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Review: Parameter, Statistic, Point Estimator, Point Estmate

Let X1, Xs, ..., X, be a sample. It may be a simple random sample [independe
observations from the same distributifg(Xx)] or it may not.

A parameter 6 of fx(X) is a free variable that characteristic i x).
A statistic T is any quantity that can be calculated from a samplat is, itis

any function gf X1, ..., X
A point estimate @ for 6 is a single number that is a reasonable valugfor

A point estimator @ for 6 is astatistic that gives the formula for computing the
point estimate.

When we report an estimafiewe should also report a standard effstandard
deviation),SE(6) = +/Var (9), for the estimate.

Some possible considerations for good estimators include:

e Consistency: 6 — 6 asn — .
e Unbiasedness: E[6] = 6.

e Efficiency: SE(@) Is small.

e Asymptotic Normality:  § — 6)/SE(6) ~ Normal, mean 0, variance 1.
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Methods of Point Estimation

All of the estimators we have looked at so far are very “ad htwt is,
they look reasonable after you see them, but how would yok tbi

getting them? For example. ..

e For 1 = average number of scratches per CDROM, we chioseX
by thinking about unbiasedness[X] = E[X4] = 1.

e For the maximun® of reaction times distributed as uniform on {0
we considered

— 0, = 2X, because we were able to verify that it was unbiased:
E[2X] = 6,

— 6, = max{Xq, ..., X} because it should be “close” & but it was
biased:E[6] = 56.

— 03 = 19, because that “fixed” the bias é: E[65] = 0.

n
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How can we systematically construct “good” point estims®olhere are several
methods that have proven useful:

e Method of Moments (MoM) A moment is the expected value of a power Xf
MoM estimators are obtained by combining unbiased estiradito
moments ofX.
Least Squares (LS) Least squares estimators are obtained by minimizing th
mean squared errdt, (X; — E[X;])2. This makes sense whé&ijX;] is a
function of the parameter of interest,LS turns out to be related to MoM.

Maximum Likelihood (ML) Thelikelihood is the probability of (all) the data.
ML estimators (MLE’s) choose the parameter values that s #ike data

most likely.

Bayesian Estimation (Bayes) In Bayesian estimation we treat the parameterg
as random variables and use Bayes’ Rule to pick the parawedter that is
most likely, or most typical, for the data (it is the “reversé ML, though

often the answers are very similar!).

In the following slides we will look at MoM and ML. We will seexamples of LS
and Bayes later in the course.
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Method of Moments (MoM)

Let Xy, ..., X, be an s.r.s. from a distribution with pdf or prjf(x), depending on
parametep.

We will write fx(x; 6), E[X; 6], etc., to emphasize this.

Definition
e Thek™ distribution moment is the mean oX*: E[X¥; 4].
e Thek™ sample moment is the sample average ¥f: £ 31, XX,

For an s.r.s., the sample moment is an unbiased estimatioe digtribution

moment:
E }Zn:x.k- 0 = }Zn: E[X5 6] = E[XX; 6]
n i=1 a n =1 a |
Themethod of momentsconstructs an estimatéry setting

1 L MoM
ﬁink ~ E[X5 4]
i=1

and solving fom.
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Examples

e LetXy,...,X,be ans.r.s. of numbers of scratches on CDROMS, following]a
Poisson distribution with parametet. Observe that

1=E[x] " X

and thereforelyoy = X.

Let X4, ..., X, be an s.r.s. of lifetimes of computer chips, following an
Exponential distribution with failure ratel. We see

MoM

1/A=E[X] = X;

solving for A, we getiyom = 1/X.

Let X4,..., X, be an s.r.s. of reaction times followindmiform distribution

on [0, 4]. Note that

6/2 = E[X] "= X

and so, solving fo#, Oyom = 2X.

6 36-310 April 6, 2004



Example: The Sample Variance

Let Xy, ..., X, be an s.r.s. from any distribution with meamnd variancer?.

Clearly, timom = X.

e Whatis 2 ? Note that
M oM

7t = EIX -] = EXT — (ED? "2 13 X7 - (%)

so, with a little algebra,

i=1

e Isg2  unbiased?Using the fact that VarX) = E[(X)?] - (E[X])?,

Edhon] = E {% > X - (Y)Z} = 2 ED - B
i=1 i=1

= E[X?] - Var(X) - (E[X])2 = 02— o?/n = ”;nlaz

~2
Sooy,,y IS biased!
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Fixing the bias in the sample variance

Since we just showed that

SZ

1 < -
T ;(Xi ~ X)2.

This is the usualinbiased sample variance estimator. Clearly,

E18%] = El 3 0hou] = 70 g | o

- 0_2] _ 2

s0S? is anunbiased estimator for o-2.
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Example: Negative Binomial Distribution

Recall thenegative binomial distribution, a discrete distribution for the number
of all “failures” in a sequence of Bernoulli trials, befolteetr™" “success”. The
pmf for X is

0(x) = P[X = X] =(Xﬁ[11) 0'(1-p), x=0,1,23,...

and the mean and variance are
pux = E[X] = r@-p)/p, ok = Var(X) = r(1-p)/p’

This suggests a MoM strategy for estimatimgndr from a s.r.s Xy, ..., X,:

— . MoM
X = fmow = px = r(l-p)/p

1 = N MoM
S D =X = G~ ok = 1= P/
Sovling for p andr we get

~ ~ 2
A _ HMmom a _ (itmom)
PMom = —=— MoM = =

2 . ~
T Mom O Mom — MMoMm
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Application

Reep, Pollard and Benjamin (“Skill and Change in Ball Gamé&dRoyal
Sat. Soc, 1971, pp. 623—629) consider the negative binomial distion
as a model for the number of goals per game scored by Natiorekdy
League teams. The data, for 420 games in the 1966—1967 se&ason

Gals | 0 1 2 3 4 5 6 7 8 9 10
Frequency | 29 71 82 89 65 45 24 7 4 1 3

It is easy to calculate

Umom = X = 2.98

o = %Zi”:l(xi—i)z = 352
and therefore
. : ) (2.98Y
PMom = ' 'MoM = 3E2-298
(not so easy to see Wh3E(p) andSE(f) should be!)

16.4
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Properties of MoM Estimators

e They are pretty easy to derive!

e One can show that 31" ; XK is aconsistent, unbiased,
asymptotically normal estimator ofE[ XK].

Since MoM estimators are built out of these ingredientsait oe
shown in more advanced courses that

Usually, Method of Moments estimators
— Are unbiased or mildly biased

— Are consistent

— Have reasonably low SE

— Are asymptotically normal
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Maximum Likelihood (ML)

Let X4, ..., X, be an s.r.s. from a distribution with pdf or prif(x; 6), depending
on parametef. Letx,, ..., X, be the observed values in the sample.

Definition Thelikelihood of the sample is the joint pdf (or pmf)

L) = f(X....Xn; 0) = (X 0)f(x; 0)--- T(Xn; 6)

BRCH

i=1
Definition Themaximum likelihood estimatedy g maximizesL(6):
L(Oumie) > L(H) V6

If we useX:'s instead ofx;’s thend is themaximum likelihood estimator.

Srategy: It is usually (but not always!) easier to work with thog-likelihood

£(6) = log L(6) = Z log f(x; 6) .

i=1
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Example: Exponential Distribution

The pdf of an exponential distribution is
fy(x; 1) = 1e”

so the likelihood for an s.r.s. of sizals

n
L) = | [ae™ = anet 2
i=1

and the log-likelihood ig(1) = nlogA — 1, %. To find AuLe, we diferentiate
the log-likelihood and set it to zero

- d d n n
0 = ﬁ{’(ﬂ) = ﬁ[nlog/l—/l;x,} = n//l—;x,

Solving for 4, it is easy to see that

A n J— A
AMLE = H/Zi:lxi = 1/X = Amom
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Example: Normal Distribution

The pdf of for a Normal r.v. with meam and variancer? is

1
202

(X g1, 0%) = — = b2

so the likelihood for an s.r.s. of sizals

n
1 | 0 (x
L(u, o) = 1_[ ze—(><|—u)2/2<f2 = (2n02)"2g Zla(-p)’* /207
i—1 2no

and the log-likelihood is

{(u,0%) = 10gL (1, 0?) = - 109(2n) - 5 10g(0?) ~ 575 3" (% ~ )
i=1

Once again we would like to findy e andcfﬁ,lLE by setting the
derivatives of £(u, %) equal to zero, and solving farando?.
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So, we want to solve the equations

for u ando?. When we do, we get

HUMLE X
1 -
TLe = ;(Xi - X)?
So again we get the MoM estimators back. ..

e MLE and MoMdon't always produce the same estimators, but in
many problems they produce very similar ones.
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Example: Uniform Distribution

The pdf for a Uniform distribution on [@] is

1/6, 0<x<4#6
fx(X; 0) =
0, el se

so that the likelihood for an s.r.s. of sinas

n 1/0", 0<x <0, foralli
L) = | | fx(x: 0) = {
i=1

0, else
If we proceed as before,
£(0) = logL(®) = log(1/6") = —nlog 6

and if we try to solve
d
0= — —nlogfd =-n/6
90 g /
we seem to wamnt = oo, which doesn’t make any sense....

16
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The graph below shows why using calculus to maxinki@® isn’t doing much
good...
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but it also shows clearly thak, ¢ = maxX., ..., X,) Note that in this case,
Onom 2X
Oue = maxXay,..., X

so the two methods generatdtfdrent estimators.

We've already seen thaf e is biased, bugyo is not.
We've also seen how to “fix the bias” #h, " if we want to!
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Properties of MLE’s

e They are not as easy to derive as MoM estimators, but stiltowbad. . .
e They share many properties with MoM estimators. It can bevsha more
advanced courses that

Usually, Maximum Likeihood estimators

— Are unbiased or mildly biased

— Are consistent

— Have the lowest possible SE, as»> oo
— Are asymptotically normal

e Not all MLE’s have these properties. For exam@lge for the Uniform
distribution on [Q6] is not asymptotically normal. But most of the time, it is
safe to assume these properties.

e The SE for an MLE is relatively easy to compute (though peshay so easy
to see where it's “coming from”). We’'ll talk about the SE'sMi_E’s next
time.

18

36-310 April 6, 2004



