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Consider the General Linear Model

y = Xβ + ε, where ε ∼ N(0,Σ)

and Σ is an n× n positive definite variance matrix that
depends on unknown parameters that are organized
in a vector γ.
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In the previous set of slides, we considered
maximum likelihood (ML) estimation of the
parameter vectors β and γ.

We saw by example that the MLE of the variance
component vector γ can be biased.
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Example of MLE Bias

For the case of ε = σ2I, where γ = σ2, the MLE of σ2

is
(y− Xβ̂)′(y− Xβ̂)

n
with expectation

n− r
n

σ2.
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This is MLE for σ2 is often criticized for “failing to
account for the loss of degrees of freedom needed to
estimate β.”

E

[
(y− Xβ̂)′(y− Xβ̂)

n

]
=

n− r
n

σ2

< σ2 = E
[

(y− Xβ)′(y− Xβ)

n

]
.
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A Familiar Special Case

y1, . . . , yn
i.i.d.∼ N(µ, σ2)

E
[∑n

i=1(yi − µ)2

n

]
= σ2 but

E
[∑n

i=1(yi − ȳ)2

n

]
=

n− 1
n

σ2 < σ2.
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REML is an approach that produces unbiased
estimators for these special cases and produces
less biased estimates than ML in general.

Depending on whom you ask, REML stands for
REsidual Maximun Likelihood or REstricted
Maximum Likelihood.
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The REML Method

1 Find n− rank(X) = n− r linearly independent
vectors a1, . . . , an−r such that a′iX = 0′ for all
i = 1, . . . , n− r.

2 Find the maximum likelihood estimate of γ using
w1 ≡ a′1y, . . . ,wn−r ≡ a′n−ry as data.

A = [a1, . . . , an−r] w =

 w1
...

wn−r

 =

 a′1y
...

a′n−ry

 = A′y
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If a′X = 0′, a′y is known as an error contrast.

Thus, w1, . . . ,wn−r comprise a set of n− r error
contrasts.

Because

(I − PX)X = X − PXX = X − X = 0,

the elements of

(I − PX)y = y− PXy = y− ŷ

are each error contrasts.
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Because rank(I − PX) = n− r, there exists a set of n− r
linearly independent rows of I − PX that can be used in step
1 of the REML method to get a1, . . . , an−r.

If we do use a subset of rows of I− PX to get a1, . . . , an−r; the
error contrasts

w1 = a′1y, . . . ,wn−r = a′n−ry

will be a subset of the elements of the residual vector

(I − PX)y = y− ŷ.

This is why it makes sense to call the procedure Residual
Maximum Likelihood.
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Note that
w = A′y

= A′(Xβ + ε)
= A′Xβ + A′ε
= 0 + A′ε
= A′ε

Thus,

w = A′ε ∼ N(A′0, A′ΣA)
d
= N(0, A′ΣA),

and the distribution of w depends on γ but not β.
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The log likelihood function in this case is

`(γ|w) = −1
2

log |A′ΣA|−1
2

w′(A′ΣA)−1w−n− r
2

log(2π).

An MLE for γ, say γ̂, can be found in the general
case using numerical methods to obtain the REML
estimate of γ.
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In 6ll, we take the time to prove that every set of n− r
linearly independent error contrasts yields the same
REML estimator of γ.

As an example, consider the special case where

y1, . . . , yn
i.i.d.∼ N(µ, σ2).

Then X = 1, β = µ, and Σ = σ2I.
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It follows that

a′1 = (1,−1, 0, 0, . . . , 0)
a′2 = (0, 1,−1, 0, . . . , 0)

...
an−1 = (0, 0, . . . , 0, 1,−1)

and
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b′1 = (1, 0, 0, . . . , 0,−1)
b′2 = (0, 1, 0, . . . , 0,−1)

...
bn−1 = (0, 0, . . . , 0, 1,−1)

are each a set of n− r = n− 1 linear independent
vectors that can be used to form error contrasts.
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Either

w =


a′1y
a′2y
...

a′n−1y

 =


y1 − y2

y2 − y3
...

yn−1 − yn

 or v =


b′1y
b′2y
...

b′n−1y

 =


y1 − yn

y2 − yn
...

yn−1 − yn


could be used to obtain the same REML estimator of σ2.
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For the normal theory Gauss-Markov linear model,

y = Xβ + ε, ε ∼ N(0, σ2I),

the REML estimator of σ2 is

σ̂2 =
y′(I − PX)y

n− r
,

the unbiased estimator that we used previously.
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For linear mixed effects models, the REML estimators
of variance components produce the same estimates
as the unbiased ANOVA-based estimators formed by
taking appropriate linear combinations of mean
squares when the latter are positive and data are
balanced.
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In any case, once a REML estimate of γ (and thus Σ)
has been obtained, the BLUE of an estimable Cβ can
be approximated by

Cβ̂Σ̂ = C(X′Σ̂
−1

X)−X′Σ̂
−1

y,

where Σ̂ is Σ with γ̂ (the REML estimate of γ) in
place of γ.
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d=read.delim( 
"http://www.public.iastate.edu/~dnett/S511/SeedlingDryWeight2.txt"
) 
d 
   Genotype Tray Seedling SeedlingWeight 
1         A    1        1              8 
2         A    1        2              9 
3         A    1        3             11 
4         A    1        4             12 
5         A    1        5             10 
6         A    2        1             17 
7         A    2        2             17 
8         A    2        3             16 
9         A    2        4             15 
10        A    2        5             19 
11        A    2        6             18 
12        A    2        7             18 
13        A    2        8             18 
14        A    2        9             24 
15        A    3        1             12 
16        A    3        2             12 
17        A    3        3             16 
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18        A    3        4             15 
19        A    3        5             15 
20        A    3        6             14 
21        A    4        1             17 
22        A    4        2             20 
23        A    4        3             20 
24        A    4        4             19 
25        A    4        5             19 
26        A    4        6             18 
27        A    4        7             20 
28        A    4        8             19 
29        A    4        9             19 
30        B    5        1              9 
31        B    5        2             12 
32        B    5        3             13 
33        B    5        4             16 
34        B    5        5             14 
35        B    5        6             14 
36        B    6        1             10 
37        B    6        2             10 
38        B    6        3              9 



24 
 

39        B    6        4              8 
40        B    6        5             13 
41        B    6        6              9 
42        B    6        7             11 
43        B    7        1             12 
44        B    7        2             16 
45        B    7        3             17 
46        B    7        4             15 
47        B    7        5             15 
48        B    7        6             15 
49        B    8        1              9 
50        B    8        2              6 
51        B    8        3              8 
52        B    8        4              8 
53        B    8        5             13 
54        B    8        6              9 
55        B    8        7              9 
56        B    8        8             10 
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plot(d[,2],d[,4]+rnorm(56,0,.2), 
    xlab="Tray",ylab="Seedling Dry Weight", 
    col=2*(1+(d[,1]=="B")),pch="-",cex=2) 
 
 
legend("topright",c("Genotype A","Genotype B"), 
       fill=c(2,4),border=c(2,4)) 
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library(nlme) 
 
lme(SeedlingWeight~Genotype,random=~1|Tray, 
    method="ML",data=d) 
 
Linear mixed-effects model fit by maximum likelihood 
  Data: d  
  Log-likelihood: -126.3709 
  Fixed: SeedlingWeight ~ Genotype  
(Intercept)   GenotypeB  
  15.301832   -3.567017  
 
Random effects: 
 Formula: ~1 | Tray 
        (Intercept) Residual 
StdDev:    2.932294 1.882470 
 
Number of Observations: 56 
Number of Groups: 8  
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library(lme4) 
 
lmer(SeedlingWeight~Genotype+(1|Tray),REML=F,data=d) 
 
Linear mixed model fit by maximum likelihood  
 
Formula: SeedlingWeight ~ Genotype + (1 | Tray)  
   Data: d  
   AIC   BIC logLik deviance REMLdev 
 260.7 268.8 -126.4    252.7   247.4 
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 Tray     (Intercept) 8.5984   2.9323   
 Residual             3.5437   1.8825   
 
Number of obs: 56, groups: Tray, 8 
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Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   15.302      1.510   10.14 
GenotypeB     -3.567      2.136   -1.67 
 
Correlation of Fixed Effects: 
          (Intr) 
GenotypeB -0.707 
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lme(SeedlingWeight~Genotype,random=~1|Tray,data=d) 
 
Linear mixed-effects model fit by REML 
  Data: d  
  Log-restricted-likelihood: -123.5705 
  Fixed: SeedlingWeight ~ Genotype  
(Intercept)   GenotypeB  
  15.288838   -3.550201  
 
Random effects: 
 Formula: ~1 | Tray 
        (Intercept) Residual 
StdDev:    3.414856 1.882230 
 
Number of Observations: 56 
Number of Groups: 8  
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lmer(SeedlingWeight~Genotype+(1|Tray),data=d) 
 
Linear mixed model fit by REML  
Formula: SeedlingWeight ~ Genotype + (1 | Tray)  
   Data: d  
   AIC   BIC logLik deviance REMLdev 
 255.1 263.2 -123.6      253   247.1 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 Tray     (Intercept) 11.6612  3.4149   
 Residual              3.5428  1.8822   
Number of obs: 56, groups: Tray, 8 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   15.289      1.745   8.762 
GenotypeB     -3.550      2.468  -1.438 
 
Correlation of Fixed Effects: 
          (Intr) 
GenotypeB -0.707 


