy}^{2}$$

where $\overline{wy} = \frac{1}{n} \sum_{i} w_i y_i$, and

$$Cov(\sum_{i=1}^{n} y_i w_i, \sum_{i=1}^{n} w_i) \approx n \cdot \frac{1}{n-1} \sum_{i=1}^{n} (w_i y_i - \overline{w} \overline{y})(w_i - \overline{w}) = n \cdot s_{wy,w}$$

05 April 2012

Example: HSS Advising Survey...

Post-Strat.	$\operatorname{Adv'ing}$ OK	Samp Total	Prop	Pop Total	Prop	Weights
	OK	Total	1 10p	Total	1 Top	Weights
Economics	28	40	0.132	126	0.128	0.97
English	23	39	0.128	115	0.117	0.91
History	10	21	0.069	48	0.049	0.70
$\operatorname{ModLang}$	3	8	0.026	16	0.016	0.62
Philosophy	1	4	0.013	7	0.007	0.54
Psychology	11	37	0.122	104	0.105	0.87
SDS	22	54	0.178	161	0.163	0.92
Statistics	3	6	0.020	8	0.008	0.41
Interdisc/IS	46	76	0.250	233	0.236	0.95
Undeclared	13	19	0.062	168	0.170	2.73
Total	160	304		986		

weight = (Population Proportion) / (Sample Proportion)

05 April 2012

TS Variance Estimate, HSS Advising

Data...
$$y_i = 1 \text{ (yes) or 0 (no)}$$

$$\overline{y}_w = 0.5507865$$

$$\overline{w} = 1.001678$$

$$\overline{w}y = 0.5517105$$

$$Var(\sum_i w_i) = n \cdot s_w^2 = (304)(0.2124) = 64.57$$

$$Var(\sum_i w_i y_i) = n \cdot s_{wy}^2 = (304)(0.4127) = 125.47$$

$$Cov(\sum_i w_i y_i, \sum_i w_i) = n \cdot s_{wy,w} = (304)(0.1637) = 49.75$$

So

$$Var_{TS}(\overline{y}_w) = (125.47 - 2(0.5507)(47.75) + (0.5507)^2 * (64.57)/(304 \cdot 1.0017)^2 = 0.000973 \cdot (64.57) + (0.5507)^2 * (64.57)/(304 \cdot 1.0017)^2 = 0.000973 \cdot (64.57) + (0.5507)^2 * (64.57)/(304 \cdot 1.0017)^2 = 0.000973 \cdot (64.57) + (0.5507)^2 * (64.57)/(304 \cdot 1.0017)^2 = 0.000973 \cdot (64.57) + (0.5507)^2 * (64.57)/(304 \cdot 1.0017)^2 = 0.000973 \cdot (64.57) + (0.5507)^2 * (64.57)/(304 \cdot 1.0017)^2 = 0.000973 \cdot (64.57) + (0.5507)^2 * (64.57)/(304 \cdot 1.0017)^2 = 0.000973 \cdot (64.57) + (0.5507)^2 * (64.57)/(304 \cdot 1.0017)^2 = 0.000973 \cdot (64.57) + (0.5507)^2 *$$

This is larger (typical!) than the naive variance based on $\hat{p} = \overline{y}$:

$$\hat{p}(1-\hat{p})/n = (0.53)(1-0.53)/(304) = 0.000819$$

We should also multiply by the fpc = 1 - 304/986 = 0.69!

Replication Scheme: Random Partitions

- We partition the data into r = 1, ..., c sub-samples, and calculate the weighted mean from each sub-sample
- Requirements of the sub-samples:
 - □ They are non-overlapping (disjoint subsets of the sample);
 - Their union is all of the original sample;
 - Each sub-sample should take observations from every stratum
- From each sub-sample we recalculate

$$\overline{y}_w^{(r)} = \frac{\sum_{i=1}^n w_i^{(r)} y_i^{(r)}}{\sum_{i=1}^n w_i^{(r)}}$$

Note that the weights have to be recalculated each time as well!

05 April 2012 11 05 April 2012 12

Replication Scheme: Random Partitions

This leads to a new estimate of the mean

$$\overline{y}_{rep} = \frac{1}{c} \sum_{w=1}^{c} \overline{y}_{w}^{(r)}$$

and a simple estimate of the variance

$$Var(\overline{y}_{rep}) = \frac{1}{c} \left[\frac{1}{c-1} \sum_{r=1}^{c} (\overline{y}_{w}^{(r)} - \overline{y}_{rep})^{2} \right]$$

- Takes a lot of computation but is straightforward to do, with a little programming!
- No example look at Jackknife instead!

05 April 2012

Replication Scheme: Jackknife

- From the original sample we create r=1, 2, ... n <u>Jackknife samples</u> (of size n-1), by deleting one observation at a time from the original data.
- From each jackknife sample
 - Recalculate the weights
 - Recalculate

$$\overline{y}_w^{(r)} = \frac{\sum_{i=1}^n w_i^{(r)} y_i^{(r)}}{\sum_{i=1}^n w_i^{(r)}}$$

Now calculate

$$\overline{y}_{JK} = \frac{1}{n} \sum_{r=1}^{n} \overline{y}_{w}^{(r)} \qquad Var_{JK}(\overline{y}_{w}) = \frac{n-1}{n} \sum_{r=1}^{n} (\overline{y}_{w}^{(r)} - \overline{y}_{jk})^{2}$$

05 April 2012

Example: HSS Advising Data (Again)

	$\operatorname{Adv'ing}$	Samp		Pop		
Post-Strat.	OK	Total	Prop	Total	Prop	Weights
Economics	28	40	0.132	126	0.128	0.97
English	23	39	0.128	115	0.117	0.91
History	10	21	0.069	48	0.049	0.70
ModLang	3	8	0.026	16	0.016	0.62
Philosophy	1	4	0.013	7	0.007	0.54
Psychology	11	37	0.122	104	0.105	0.87
SDS	22	54	0.178	161	0.163	0.92
Statistics	3	6	0.020	8	0.008	0.41
Interdisc/IS	46	76	0.250	233	0.236	0.95
Undeclared	13	19	0.062	168	0.170	2.73
Total	160	304		986		

weight = (Population Proportion) / (Sample Proportion)

05 April 2012

JK Variance Estimate, HSS Advising Data...

- There are 304 Jackknife samples, of size 303 each.
 - 28 jackknife samples omit one of the Econ 'yes' obs's
 - 12 jackknife samples omit one of the Econ 'no' obs's
 - 23 jackknife samples omit one of the English 'yes' obs's
 - 16 jackknife samples omit one of the English 'no' obs's
 - etc., etc. for the other 8 post-strata
- Calculate $\overline{y}_w^{(r)}$'s

0.5478, 0.5488, 0.5490, 0.5493, 0.5495 ...

(there are many duplicates!)

05 April 2012 1

JK Variance Estimate, Continued

Now we calculate

$$\overline{y}_{JK} = \frac{1}{304} \sum_{r=1}^{304} \overline{y}_w^{(r)} = 0.5508 \ (= \overline{y}_w)$$

and

$$Var_{JK}(\overline{y}_w) = \frac{304 - 1}{304} \sum_{r=1}^{304} (\overline{y}_w^{(r)} - \overline{y}_{JK})^2 = 0.000963$$

Very similar to TS Variance estimate:

$$Var_{TS}(\overline{y}_w) = 0.000973$$

05 April 2012

Actual Calculations...

- See R handout... (is there someone in every group that knows a little R?)
- My recommendation:
 - If you know the formula, <u>Taylor Series</u> approx is really easy to carry out. However, for a new statistic, have to reapply Delta Method.
 - <u>Jackknife</u> is harder to set up, but once it's done, it works for <u>all</u> possible statistics, not just weighted averages
 - As sample size grows, TS and JK produce same answers
 - \Box (again, we should multiply by fpc = (1-(samp)/(pop)))

05 April 2012 18

Making a Confidence Interval

Approx 95% confidence interval, based on the Jackknife standard error:

$$\begin{array}{ccc} (0.5508 - 2 * \sqrt{(1 - 304/986)(0.000963)} & , & 0.5508 + 2 * \sqrt{(1 - 304/986)(0.000963)}) \\ & & (0.4992 & , & 0.6024) \end{array}$$

In our fictional example we know the true population proportion:

$$p_{pop} = 546/986 = 0.553$$

We capture the true mean in this case

Review

- Variance Calculations for Weights
 - Taylor Series
 - Random Partition
 - Jackknife
- HW06 is online
 - □ This really is the last hw!
 - Due next Thu Apr 12
 - Contains updated list of due dates for rest of semester
- Last Midterm Exam Apr 17
 - Review Apr 12

05 April 2012 19 05 April 2012 20