Introduction to R

We will use R extensively in this course. R is a high level language especially designed
for statistical calculations. R is free. You can get it at:

http://www.cran.r-project.org/

There are versions for Unix, Linux, Windows and Mac. There is a similar program called
Splus. The commands are virtually identical. Splus has more stuff in it but R is free and
it is faster. If you want to use Splus, it is available on Andrew (just type Splus) or you
can purchase a copy from Insightful at http://www.splus.mathsoft.com/.

On my website I will often post R programs and examples.

Getting started

In Unix or Linux, you start R by typing: R. In windows, click on the R icon. You can
now use R interactively. Just start typing commands. You can also use R in Batch mode.
To do this, store your R commands in a file, say, file.r. In R type: source(“file.r”) which
will execute the commands in file.r. In Unix, you can also do the following:

R BATCH file.r file.out &

which will execute the commands and store them in file.out.

IMPORTANT! Use the command: q() to quit from R.
Some Basics of R

Here is a simple R session. You should try these commands out. Also, feel free to
experiment a bit. Note: the # symbol means “comment.” R ignores any command after
#. 1 have added lots of comments below to explain what is going on. You do not need to
type the comments.

x <=5 ### assign x the value 5

X ### print x

print(x) ### another way to print x
x_5 ### you can also use _ to make assigments but <- is better
X

y <- "Hello there"

y

y <- sqrt(10)

z <- xty

z

qO ### Use this to quit

Scalars are treated by S-plus as vectors of length 1. That is why they print with a leading
“[1]” indicating that we are at the first element of a vector.

1

e Vectors can be created using the ¢() command. c¢() stands for concatenate. Square
brackets are used to get subsets of a vector. The colon is used for sequences. Start up R
again then do this:

x <- 1:5
print(x)

x[1] <= 17
print(x)

x[1] <- 1
x[3:5] <- 0
print (x)

w <- x[-3]
print (w)

y <- c(1,5,2,4,7)
y

y[2]

y[-3]
ylc(1,4,5)]

i <= (1:3)

z <- ¢(9,10,11)
y[i] <- z

print (y)

y <= y2

print (y)
<-1:10

<- log(y)

exp (y)

<- ¢(5,4,3,2,1,5,4,3,2,1)
<-x +y

NN XIS < S
A
|

R carries out operations on vectors, element by element

<-1:10
c(5,4,3,2,1,5,4,3,2,1)
== 2 ### this is a logical vector
<= (x == 2)
print(z)
z <= (x<5); print(z) ### You can out two commands on a line if you use a semi-colon
x[x<5] <- y[x<5] ### do you see what this is doing?
print(x)

N X< X
A
|

e Two expressions can be written on the same line if separated by a semicolon. One
expression can be written over several lines as long as a valid expression does not end a
line.

e To create a “matrix”, use the matrix() function as follows:

junk <- c(1,2,3,4,5, 0.5, 2, 6, 0, 1, 1, 0)
m <- matrix(junk,ncol=3)

print (m)

m <- matrix(junk,ncol=3,byrow=T)

print (m) ### see the difference?
dim(m)

y <- m[,1] ### y is column 1 of m
y

x <- m[2,] #it#t x is row 2 of m

X

z <- m[1,2]

print(z)

zz <- t(z) ### take the transpose
ZZ

new <- matrix(1:9, 3 , 3)
print (new)

hello <- z + new

print (hello)

The square brackets are used to refer to the rows and columns of a matrix, similar to the
way they are used for vectors.

m[1,3]

subm <- m[2:3, 2:4]
m[1,]

m[2,3] <- 7
m[,c(2,3)]

m[-2,]

x <- runif(100,0,1) ### generate 100 numbers randomly between 0 and 1
mean (x)

y <- mean(x)

print (y)

help(mean)

min (x)

max (x)
summary (x)
help (summary)

e Lists are used to combine data of various types.

who <- list(name="Joe", age=45, married=T)
print (who)

print (who$name)

print (who[[1]1])

print (who$age)

print(who[[2]])

print (who$married)

print (who[[3]1])

names (who)

who$name <- c("Joe","Steve","Mary")
who$age <- c(45,23)

who$married <- c(T,F,T)

who

e A for loop is a statement that is used to repeat commands.

for(i in 1:10){

print (i+1)
}
x <- 101:200
y <= 1:100
z <- rep(0,100) ### rep means repeat
help(rep)

for(i in 1:100){
z[i] <- x[i] + yl[il
}

w<-x+y
print (w-z)

As this example shows, we can often avoid using loops since
R works directly with vectors.
Loops can be slow so avoid them if possible.

for(i in 1:10){
for(j in 1:5){
print (i+j)
}

e Reading in commands To read in commands or functions from a file rather than
typing them in, use source(). Put some R commands into a file called hello. Try
“source(’hello’)”

e Functions You can create your own functions in R. Here is an example.

my.fun <- function(x,y){
This function takes x and y as input.
It returns the mean of x minus the mean of y
a <- mean(x)-mean(y)
return(a)

}

x <- runif(50,0,1)

y <- runif(50,0,3)
output <- my.fun(x,y)
print (output)

You can return more than one thing in a function. If you do, you should return a list.

my.fun <- function(x,y){
mx <- mean(x)
my <- mean(y)
d <- mx-my
out <- list(meanx=mx,meany=my,difference=d)
return(out)

}

x <- runif(50,0,1)

y <- runif(50,0,3)
output <- my.fun(x,y)
print (output)

names (output)
output$difference
output [[3]]

e Here are some more R examples

if statements
for(i in 1:10){
if(1 == 4)print(i)

}

for(i in 1:10){
if(i !'= 4)print(i) ### != means ‘‘not equal to’’
}

for(i in 1:10){
if(i < 4)print (i)
}

for(i in 1:10){
if(i <= 4)print(i)
}

for(i in 1:10){
if(i >= 4)print(i)

}
###Plots
x <= 1:10
y <- 1 + x + rnorm(10,0,1) ### rnorm(10,0,1) means 10 random Normals,
mean 0, standard deviation 1
plot(x,y)

plot(x,y,type="h")

plot(x,y,type="1")

plot(x,y,type="1",1wd=3)
plot(x,y,type="1",1wd=3,co0l=6)
plot(x,y,type="1",1wd=3,c0l=6,xlab="x",ylab="y")

par (mfrow=c(3,2)) ### put 6 plots per page, in a 3 by 2 configuration
for(i in 1:6){

plot(x,y+i,type="1",1wd=3,col=6,xlab="x",ylab="y")

}

postscript("plot.ps") ### put the plots into a postscript file
you have to do this if you use BATCH
plot(x,y,type="1",1wd=3,co0l=6,xlab="x",ylab="y")
dev.off () ### Now you can print the file our view it with
a ghostview previewer

par (mfrow=c(1,1)) ### return to 1 plot per page

x <- rnorm(100,0,1)
y <- rpois(500,4)
hist(y)
hist(y,nclass=50)

pnorm(2,0,1)
pnorm(2,1,4)
gnorm(.3,0,1)

x <- seq(-3,3,length=1000)
f <- dnorm(x,0,1)

#H#H#
#H#H#
#H#H#

Hit#
Hit#
Hit#

#H##
#H##

plot(x,f,type="1",1wd=3,col=4)

100 random normals, mean O, st.dev . 1
500 random Poisson(4)
histogram

P(Z < 2) where Z ~ N(0,1)
P(Z < 2) where Z ~ N(1,4°2)
find x such that P(Z < x)=.3 where Z ~ N(0,1)

make a sequence of numbers
normal density

