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Review: Parameter, Statistic, Point Estimator, Point Estimate

Let X1, X2, . . . , Xn be a sample. It may be a simple random sample [independent
observations from the same distributionfX(x)] or it may not.

A parameter θ of fX(x) is a free variable that characteristic offX(x).
A statistic T is any quantity that can be calculated from a sample.That is, it is

any function of X1, . . . , Xn.
A point estimate θ̂ for θ is a single number that is a reasonable value forθ.

A point estimator θ̂ for θ is astatistic that gives the formula for computing the

point estimatêθ.

When we report an estimateθ̂, we should also report a standard error(standard

deviation),S E(θ̂) =
√

Var (θ̂), for the estimate.

Some possible considerations for good estimators include:

• Consistency: θ̂ → θ asn→ ∞.
• Unbiasedness: E[θ̂] = θ.
• Efficiency: S E(θ̂) is small.
• Asymptotic Normality: (̂θ − θ)/S E(θ̂) ≈ Normal, mean 0, variance 1.
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Methods of Point Estimation

All of the estimators we have looked at so far are very “ad hoc”, that is,

they look reasonable after you see them, but how would you think of

getting them? For example. . .

• Forλ = average number of scratches per CDROM, we choseλ̂ = X

by thinking about unbiasedness:E[X] = E[X1] = λ.

• For the maximumθ of reaction times distributed as uniform on [0, θ]

we considered

– θ̂1 = 2X, because we were able to verify that it was unbiased:

E[2X] = θ;

– θ̂2 = max{X1, . . . , Xn} because it should be “close” toθ; but it was

biased:E[θ̂2] = n
n+1θ.

– θ̂3 = n+1
n θ̂2 because that “fixed” the bias in̂θ2: E[θ̂3] = θ.
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How can we systematically construct “good” point estimators? There are several

methods that have proven useful:

• Method of Moments (MoM) A moment is the expected value of a power ofX.

MoM estimators are obtained by combining unbiased estimators for

moments ofX.

• Least Squares (LS) Least squares estimators are obtained by minimizing the

mean squared error
∑n

i=1(Xi − E[Xi])2. This makes sense whenE[Xi] is a

function of the parameter of interest,θ. LS turns out to be related to MoM.

• Maximum Likelihood (ML) Thelikelihood is the probability of (all) the data.

ML estimators (MLE’s) choose the parameter values that makes the data

most likely.

• Bayesian Estimation (Bayes) In Bayesian estimation we treat the parameters

as random variables and use Bayes’ Rule to pick the parametervalue that is

most likely, or most typical, for the data (it is the “reverse” of ML, though

often the answers are very similar!).

In the following slides we will look at MoM and ML. We will see examples of LS

and Bayes later in the course.
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Method of Moments (MoM)

Let X1, . . . , Xn be an s.r.s. from a distribution with pdf or pmffX(x), depending on

parameterθ.

We will write fX(x; θ), E[X; θ], etc., to emphasize this.

Definition

• Thekth distribution moment is the mean ofXk: E[Xk; θ].

• Thekth sample moment is the sample average ofXk: 1
n

∑n
i=1 Xk

i .

For an s.r.s., the sample moment is an unbiased estimator of the distribution

moment:

E
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
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


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1
n

n
∑

i=1

E[Xk
i ; θ] = E[Xk; θ]

Themethod of momentsconstructs an estimatorθ̂ by setting

1
n

n
∑

i=1

Xk
i

MoM≈ E[Xk; θ]

and solving forθ.

5 36-310 April 6, 2004



Examples

• Let X1, . . . , Xn be an s.r.s. of numbers of scratches on CDROMS, following a

Poisson distribution with parameterλ. Observe that

λ = E[Xi]
MoM≈ X

and thereforêλMoM = X.

• Let X1, . . . , Xn be an s.r.s. of lifetimes of computer chips, following an

Exponential distribution with failure rateλ. We see

1/λ = E[Xi]
MoM≈ X;

solving forλ, we getλ̂MoM = 1/X.

• Let X1, . . . , Xn be an s.r.s. of reaction times following aUniform distribution

on [0, θ]. Note that

θ/2 = E[Xi]
MoM≈ X

and so, solving forθ, θ̂MoM = 2X.
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Example: The Sample Variance

Let X1, . . . , Xn be an s.r.s. from any distribution with meanµ and varianceσ2.

Clearly,µ̂MoM = X.

• What is σ̂2
MoM

? Note that

σ2
= E[(X − µ)2] = E[X2] − (E[X])2 MoM≈ 1

n

n
∑

i=1

X2
i − (X)2

so, with a little algebra,

σ̂2
MoM =

1
n

n
∑

i=1

X2
i − (X)2

=
1
n

n
∑

i=1

(Xi − X)2.

• Is σ̂2
MoM

unbiased?Using the fact that Var (X) = E[(X)2] − (E[X])2,

E[σ̂2
MoM ] = E
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n
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E[X2
i ] − E[(X)2]

= E[X2] − Var (X) − (E[X])2
= σ2 − σ2/n =

n − 1
n
σ2

soσ̂2
MoM is biased!
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Fixing the bias in the sample variance

Since we just showed that

E[σ̂2
MoM] =

n − 1
n
σ2,

we know we can “fix the bias” by using

S 2
=

n
n − 1

σ̂2
MoM =

n
n − 1
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This is the usualunbiased sample variance estimator. Clearly,

E[S 2] = E[
n

n − 1
σ̂2

MoM] =
n

n − 1

[

n − 1
n
σ2

]

= σ2

soS 2 is anunbiased estimator for σ2.
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Example: Negative Binomial Distribution

Recall thenegative binomial distribution, a discrete distribution for the numberX

of all “failures” in a sequence of Bernoulli trials, before therth “success”. The

pmf for X is

p(x) = P[X = x] =
(

x + r − 1
r − 1

)

pr(1− p)x, x = 0, 1, 2, 3, . . .

and the mean and variance are

µX = E[X] = r(1− p)/p , σ2
X = Var (X) = r(1− p)/p2

This suggests a MoM strategy for estimatingp andr from a s.r.s.X1, . . . , Xn:

X = µ̂MoM
MoM≈ µX = r(1− p)/p

1
n

∑n

i=1
(Xi − X)2

= σ̂2
MoM

MoM≈ σ2
X = r(1− p)/p2

Sovling for p andr we get

p̂MoM =
µ̂MoM

σ̂2
MoM

, r̂MoM =
(µ̂MoM)2

σ̂2
MoM − µ̂MoM

9 36-310 April 6, 2004



Application

Reep, Pollard and Benjamin (“Skill and Change in Ball Games”, J. Royal

Stat. Soc, 1971, pp. 623–629) consider the negative binomial distribution

as a model for the number of goals per game scored by National Hockey

League teams. The data, for 420 games in the 1966–1967 season, is:

Goals 0 1 2 3 4 5 6 7 8 9 10

Frequency 29 71 82 89 65 45 24 7 4 1 3

It is easy to calculate

µ̂MoM = X = 2.98

σ̂2
MoM =

1
n

∑n

i=1
(Xi − X)2

= 3.52

and therefore

p̂MoM =
2.98
3.52

= 0.85 , r̂MoM =
(2.98)2

3.52− 2.98
= 16.4

(not so easy to see whatS E(p̂) andS E(r̂) should be!)
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Properties of MoM Estimators

• They are pretty easy to derive!

• One can show that1n
∑n

i=1 Xk
i is aconsistent, unbiased,

asymptotically normal estimator ofE[Xk].

Since MoM estimators are built out of these ingredients, it can be

shown in more advanced courses that

Usually, Method of Moments estimators

– Are unbiased or mildly biased

– Are consistent

– Have reasonably low SE

– Are asymptotically normal
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Maximum Likelihood (ML)

Let X1, . . . , Xn be an s.r.s. from a distribution with pdf or pmffX(x; θ), depending

on parameterθ. Let x1, . . . , xn be the observed values in the sample.

Definition The likelihood of the sample is the joint pdf (or pmf)

L(θ) = f (x1, . . . , xn; θ) = f (x1; θ) f (x2; θ) · · · f (xn; θ)

=

n
∏

i=1

f (xi; θ)

Definition Themaximum likelihood estimate θ̂MLE maximizesL(θ):

L(θ̂MLE) ≥ L(θ) ∀ θ

If we useXi’s instead ofxi’s thenθ̂ is themaximum likelihood estimator.

Strategy: It is usually (but not always!) easier to work with thelog-likelihood

ℓ(θ) = log L(θ) =
n
∑

i=1

log f (xi; θ) .
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Example: Exponential Distribution

The pdf of an exponential distribution is

fX(x; λ) = λe−λx

so the likelihood for an s.r.s. of sizen is

L(λ) =
n
∏

i=1

λe−λxi = λne−λ
∑n

i=1 xi

and the log-likelihood isℓ(λ) = n logλ − λ
∑n

i=1 xi. To find λ̂MLE , we differentiate

the log-likelihood and set it to zero

0
set
=

d
dλ
ℓ(λ) =

d
dλ
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n logλ − λ
n
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i=1

xi






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





= n/λ −
n
∑

i=1

xi

Solving forλ, it is easy to see that

λ̂MLE = n
/

∑n

i=1
xi = 1/X = λ̂MoM
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Example: Normal Distribution

The pdf of for a Normal r.v. with meanµ and varianceσ2 is

fX(x; µ, σ2) =
1

√
2πσ2

e−(x−µ)2/2σ2

so the likelihood for an s.r.s. of sizen is

L(µ, σ2) =
n
∏

i=1

1
√

2πσ2
e−(xi−µ)2/2σ2

= (2πσ2)−n/2e−
∑n

i=1(xi−µ)2/2σ2

and the log-likelihood is

ℓ(µ, σ2) = log L(µ, σ2) =
−n
2

log(2π) − n
2

log(σ2) − 1
2σ2

n
∑

i=1

(xi − µ)2

Once again we would like to find ˆµMLE andσ̂2
MLE by setting the

derivatives of ℓ(µ, σ2) equal to zero, and solving forµ andσ2.
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So, we want to solve the equations

0
set
=

∂

∂µ
ℓ(µ, σ2) = 2

n
∑

i=1

(xi − µ) = 2n(x − µ)

0
set
=

∂

∂(σ2)
ℓ(µ, σ2) = − n

2
1
σ2
+

1
2

1
σ4

n
∑

i=1

(xi − µ)2

for µ andσ2. When we do, we get

µ̂MLE = X

σ̂2
MLE =

1
n

n
∑

i=1

(Xi − X)2

So again we get the MoM estimators back. . .

• MLE and MoM don’t always produce the same estimators, but in

many problems they produce very similar ones.
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Example: Uniform Distribution

The pdf for a Uniform distribution on [0, θ] is

fX(x; θ) =



















1/θ, 0 ≤ x ≤ θ

0, else

so that the likelihood for an s.r.s. of sizen is

L(θ) =
n
∏

i=1

fX(xi; θ) =



















1/θn, 0 ≤ xi ≤ θ, for all i

0, else

If we proceed as before,

ℓ(θ) = log L(θ) = log(1/θn) = −n logθ

and if we try to solve

0
set
=

d
dθ
− n logθ = −n/θ

we seem to wantθ = ∞, which doesn’t make any sense. . . .
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The graph below shows why using calculus to maximizeL(θ) isn’t doing much

good. . .
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but it also shows clearly thatθ̂MLE = max{X1, . . . , Xn} Note that in this case,

θ̂MoM = 2X

θ̂MLE = max{X1, . . . , Xn}

so the two methods generate different estimators.

We’ve already seen thatθ̂MLE is biased, but̂θMoM is not.

We’ve also seen how to “fix the bias” in̂θMLE” if we want to!
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Properties of MLE’s

• They are not as easy to derive as MoM estimators, but still nottoo bad. . .

• They share many properties with MoM estimators. It can be shown in more

advanced courses that

Usually, Maximum Likeihood estimators

– Are unbiased or mildly biased

– Are consistent

– Have the lowest possible SE, asn→ ∞
– Are asymptotically normal

• Not all MLE’s have these properties. For exampleθ̂MLE for the Uniform

distribution on [0, θ] is not asymptotically normal. But most of the time, it is

safe to assume these properties.

• The SE for an MLE is relatively easy to compute (though perhaps not so easy

to see where it’s “coming from”). We’ll talk about the SE’s ofMLE’s next

time.
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