
36-463 / 36-663: Multilevel & Hierarchical Models

HW03 Solution

September 26, 2016

Exercise 1a

Part a

data <- read.table(’exercise3.1.dat’,T)

object <- lm(y ~ x1+ x2,data[1:40,])

summary(object)

here is the output from the summary function

Call:

lm(formula = y ~ x1 + x2, data = data[1:40, ])

Residuals:

Min 1Q Median 3Q Max

-0.9585 -0.5865 -0.3356 0.3973 2.8548

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.31513 0.38769 3.392 0.00166 **

x1 0.51481 0.04590 11.216 1.84e-13 ***

x2 0.80692 0.02434 33.148 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.9 on 37 degrees of freedom

Multiple R-squared: 0.9724,Adjusted R-squared: 0.9709

F-statistic: 652.4 on 2 and 37 DF, p-value: < 2.2e-16

The R-squared measure is very high for our model(0.97). Also, all the variables in our model are
significant.

part b)

plot(object$fitted, data$y[1:40])

abline(0,1)

1



●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

5
10

15
20

object$fitted

da
ta

$y
[1

:4
0]

From the response vs the fitted value plot we can
see that the model fits the data reasonably well The 3D plot is shown below:

(Thanks to Abbas Zaidi for part of his code)

library(scatterplot3d)

plot.3d<-scatterplot3d(data$x1[1:40],data$x2[1:40],data$y[1:40],pch=16,

main="Y vs. x1 and x2",xlab="X1",ylab="X2",zlab="Y")

plot.3d$plane3d(object$coef[1],object$coef[2],object$coef[3],col="purple")
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part c)

plot(object$fitted,object$residuals)

abline(h=0)

qqnorm(object$residuals)

abline(0,1)

The plot on the left checks for the equal variance assumption and linearity assumption. The plot on the
right checks for the normality distribution assumption of the errors.
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part d)

predict(object,data[41:60,],interval = "prediction",level =0.95)

fit lwr upr

41 14.812484 12.916966 16.708002

42 19.142865 17.241520 21.044211

43 5.916816 3.958626 7.875005

44 10.530475 8.636141 12.424809

45 19.012485 17.118597 20.906373

46 13.398863 11.551815 15.245911

47 4.829144 2.918323 6.739965

48 9.145767 7.228364 11.063170

49 5.892489 3.979060 7.805918

50 12.338639 10.426349 14.250929

51 18.908561 17.021818 20.795303

52 16.064649 14.212209 17.917088

53 8.963122 7.084081 10.842163

54 14.972786 13.094194 16.851379

55 5.859744 3.959679 7.759808

56 7.374900 5.480921 9.268879
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57 4.535267 2.616996 6.453539

58 15.133280 13.282467 16.984094

59 9.100899 7.223395 10.978403

60 16.084900 14.196990 17.972810

The prediction intervals have reasonable width, so we are confident about the predictions.

exercise 1b

part a

data <- read.dta("child.iq.dta")

attach(data)

fit <- lm(ppvt~momage)

summary(fit)

plot(ppvt ~ momage)

abline(fit,col="red",lwd=3)

Call:

lm(formula = ppvt ~ momage)

Residuals:

Min 1Q Median 3Q Max

-67.109 -11.798 2.971 14.860 55.210

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.7827 8.6880 7.802 5.42e-14 ***

momage 0.8403 0.3786 2.219 0.027 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 20.34 on 398 degrees of freedom

Multiple R-squared: 0.01223,Adjusted R-squared: 0.009743

F-statistic: 4.926 on 1 and 398 DF, p-value: 0.02702
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The R-squared value is pretty small which means the linear assumption is not satisfied. The slope
coefficient means the child score will increase 0.84 if moms age of giving birth increases 1. Under the linear
model assumption, the best age to give birth for a mom is 29. But here we assume linear relationship between
mom’s age and children’s iq and the R-square value shows this is not an appropriate model to interpret the
data.

Nonlinear check:

bin <- NULL

for(i in 17:29)

{

bin <- cbind(bin,ifelse((momage>=i&momage<(i+1)),1,0))

}

fit.00 <- lm(ppvt~bin)

fit.01 <- lm(ppvt~bin-1)

plot(ppvt~momage,xlab="Momage",ylab="Child Test Score")

points((17:29)+0.5,coef(fit.01),pch=19,col="Red")

lines((17:29)+0.5,coef(fit.01),col="Red")

ord<-order(momage)

x<-momage[ord]

y<-loess(ppvt~momage)$fitted[ord]

lines(x,y,col="green")

summary(fit.00)

Call:

lm(formula = ppvt ~ bin)

Residuals:

Min 1Q Median 3Q Max

-66.847 -12.455 2.545 14.153 58.622

Coefficients: (1 not defined because of singularities)
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.429 7.673 12.959 <2e-16 ***

bin1 -10.929 12.724 -0.859 0.3909

bin2 -24.883 9.815 -2.535 0.0116 *

bin3 -8.193 8.426 -0.972 0.3315

bin4 -17.711 8.333 -2.125 0.0342 *

bin5 -14.970 8.213 -1.823 0.0691 .

bin6 -15.429 8.173 -1.888 0.0598 .

bin7 -12.581 8.115 -1.550 0.1219

bin8 -7.584 8.248 -0.920 0.3584

bin9 -14.050 8.367 -1.679 0.0939 .

bin10 -7.974 8.447 -0.944 0.3458

bin11 -11.060 8.976 -1.232 0.2186

bin12 -9.512 9.655 -0.985 0.3251

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 20.3 on 387 degrees of freedom

Multiple R-squared: 0.0433,Adjusted R-squared: 0.01363

F-statistic: 1.46 on 12 and 387 DF, p-value: 0.1369

summary(fit.01)

Call:

lm(formula = ppvt ~ bin - 1)

Residuals:

Min 1Q Median 3Q Max

-66.847 -12.455 2.545 14.153 58.622

Coefficients:

Estimate Std. Error t value Pr(>|t|)

bin1 88.500 10.150 8.719 <2e-16 ***

bin2 74.545 6.121 12.179 <2e-16 ***

bin3 91.235 3.481 26.206 <2e-16 ***

bin4 81.718 3.251 25.139 <2e-16 ***

bin5 84.458 2.930 28.824 <2e-16 ***

bin6 84.000 2.815 29.839 <2e-16 ***

bin7 86.847 2.643 32.861 <2e-16 ***

bin8 91.844 3.026 30.350 <2e-16 ***

bin9 85.378 3.337 25.583 <2e-16 ***

bin10 91.455 3.534 25.880 <2e-16 ***

bin11 88.368 4.657 18.975 <2e-16 ***

bin12 89.917 5.860 15.344 <2e-16 ***

bin13 99.429 7.673 12.959 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 20.3 on 387 degrees of freedom

Multiple R-squared: 0.95,Adjusted R-squared: 0.9483

F-statistic: 565.6 on 13 and 387 DF, p-value: < 2.2e-16

6



●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

18 20 22 24 26 28

20
40

60
80

10
0

12
0

14
0

Momage

C
hi

ld
 T

es
t S

co
re

●

●

●

●
● ●

●

●

●

●
●

●

●

It can be seen the children’s iq and mom’s age doesn’t have non-linear relationship from the plot either.

part b

fit.03 <- lm(ppvt ~ educ_cat +momage)

summary(fit.03)

Call:

lm(formula = ppvt ~ educ_cat + momage)

Residuals:

Min 1Q Median 3Q Max

-61.763 -13.130 2.495 14.620 55.610

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 69.1554 8.5706 8.069 8.51e-15 ***

educ_cat 4.7114 1.3165 3.579 0.000388 ***

momage 0.3433 0.3981 0.862 0.389003

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 20.05 on 397 degrees of freedom

Multiple R-squared: 0.04309,Adjusted R-squared: 0.03827

F-statistic: 8.939 on 2 and 397 DF, p-value: 0.0001594

The R-squared value is still pretty small, but larger than the model in part (a). And the estimation for
momage becomes insignificant when including the educcat variable. The slope coefficients mean the child
score will increase 0.34 if moms age of giving birth increases 1 with educcat remaining constant and the child
score will increase 4.71 if the mom’s education level increases 1 with mom’s age remaining constant. The
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coefficient of momage is positive. We still recommend moms give birth late. But this is not a major effect
according to the estimates and its p-value.

part c

indicator <- ifelse((educ_cat==1),0,1)

fit.04<- lm(ppvt~indicator+momage+indicator:momage)

summary(fit.04)

Call:

lm(formula = ppvt ~ indicator + momage + indicator:momage)

Residuals:

Min 1Q Median 3Q Max

-56.696 -12.407 2.022 14.804 54.343

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 105.2202 17.6454 5.963 5.49e-09 ***

indicator -38.4088 20.2815 -1.894 0.0590 .

momage -1.2402 0.8113 -1.529 0.1271

indicator:momage 2.2097 0.9181 2.407 0.0165 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 19.85 on 396 degrees of freedom

Multiple R-squared: 0.06417,Adjusted R-squared: 0.05708

F-statistic: 9.051 on 3 and 396 DF, p-value: 8.276e-06

(Thanks to Lisha Sun for part of his/her code)

plot(ppvt~momage,col=c("Blue","Red")[indicator+1])

legend(25,140,pch=1,col=c("Red","Blue"),legend=c("High School","Not High School"))

curve(cbind(1,0,x,0*x) %*% coef(fit.04),add=T,col="Blue")

curve(cbind(1,1,x,1*x) %*% coef(fit.04),add=T,col="Red")

8



●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

18 20 22 24 26 28

20
40

60
80

10
0

12
0

14
0

momage

pp
vt

●

●

High School
Not High School

part d

fit.05 <- lm(ppvt~momage+educ_cat, data[1:200,])

pred<-predict(fit.05, newdata=data[201:400,])

plot(data[201:400,]$ppvt~pred)

abline(0,1,col=2)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

80 85 90 95

20
40

60
80

10
0

12
0

14
0

pred

da
ta

[2
01

:4
00

, ]
$p

pv
t

9



exercise 1c

part a

data <- read.csv(’ProfEvaltnsBeautyPublic.csv’,T)

object <- lm(courseevaluation ~ btystdave,data)

summary(object)

Call:

lm(formula = courseevaluation ~ btystdave, data = data)

Residuals:

Min 1Q Median 3Q Max

-1.80015 -0.36304 0.07254 0.40207 1.10373

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.01002 0.02551 157.205 < 2e-16 ***

btystdave 0.13300 0.03218 4.133 4.25e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5455 on 461 degrees of freedom

Multiple R-squared: 0.03574,Adjusted R-squared: 0.03364

F-statistic: 17.08 on 1 and 461 DF, p-value: 4.247e-05

the residual standard deviation is 0.5455.
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part b

object <- lm(courseevaluation ~ profevaluation + female + female*profevaluation,data)

summary(object)

Call:

lm(formula = courseevaluation ~ profevaluation + female + female *

profevaluation, data = data)

Residuals:

Min 1Q Median 3Q Max

-0.97354 -0.12996 0.01517 0.14338 0.76507

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.17990 0.09709 -1.853 0.064538 .

profevaluation 1.00345 0.02276 44.093 < 2e-16 ***

female 0.44992 0.14089 3.193 0.001503 **

profevaluation:female -0.11628 0.03360 -3.461 0.000588 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1941 on 459 degrees of freedom

Multiple R-squared: 0.8785,Adjusted R-squared: 0.8777

F-statistic: 1106 on 3 and 459 DF, p-value: < 2.2e-16
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So this model has the professor evaluation, beauty, gender and the interaction between professor evalua-
tion and gender as predictors. All of the predictors are significant. Female professors on average score 0.45
units better than male professors in course evaluation. We can view the female variable as the difference in
intercept between the linear model for male and female. We can view the interaction term as the difference
in slope between the linear model for male and female.

Exercise 2

part a

In the log domain, 68% of the persons will have weights within a factor of 0.25 of their predicted values from
regression

so in the last homework, we saw the data that the heights of men in the US are approximately normally
distributed with mean 69.1 inches and standard deviation 2.9 inches. we can use the following code:

height <-rnorm(100,69.1,sd =2.9)

error <- rnorm(100,0,1)

y <- -3.5 + 2*log(height)+error

plot(log(height),y,xlab = ’log_height’,ylab=’log_weight’)

abline(-3.5,2)
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part b

part (a)

library(foreign)

data <- read.dta("pollution.dta")

attach(data)

plot(nox,mort)

object <- lm(mort ~ nox)

summary(object)

Call:

lm(formula = mort ~ nox)

Residuals:

Min 1Q Median 3Q Max

-148.654 -43.710 1.751 41.663 172.211

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 942.7115 9.0034 104.706 <2e-16 ***

nox -0.1039 0.1758 -0.591 0.557

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 62.55 on 58 degrees of freedom

Multiple R-squared: 0.005987,Adjusted R-squared: -0.01115

F-statistic: 0.3494 on 1 and 58 DF, p-value: 0.5568

plot(object$fitted,object$resid)

no the linear regression model won’t fit these data well. The residual plot from the regression look very
bad.
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part (b) applying the log transformation

object <- lm(log(mort) ~ log(nox))

summary(object)

plot(object$fitted,object$resid)

Call:

lm(formula = log(mort) ~ log(nox))

Residuals:

Min 1Q Median 3Q Max

-0.18930 -0.02957 0.01132 0.03897 0.16275

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.807175 0.018349 370.975 <2e-16 ***

log(nox) 0.015893 0.007048 2.255 0.0279 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.06412 on 58 degrees of freedom

Multiple R-squared: 0.08061,Adjusted R-squared: 0.06476

F-statistic: 5.085 on 1 and 58 DF, p-value: 0.02792

The new residual plot looks much better after taking the log transformation
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part (c) the slope is 0.015 and it is significant. we can see that for one unit increase in log nitric oxides,
the log age-adjusted mortality rate goes up by 0.015.

part(d)

> object = lm(log(mort) ~ log(nox) + log(so2) + log(hc) )

> plot(object$fitted,object$resid)

> summary(object)

Call:

lm(formula = log(mort) ~ log(nox) + log(so2) + log(hc))

Residuals:

Min 1Q Median 3Q Max

-0.108743 -0.035743 -0.002180 0.037092 0.200851

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.826749 0.022701 300.726 < 2e-16 ***

log(nox) 0.059837 0.023021 2.599 0.01192 *

log(so2) 0.014309 0.007584 1.887 0.06436 .

log(hc) -0.060812 0.020553 -2.959 0.00452 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.05753 on 56 degrees of freedom

Multiple R-squared: 0.2852,Adjusted R-squared: 0.2469

F-statistic: 7.449 on 3 and 56 DF, p-value: 0.0002777

plot(object$fitted,log(mort))

abline(0,1)

plot(object$fitted,object$resid)
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abline(h=0)
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part (e)

object <- lm(log(mort[1:30]) ~ log(nox[1:30]) + log(so2[1:30]) + log(hc[1:30]) )

test <- data[31:60,c(12,13,14,16)]

test <- log(test)

pred <- predict(object, test)

plot(pred, log(mort[31:60]))

abline(0,1)
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part c

part (a) obviously, the ratio and logarithmic difference logDi

Ri
has the disadvantage that Di

Ri
may not be

defined if either Di or Ri is zero or very small. Also, each district has different population size. so the simple
difference may not be the best across different district i. The ratio and relative proportion have less of this
problem though.

part (b) There are many ways to do this problem. Here is one way: similarly to the example on page 65,
we can use logistic regression to model the probabilities that both Di and Ri are positive, then apply say
the relative proportion transformation in the second step and incorporate it into a regression model. This
of course makes the inference more difficult than a regular regression model.
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