

REML Estimation of Variance Components

Consider the General Linear Model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \text{ where } \boldsymbol{\epsilon} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$$

and $\boldsymbol{\Sigma}$ is an $n \times n$ positive definite variance matrix that depends on unknown parameters that are organized in a vector $\boldsymbol{\gamma}$.

- In the previous set of slides, we considered maximum likelihood (ML) estimation of the parameter vectors β and γ .
- We saw by example that the MLE of the variance component vector γ can be biased.

Example of MLE Bias

For the case of $\epsilon = \sigma^2 \mathbf{I}$, where $\gamma = \sigma^2$, the MLE of σ^2 is

$$\frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n}$$

with expectation

$$\frac{n-r}{n}\sigma^2.$$

This is MLE for σ^2 is often criticized for “failing to account for the loss of degrees of freedom needed to estimate β .”

$$\begin{aligned} E \left[\frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n} \right] &= \frac{n-r}{n} \sigma^2 \\ &< \sigma^2 = E \left[\frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{n} \right] \end{aligned}$$

A Familiar Special Case

$$y_1, \dots, y_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$$

$$E \left[\frac{\sum_{i=1}^n (y_i - \mu)^2}{n} \right] = \sigma^2 \text{ but}$$

$$E \left[\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n} \right] = \frac{n-1}{n} \sigma^2 < \sigma^2.$$

- REML is an approach that produces unbiased estimators for these special cases and produces less biased estimates than ML in general.
- Depending on whom you ask, REML stands for REsidual Maximun Likelihood or REmitted Maximum Likelihood.

The REML Method

- ① Find $n - \text{rank}(X) = n - r$ linearly independent vectors $\mathbf{a}_1, \dots, \mathbf{a}_{n-r}$ such that $\mathbf{a}_i' \mathbf{X} = \mathbf{0}'$ for all $i = 1, \dots, n - r$.
- ② Find the maximum likelihood estimate of γ using $w_1 \equiv \mathbf{a}_1' \mathbf{y}, \dots, w_{n-r} \equiv \mathbf{a}_{n-r}' \mathbf{y}$ as data.

$$\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_{n-r}] \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_{n-r} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1' \mathbf{y} \\ \vdots \\ \mathbf{a}_{n-r}' \mathbf{y} \end{bmatrix} = \mathbf{A}' \mathbf{y}$$

- If $a'X = \mathbf{0}'$, $a'y$ is known as an *error contrast*.
- Thus, w_1, \dots, w_{n-r} comprise a set of $n - r$ error contrasts.
- Because

$$(\mathbf{I} - \mathbf{P}_X)\mathbf{X} = \mathbf{X} - \mathbf{P}_X\mathbf{X} = \mathbf{X} - \mathbf{X} = \mathbf{0},$$

the elements of

$$(\mathbf{I} - \mathbf{P}_X)\mathbf{y} = \mathbf{y} - \mathbf{P}_X\mathbf{y} = \mathbf{y} - \hat{\mathbf{y}}$$

are each error contrasts.

- Because $\text{rank}(\mathbf{I} - \mathbf{P}_X) = n - r$, there exists a set of $n - r$ linearly independent rows of $\mathbf{I} - \mathbf{P}_X$ that can be used in step 1 of the REML method to get $\mathbf{a}_1, \dots, \mathbf{a}_{n-r}$.
- If we do use a subset of rows of $\mathbf{I} - \mathbf{P}_X$ to get $\mathbf{a}_1, \dots, \mathbf{a}_{n-r}$; the error contrasts

$$w_1 = \mathbf{a}'_1 \mathbf{y}, \dots, w_{n-r} = \mathbf{a}'_{n-r} \mathbf{y}$$

will be a subset of the elements of the residual vector

$$(\mathbf{I} - \mathbf{P}_X) \mathbf{y} = \mathbf{y} - \hat{\mathbf{y}}.$$

- This is why it makes sense to call the procedure Residual Maximum Likelihood.

Note that

$$\begin{aligned} \mathbf{w} &= \mathbf{A}'\mathbf{y} \\ &= \mathbf{A}'(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}) \\ &= \mathbf{A}'\mathbf{X}\boldsymbol{\beta} + \mathbf{A}'\boldsymbol{\epsilon} \\ &= \mathbf{0} + \mathbf{A}'\boldsymbol{\epsilon} \\ &= \mathbf{A}'\boldsymbol{\epsilon} \end{aligned}$$

Thus,

$$\mathbf{w} = \mathbf{A}'\boldsymbol{\epsilon} \sim N(\mathbf{A}'\mathbf{0}, \mathbf{A}'\boldsymbol{\Sigma}\mathbf{A}) \stackrel{d}{=} N(\mathbf{0}, \mathbf{A}'\boldsymbol{\Sigma}\mathbf{A}),$$

and the distribution of \mathbf{w} depends on $\boldsymbol{\gamma}$ but not $\boldsymbol{\beta}$.

The log likelihood function in this case is

$$\ell(\gamma|\mathbf{w}) = -\frac{1}{2} \log |\mathbf{A}'\Sigma\mathbf{A}| - \frac{1}{2}\mathbf{w}'(\mathbf{A}'\Sigma\mathbf{A})^{-1}\mathbf{w} - \frac{n-r}{2} \log(2\pi).$$

An MLE for γ , say $\hat{\gamma}$, can be found in the general case using numerical methods to obtain the REML estimate of γ .

In 6II, we take the time to prove that every set of $n - r$ linearly independent error contrasts yields the same REML estimator of γ .

As an example, consider the special case where

$$y_1, \dots, y_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2).$$

Then $\mathbf{X} = \mathbf{1}$, $\boldsymbol{\beta} = \mu$, and $\boldsymbol{\Sigma} = \sigma^2 \mathbf{I}$.

It follows that

$$\mathbf{a}'_1 = (1, -1, 0, 0, \dots, 0)$$

$$\mathbf{a}'_2 = (0, 1, -1, 0, \dots, 0)$$

⋮

$$\mathbf{a}_{n-1} = (0, 0, \dots, 0, 1, -1)$$

and

$$\begin{aligned}\mathbf{b}'_1 &= (1, 0, 0, \dots, 0, -1) \\ \mathbf{b}'_2 &= (0, 1, 0, \dots, 0, -1) \\ &\vdots \\ \mathbf{b}'_{n-1} &= (0, 0, \dots, 0, 1, -1)\end{aligned}$$

are each a set of $n - r = n - 1$ linear independent vectors that can be used to form error contrasts.

Either

$$\mathbf{w} = \begin{bmatrix} \mathbf{a}'_1 \mathbf{y} \\ \mathbf{a}'_2 \mathbf{y} \\ \vdots \\ \mathbf{a}'_{n-1} \mathbf{y} \end{bmatrix} = \begin{bmatrix} y_1 - y_2 \\ y_2 - y_3 \\ \vdots \\ y_{n-1} - y_n \end{bmatrix} \text{ or } \mathbf{v} = \begin{bmatrix} \mathbf{b}'_1 \mathbf{y} \\ \mathbf{b}'_2 \mathbf{y} \\ \vdots \\ \mathbf{b}'_{n-1} \mathbf{y} \end{bmatrix} = \begin{bmatrix} y_1 - y_n \\ y_2 - y_n \\ \vdots \\ y_{n-1} - y_n \end{bmatrix}$$

could be used to obtain the same REML estimator of σ^2 .

For the normal theory Gauss-Markov linear model,

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}),$$

the REML estimator of σ^2 is

$$\hat{\sigma}^2 = \frac{\mathbf{y}'(\mathbf{I} - \mathbf{P}_X)\mathbf{y}}{n - r},$$

the unbiased estimator that we used previously.

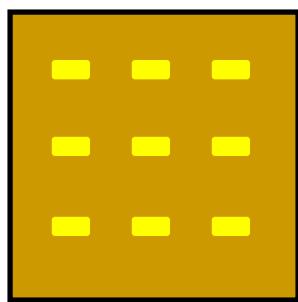
For linear mixed effects models, the REML estimators of variance components produce the same estimates as the unbiased ANOVA-based estimators formed by taking appropriate linear combinations of mean squares when the latter are positive and data are balanced.

In any case, once a REML estimate of γ (and thus Σ) has been obtained, the BLUE of an estimable $\mathbf{C}\beta$ can be approximated by

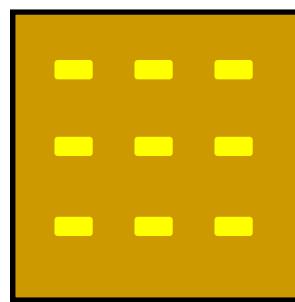
$$\mathbf{C}\hat{\beta}_{\hat{\Sigma}} = \mathbf{C}(\mathbf{X}'\hat{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{X}'\hat{\Sigma}^{-1}\mathbf{y},$$

where $\hat{\Sigma}$ is Σ with $\hat{\gamma}$ (the REML estimate of γ) in place of γ .

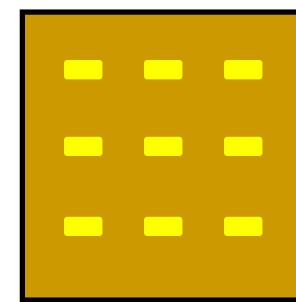
A



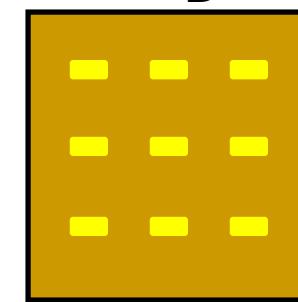
A



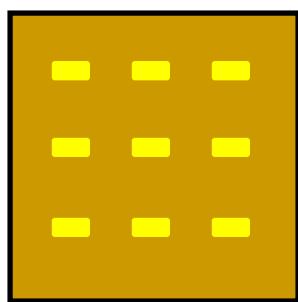
B



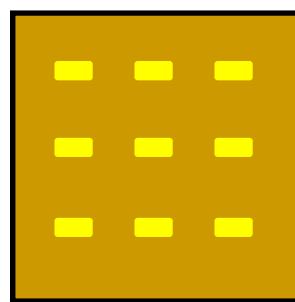
B



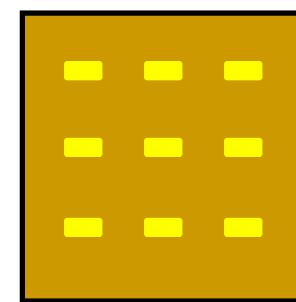
B



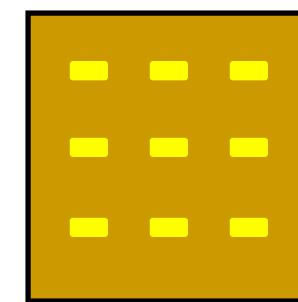
A



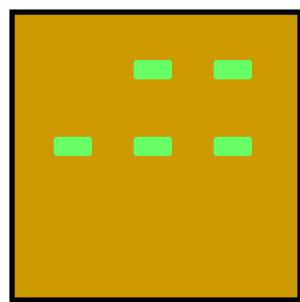
B



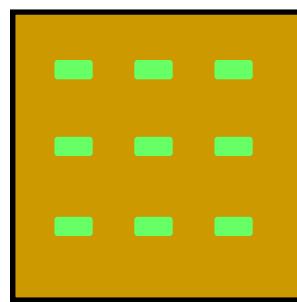
A



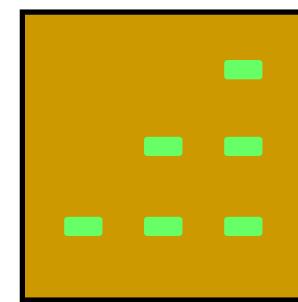
A



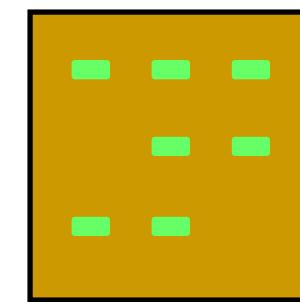
A



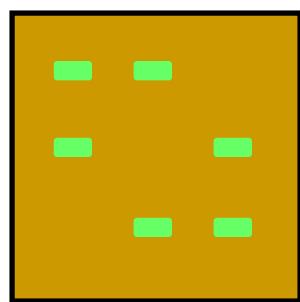
B



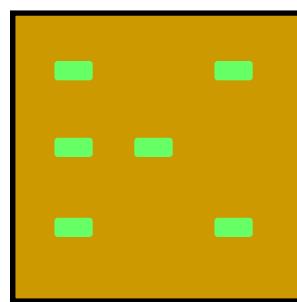
B



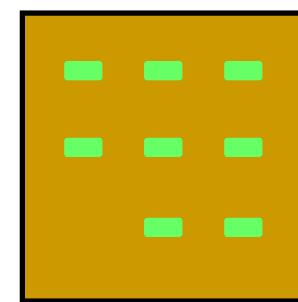
B



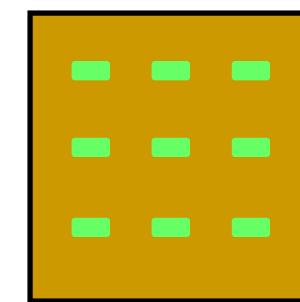
A



B



A



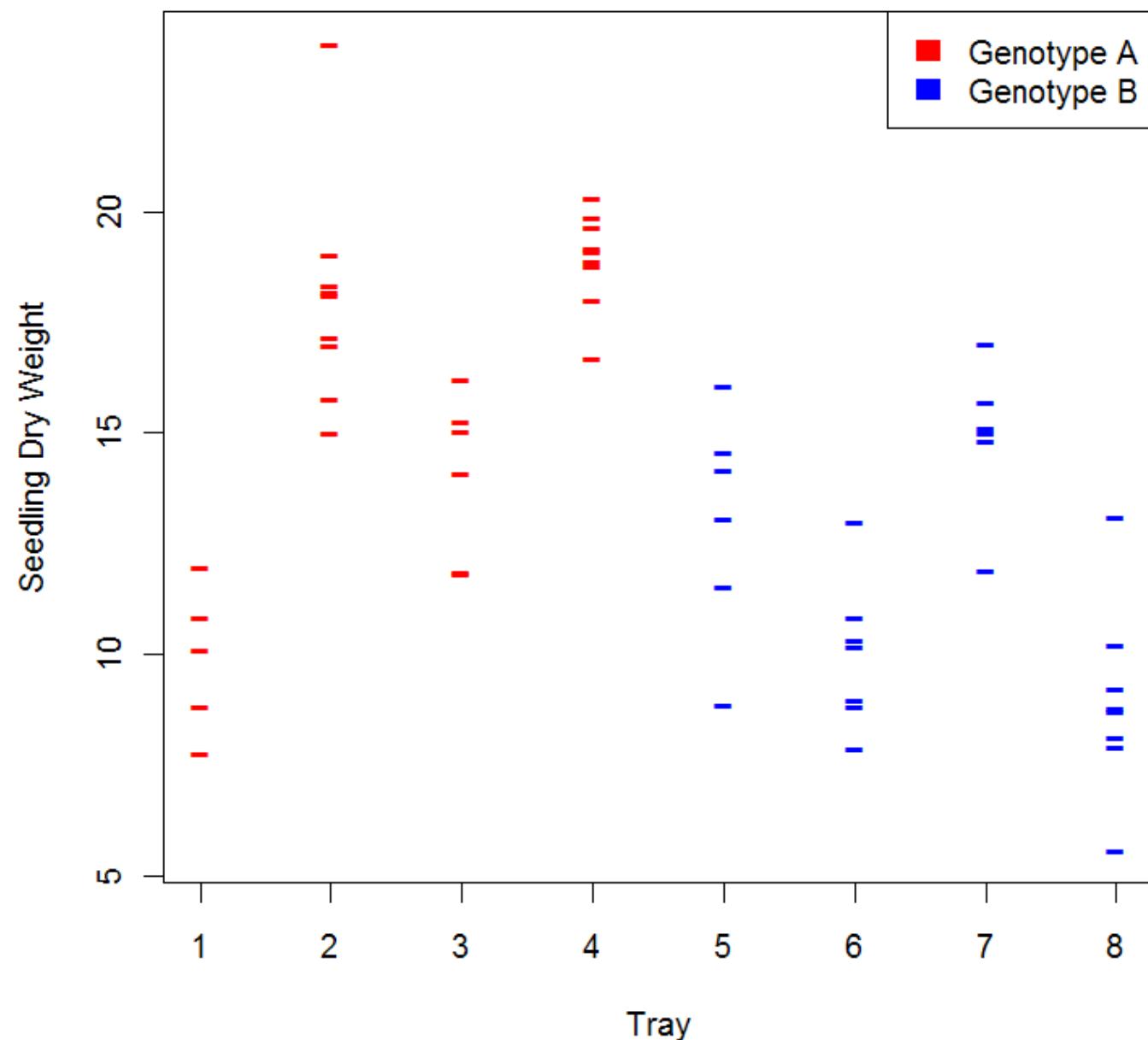
```
d=read.delim(  
"http://www.public.iastate.edu/~dnett/s511/SeedlingDryWeight2.txt"  
)  
d
```

	Genotype	Tray	Seedling	SeedlingWeight
1	A	1	1	8
2	A	1	2	9
3	A	1	3	11
4	A	1	4	12
5	A	1	5	10
6	A	2	1	17
7	A	2	2	17
8	A	2	3	16
9	A	2	4	15
10	A	2	5	19
11	A	2	6	18
12	A	2	7	18
13	A	2	8	18
14	A	2	9	24
15	A	3	1	12
16	A	3	2	12
17	A	3	3	16

18	A	3	4	15
19	A	3	5	15
20	A	3	6	14
21	A	4	1	17
22	A	4	2	20
23	A	4	3	20
24	A	4	4	19
25	A	4	5	19
26	A	4	6	18
27	A	4	7	20
28	A	4	8	19
29	A	4	9	19
30	B	5	1	9
31	B	5	2	12
32	B	5	3	13
33	B	5	4	16
34	B	5	5	14
35	B	5	6	14
36	B	6	1	10
37	B	6	2	10
38	B	6	3	9

39	B	6	4	8
40	B	6	5	13
41	B	6	6	9
42	B	6	7	11
43	B	7	1	12
44	B	7	2	16
45	B	7	3	17
46	B	7	4	15
47	B	7	5	15
48	B	7	6	15
49	B	8	1	9
50	B	8	2	6
51	B	8	3	8
52	B	8	4	8
53	B	8	5	13
54	B	8	6	9
55	B	8	7	9
56	B	8	8	10

```
plot(d[,2],d[,4]+rnorm(56,0,.2),  
  xlab="Tray",ylab="Seedling Dry Weight",  
  col=2*(1+(d[,1]=="B")),pch="-",cex=2)  
  
legend("topright",c("Genotype A","Genotype B"),  
  fill=c(2,4),border=c(2,4))
```



```
library(nlme)
```

```
lme(SeedlingWeight~Genotype,random=~1|Tray,  
method="ML",data=d)
```

Linear mixed-effects model fit by maximum likelihood

Data: d

Log-likelihood: -126.3709

Fixed: SeedlingWeight ~ Genotype

(Intercept) GenotypeB

15.301832 -3.567017

Random effects:

Formula: ~1 | Tray

(Intercept) Residual

StdDev: 2.932294 1.882470

Number of Observations: 56

Number of Groups: 8

```
library(lme4)
```

```
lmer(SeedlingWeight~Genotype+(1|Tray),REML=F,data=d)
```

Linear mixed model fit by maximum likelihood

Formula: SeedlingWeight ~ Genotype + (1 | Tray)

Data: d

AIC	BIC	logLik	deviance	REMLdev
260.7	268.8	-126.4	252.7	247.4

Random effects:

Groups	Name	Variance	Std.Dev.
Tray	(Intercept)	8.5984	2.9323
Residual		3.5437	1.8825

Number of obs: 56, groups: Tray, 8

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	15.302	1.510	10.14
GenotypeB	-3.567	2.136	-1.67

Correlation of Fixed Effects:

(Intr)	
GenotypeB	-0.707

```
lme(SeedlingWeight~Genotype,random=~1|Tray,data=d)
```

Linear mixed-effects model fit by REML

Data: d

Log-restricted-likelihood: -123.5705

Fixed: SeedlingWeight ~ Genotype

(Intercept) GenotypeB

15.288838 -3.550201

Random effects:

Formula: ~1 | Tray

(Intercept) Residual

StdDev: 3.414856 1.882230

Number of Observations: 56

Number of Groups: 8

```
lmer(SeedlingWeight~Genotype+(1|Tray),data=d)
```

Linear mixed model fit by REML

Formula: SeedlingWeight ~ Genotype + (1 | Tray)

Data: d

AIC	BIC	logLik	deviance	REMLdev
255.1	263.2	-123.6	253	247.1

Random effects:

Groups	Name	Variance	Std.Dev.
Tray	(Intercept)	11.6612	3.4149
Residual		3.5428	1.8822

Number of obs: 56, groups: Tray, 8

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	15.289	1.745	8.762
GenotypeB	-3.550	2.468	-1.438

Correlation of Fixed Effects:

(Intr)
GenotypeB -0.707