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Review: Parameter, Statistic, Point Estimator, Point Estimate

Let X, X», ..., X, be asample. It may be a simple random sample
[independent observations from the same distribution fx (x)] or it may not.

A parameter 6 of fx(z) is a free variable that characteristic of fx (z).

A statistic 7' is any quantity that can be calculated from a sample. That is, itis
any function of Xy, ..., X,.

A point estimate 8 for @ is a single number that is a reasonable value for 6.

Slide 2 A point estimator @ for @ is a statistic that gives the formula for computing the

point estimate 4.

When we report an estimate 6, we should also report a standard error (standard

=~

deviation), SE() = +/Var (8), for the estimate.

Some possible considerations for good estimators include:

e Consistency: 6 — fasn — co.
e Unbiasedness: E[f] = 6.
e Efficiency: SE(H) is small.

o Asymptotic Normality: (9 — 8)/SE(f) ~ Normal, mean 0, variance 1.
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Methods of Point Estimation

All of the estimators we have looked at so far are very “ad hoc”, that is,
they look reasonable after you see them, but how would you think of
getting them? For example. ..

e For )\ = average number of scratches per CDROM, we chose A=X
by thinking about unbiasedness: E[X]| = E[X;] = \.

o For the maximum @ of reaction times distributed as uniform on [0, 6]
we considered

- él = 2X, because we were able to verify that it was unbiased:

E[2X] =90,
-0y = maz{Xi,...,X,} because it should be “close” to g; but it
was biased: E[fs] = it

- é3 = ”T“ég because that “fixed” the bias in 85 E[ég] =4.

How can we systematically construct “good” point estimators? There are several
methods that have proven useful:

e Method of Moments (MoM) A moment is the expected value of a power of
X. MoM estimators are obtained by combining unbiased estimators for
moments of X.

e Least Squares (LS Least squares estimators are obtained by minimizing the
mean squared error 37" (X; — E[X;])%. This makes sense when E[X;] is
a function of the parameter of interest, 8. LS turns out to be related to MoM.

e Maximum Likelihood (ML) The likelihood is the probability of (all) the data.
ML estimators (MLE’s) choose the parameter values that makes the data
most likely.

e Bayesian Estimation (Bayes) In Bayesian estimation we treat the parameters
as random variables and use Bayes’ Rule to pick the parameter value that is
most likely, or most typical, for the data (it is the “reverse” of ML, though
often the answers are very similar!).

In the following slides we will look at MoM and ML. We will see examples of LS
and Bayes later in the course.
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Method of Moments (MoM)

Let X1,..., X, beans.r.s. from a distribution with pdf or pmf fx (x), depending
on parameter 6.

We will write fx (z; 8), E[X; 6], etc., to emphasize this.

Definition
e The k** distribution moment is the mean of X*: E[X*;4].
e The k** sample moment is the sample average of X*: L 3" XF.

For an s.r.s., the sample moment is an unbiased estimator of the distribution
moment:

1 Q™ ok, _ 1y kgl — k.
ElE;Xi,G] = ;;E[Xi,e]_E[X,G]

The method of moments constructs an estimator 6 by setting

n
1 MoM
;E XF 'R E[X*; 6

i=1
and solving for 6.
Examples
e Let Xy,...,X, bean s.rs. of numbers of scratches on CDROMS, following

a Poisson distribution with parameter A. Observe that

r=Ex) R x

and therefore Aaronr = X.

e Let Xy,...,X, beans.rs. of lifetimes of computer chips, following an
Exponential distribution with failure rate A. We see

1A= E[x;] "R X,

solving for A, we get Aaronr = 1/X.

e Let Xy,...,X, beans.rs. of reaction times following a Uniform
distribution on [0, 6]. Note that

9/2=E[x;] "' X

and so, solving for 8, frronr = 2X.
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Example: The Sample Variance

Let Xi,...,X, be an s.r.s. from any distribution with mean g and variance o.
Clearly, firrorr = X.

e What is &3,57? Note that
2 2 2 3 MoM 1 . 2 <\ 2
= E[(X — = FE[X"] - (E[X S X, — (X
o (X —p)’] = E[X7] - (E[X]) nE i —(X)

i=1

so, with a little algebra,

n n
N 1 - 1 -
U%/IUM:; E XiQ—(X)2:E E (Xi_X)z-
i=1 i=1

o Is &%, Unbiased? Using the fact that Var (X) = E[(X)?] — (E[X])?,

Flo%ion] = B {% Soxi- @2} = 23" B} - B[R]

= BIX*] —Var (X) — (B[X])* = 0*—o*/n = " Lo?
S0 62,21 IS biased!
Fixing the biasin the sample variance
Since we just showed that
. n—1
E[UJQ\JOM] = n 02’
we know we can “fix the bias” by using
s = M N li(x- - X)?
n—1 MoM n—1 n & !
1 n
— )2
= X=X

This is the usual unbiased sample variance estimator. Clearly,

2 n o, _mn n—1 5|
BIS") = Bl o] = 2 [Po20? =0

50 52 is an unbiased estimator for 2.
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Example: Negative Binomial Distribution

Recall the negative binomial distribution, a discrete distribution for the number X
of all “failures” in a sequence of Bernoulli trials, before the rt* “success”. The
pmf for X is

p@) =PIX =a]= ("FI T D) p-p), 0 =0,1,2,3,...

and the mean and variance are
px = E[X] = r(1—p)/p, ox = Var(X) = r(1—p)/p’

This suggests a MoM strategy for estimating p and r from as.rs. X1,..., X,:

— N MoM
X = fmMom = px = r(l—p)/p
1 n — R MoM
=y Ki=X) =l R ok = rQ-p)/p
i=
Sovling for p and r we get
N _ fiMom N _ (finrons)?
PMoM = ~2 3 TMoM = PD) ~
TMom OMom — HMoM

Application

Reep, Pollard and Benjamin (“Skill and Change in Ball Games”, J. Royal

Sat. Soc, 1971, pp. 623-629) consider the negative binomial distribution

as a model for the number of goals per game scored by National Hockey

League teams. The data, for 420 games in the 1966—-1967 season, is:
Gas | 0 1 2 3 4 5 6 7 8 9 10
Frequency | 29 71 82 89 65 45 24 7 4 1 3

It is easy to calculate

fvorr = X = 2.98
1 n __
52 = = X)? = 3.52
OMoM nee (X; — ) 3.5
and therefore
. 2.98 . (2.98)2
Prom = g5 = 085, Taom = o505 = 16

(not so easy to see what SE(p) and SE(#) should be)




Properties of MoM Estimators

e They are pretty easy to derive!

e One can show that £ 37" is a consistent, unbiased,
asymptotically normal estim¥ior of E[X*].

Since MoM estimators are built out of these ingredients, it can be
Slide 11 shown in more advanced courses that

Usually, Method of Moments estimators
— Are unbiased or mildly biased

— Are consistent
— Have reasonably low SE

— Are asymptotically normal

Maximum Likelihood (ML)

Let X1,..., X, beans.r.s. from a distribution with pdf or pmf fx (z; 6),
depending on parameter 6. Let z1, ..., z, be the observed values in the sample.

Definition The likelihood of the sample is the joint pdf (or pmf)
L) = f(z1,... 205 0) = f(z1; 6)f(z2; 0)--- f(wn; 0)

I1 7G5 6)

Definition The maximum likelihood estimate 8,7z maximizes L(6):
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L(bmrr) > L(6) VO
If we use X;’s instead of z;’s then 4 is the maximum likelihood estimator.

Srategy: It is usually (but not always!) easier to work with the log-likelihood

£(6) =log L(A) = ilog f(zi; 0) .
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Example: Exponential Distribution

The pdf of an exponential distribution is
Fx(@; X) = e ™

so the likelihood for an s.r.s. of size n is

L()\) — H}\ef)\wi — )\ne—)\ Zin=1 z;
i=1

and the log-likelihood is £(\) = nlog A — A" ;. Tofind Aye, we
differentiate the log-likelihood and set it to zero

set d d = =
0 = ﬁf()\) = lnlogA—Azlxll = n/)\—;:m

Solving for A, it is easy to see that

Avre = n/z'_lxi =1/X = Aton

Example: Normal Distribution

The pdf of for a Normal r.v. with mean y and variance o2 is
1

V2ro?

e—(a—w)?/20°

fx(z; p,o?) =

so the likelihood for an s.r.s. of size n is

" 1 2 /¢ 2 n 2 2

H e~ (@—)?/20% _ (9752)=n/2g" > (@i—n)?/20
\/271'02

i=1

and the log-likelihood is
1 n
2y 2y 2
L(p,0°) =log L(p,0%) = — 10g(27r) - = log ~ 502 E_

Once again we would like to find firsz e and 63, 5 by setting the
derivatives of £(u, o%) equal to zero, and solving for 4 and o2.
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So, we want to solve the equations

0 %au,a?) = 2) - = 20z - p)

i=1
set 0 2 n 1 11 n 9
= —z = — —— - ; —
0 37 ") 55+t 577 ;(azz )
for pn and 2. When we do, we get
ﬂMLE = 7
1« -
512\/1LE = EZ(X’ —X)2

So again we get the MoM estimators back. ..

e MLE and MoM don’t always produce the same estimators, but in
many problems they produce very similar ones.

Example: Uniform Distribution

The pdf for a Uniform distribution on [0, 8] is

fx (z; 9):{ 1/6, 0<z<§

0, else

so that the likelihood for an s.r.s. of size n is

L®) = [[ fx (s 6) =

i=1

{ 1/6", 0<az; <8 forali

0, else

If we proceed as before,
£(0) =log L(6) = log(1/6™) = —nlog 8

and if we try to solve
set d
= — — l —_ —
0 " og 0 n/o

we seem to want § = oo, which doesn’t make any sense....
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The graph below shows why using calculus to maximize L(6) isn’t doing much
good. ..

Litheta)
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but it also shows clearly that Ovre = max{Xi,...,X,} Note that in this case,
éMoM = 92X
brvre = max{X1,...,Xn}

so the two methods generate different estimators.

We've already seen that G, 5 is biased, but @azons is not.
We’ve also seen how to “fix the bias” in 725 if we want to!

Properties of MLE’s

e They are not as easy to derive as MoM estimators, but still not too bad. ..
e They share many properties with MoM estimators. It can be shown in more
advanced courses that

Usually, Maximum Likeihood estimators
Avre unbiased or mildly biased

Are consistent

Have the lowest possible SE, as n — oo
Are asymptotically normal

o Not all MLE’s have these properties. For example fr1z for the Uniform
distribution on [0, 6] is not asymptotically normal. But most of the time, it is
safe to assume these properties.

e The SE for an MLE is relatively easy to compute (though perhaps not so easy
to see where it’s “coming from”). We’ll talk about the SE’s of MLE’s next
time.




