
36-463/663: Multilevel & Hierarchical Models
Fall 2016

HW05 – SOLUTIONS

Announcements
1. Exercises from Ch’s 7 & 8:

(a) G&H Chapter 7, #10, parts a, b, c:

library(arm)

data <- read.csv("beauty/ProfEvaltnsBeautyPublic.csv")

object <- lm(courseevaluation ˜ btystdave,data)

n<-10000

sim.1 <- sim(object,n)

display(object)

c(mean(sim.1@coef[,1]),sd(sim.1@coef[,1]))

[1] 4.01002335 0.02566414

c(mean(sim.1@coef[,2]),sd(sim.1@coef[,2]))

[1] 0.13284816 0.03232940

display(lm(formula = courseevaluation ˜ btystdave, data = data))

coef.est coef.se

(Intercept) 4.01 0.03

btystdave 0.13 0.03

---

n = 463, k = 2

residual sd = 0.55, R-Squared = 0.04

We can see that after 10000 simulations, the mean and standard deviations of the coefficient estimates are
very close to the output from display. The simulation variability is going to increase when we have smaller
iterations. There is no fixed rule for how many simulations that are needed to give a good approximation.
But given the computational power we have these days, people usually try @n ¿ 1000@.

(b) G&H Chapter 7, #4, a & b:

library(arm)

data <- read.csv("beauty/ProfEvaltnsBeautyPublic.csv")

object <- lm(courseevaluation ˜ btystdave + female + nonenglish +age,data = data)

n.sims <- 1000

sim.1000 <- sim(object,n.sims)

n.tilde <- 1

x.tilde <- cbind(rep(1,n.tilde),rep(-1,n.tilde),rep(1,n.tilde),

rep(0,n.tilde),rep(50,n.tilde))

x.tildeB <- cbind(rep(1,n.tilde),rep(-0.5,n.tilde),rep(0,n.tilde),

rep(0,n.tilde),rep(60,n.tilde))
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y.tilde <- array(NA, c(n.sims,n.tilde))

y.tildeB <- array(NA, c(n.sims,n.tilde))

for (s in 1:n.sims){

y.tilde[s,] = rnorm(n.tilde,x.tilde %*% sim.1000@coef[s,],

sim.1000@sigma[s])

y.tildeB[s,] = rnorm(n.tilde,x.tildeB %*% sim.1000@coef[s,],

sim.1000@sigma[s])

}

diff <- y.tilde - y.tildeB

sum(diff>0)/length(diff)

0.37

hist(diff)
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ability that A will have a higher course evaluation is 0.37.

(c) G&H, Chapter 8, #4, a, b, c:

risky <- read.dta("risky.business/risky_behaviors.dta",T)

object <- glm(round(fupacts) ˜ factor(bs_hiv) ,data = risky,family = poisson)

display(object)

n <- length(risky[,1])

n.sims <- 1000

y.tilde <- array(NA, c(n.sims,n))

X <- cbind(rep(1,n),risky$bs_hiv)

sim.1000 <- sim(object, n.sims)

for (s in 1:n.sims){

y.tilde[s,]= exp(sim.1000@coef[s,] %*% t(X))

y.tilde[s,] = rpois(n,y.tilde[s,])

}

count_percentile_0 = function(a){

return(sum(a ==0)/length(a))

}

count_percentile_10 = function(b){

return(sum(b >10)/length(b))

}

temp1<- apply(y.tilde, 1,count_percentile_0)

temp2<- apply(y.tilde, 1,count_percentile_10)

hist(temp1,main = "percent == 0")

hist(temp2,main = "percent > 10")

sum(risky$fupacts ==0)/length(risky$fupacts)

[1] 0.2926267

sum(risky$fupacts >10)/length(risky$fupacts)

[1] 0.3640553

part(b)

object <- glm(round(fupacts) ˜ factor(bs_hiv) ,data = risky,

family = quasipoisson)

display(object)

n <- length(risky[,1])

n.sims <- 1000

y.tilde <- array(NA, c(n.sims,n))

X <- cbind(rep(1,n),risky$bs_hiv)
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sim.1000 <- sim(object, n.sims)

for (s in 1:n.sims){

y.tilde[s,]= exp(sim.1000@coef[s,] %*% t(X))

y.tilde[s,] = rpois(n,y.tilde[s,])

}

count_percentile_0 = function(a){

return(sum(a ==0)/length(a))

}

count_percentile_10 = function(b){

return(sum(b >10)/length(b))

}

temp1<- apply(y.tilde, 1,count_percentile_0)

temp2<- apply(y.tilde, 1,count_percentile_10)

hist(temp1,main = "percent == 0")

hist(temp2,main = "percent > 10")

part(c) -- ethnicity wasn’t available, so I used sex of the partner

reporting the sex acts instead...

# risky <- read.dta("risky_behaviors.dta",T)

object <- glm(round(fupacts) ˜ factor(bs_hiv) + sex + bupacts,

data = risky,family = quasipoisson)

display(object)

n <- length(risky[,1])

n.sims <- 1000

y.tilde <- array(NA, c(n.sims,n))

X <- cbind(rep(1,n),risky$bs_hiv,risky$sex,risky$bupacts)

sim.1000 <- sim(object, n.sims)

for (s in 1:n.sims){

y.tilde[s,]<- exp(sim.1000@coef[s,] %*% t(X))

y.tilde[s,] <- rpois(n,y.tilde[s,])

}

count_percentile_0 = function(a){

return(sum(a ==0)/length(a))

}

count_percentile_10 = function(b){
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return(sum(b >10)/length(b))

}

temp1<- apply(y.tilde, 1,count_percentile_0)

temp2<- apply(y.tilde, 1,count_percentile_10)

hist(temp1,main = "percent == 0")

hist(temp2,main = "percent > 10")
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from the histograms we can see that the percentile of the case when f upacts > 10 falls in the simulation
histogram fairly well but not the case for when f upacts == 0.

5



after fitting the overdispersed model, we can see that the case when f upacts > 10 improved quite a bit.
however, they still seem not good enough.
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after including the sex and bupacts variables as an input, from the histogram the fit seems more or less the
same as part b.

2. G&H, Ch 9 & 10 exercises:

(a) G&H, Chapter 9, #3
(Examples on page 187-188 in the book are really helpful; see also lecture 10, week 05.)

Dr. Smith,

Thanks for sharing with me your proposal to study the effects of teacher quality on student scores.

In a typical randomized experiment there are two or more groups (often a “treatment” and “con-
trol” group but it can be two treatments as well), and students would be randomly assigned to
each group. In this case, if we have a way of identifying high and low quality teachers, we might
consider having a “high quality” group and a “low quality” group, assign students at random to
each group, and look at their test scores after som period of instruction. While this is a clean
design that could tell us the effects of high vs low quality instruction, there are undoubtedly
ethical—and perhaps legal—problems with deliberately assigning students to poor teachers for
the purpose of seeing what happens.

Instead we are probably forced to take whatever assignment of students to teachers has been
made by the school or school district, as a matter of allocating teaching resources, and try to infer
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from that what the effect of teacher quality on student outcomes is. The problem with this is that
we are not in control of the reasons that students get assigned to different teachers. For example,
perhaps high-achieving students have parents who demand the better teachers for their children.
Then we would not know if better student outcomes were due to starting with better students, or
due to better teachers.

If we are able to collect data on this and all other confounding variables, we can still make an
inference about the effect of teacher quality on student outcomes from a regression equation like
this

yi = β0 + β1Ti + β2X2i + · · · βkXki + εi

where yi is student outcome (score), Ti indicates whether the student had a good or poor teacher,
and X2i through Xki are confounding variables. The quality and correctness of our inferences,
though, will be dependent on how good we are at finding all the relevant confounding variables.

Sincerely yours,

Brian Junker

(b) G&H, Chapter 9, #8, a, b, c:
(explanations on page 169-170 are very helpful in answering this question.)

No Treatment Effect.
If you look at equation (9.1)

yi = β0 + β1Ti + β2xi + εi

no treatment effect translates to that the coefficient β1 does not differ from 0 significantly. Now because we
are plotting y vs x, the linear fit lines for the treatment and control groups have the same intercept β0 and
slope β2:
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Constant Treatment Effect.
Now constant treatment effect translates to that β1 now is significantly different from zero so the two linear
fit lines differ in intercept: β0 and β0 + β1:
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Increasing Treatment Effect.
For increasing treatment effect as a function of x, equation (9.1) changes:

yi = β0 + β1Ti + β2xi + β3Tixi + εi

with β3 > 0. So this contributes to both the intercept and the slope of x. so in this case, the two fit lines
differ in both intercept and slopes:
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3. In class we considered the sesame data (available in the week05 area of the class website). This is an example
of an “encouragement design”: subjects were randomly assigned to be encouraged (or not) to watch the Sesame
Street TV show, and then they were tested to see if their letter skills had improved.

(a) Why do you suppose kids were randomly assigned to “encouraged” or “not encouraged”, rather than
“watch Sesame Street” or “don’t watch Sesame street”?
You can’t actually control whether or not kids will watch Sesame Street, but you can control whether or
not you encourage them to. Since we can control “encouraged”, that is what was randomly assigned.
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(b) In class we obtained Wald and two-stage least-squares (TSLS) IV estimates of the effect of watching Sesame
street. Install package sem on your computer and use the tsls() function to estimate the same effect.

sesame <- read.dta("sesame.dta",T)

watched <- sesame$regular

encouraged <- sesame$encour

y <- sesame$postlet

pretest <- sesame$prelet

library(sem)

summary(est.1 <- tsls(y ˜ watched, ˜ encouraged))

2SLS Estimates

Model Formula: y ˜ watched

Instruments: ˜encouraged

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-20.60 -9.59 -4.53 0.00 10.70 34.50

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.59 3.66 5.63 5.1e-08 ***

watched 7.93 4.61 1.72 0.086 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.4623 on 238 degrees of freedom

So, the IV estimate of the effect of “watched” is 7.93 (additional points on the post-test), with an SE of
4.61. Not quite significant at the 0.05 level!

(c) Use the sim() function from library(arm) to generate 1000 simulated values of the Wald estimate, from
fake data sets similar to the sesame data (HINT: to get 1000 Wald estimates, you will have to run sim()
2000 times.) Use these to generate a standard error (SE) for the Wald estimate, and compare this to the
SE generated by the tsls function.

library(arm) # if needed!

# First we calculate the Wald estimate from the data

reg1 <- lm(y ˜ encouraged)

reg2 <- lm(watched ˜ encouraged)

(wald.est <- coef(reg1)[2]/coef(reg2)[2])

# get 7.933993 , agrees with tsls() as expected...
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# now set up the simulation stuff

n <- 1000

sim1 <- sim(reg1, n)

sim2 <- sim(reg2, n)

sim.ests <- sim1@coef[,2]/sim2@coef[,2]

summary(sim.ests)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-10.670 4.777 7.944 8.161 11.470 27.930

# looks reasonable, if a bit right-tailed...

hist(sim.ests)

abline(v=wald.est,col="red")

sd(sim.ests)

[1] 5.24278

We can see from the histogram that the real-data Wald estimate is right in the middle of the simulated Wald
estimates, where it should be. The simulation SE for the estimate is simply the SD of the simulated values,
5.24278.

This value is somewhat larger than the one from the tsls() function, 4.61, mainly because of the right tail in
the distribution of simulated Wald estimates (this is probably more realistic than the normal assumptions
that underlie the tsls() function).

4. G&H, Chapter 10, #2. The folder bypass is available in the hw05 area of the class website.
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bypass <- read.table("bypass/bypass.data.txt",header=T)

str(bypass)

plot(age,stay,col=new+1)

legend(50,40,pch="o",col=1:2,legend=c("std tx","new tx"))

fit.1 <- lm(stay ˜ age + new,data=bypass)

curve(coef(fit.1)[1] + x*coef(fit.1)[2],from=75,to=90,col="black",add=T)

curve(coef(fit.1)[1] + coef(fit.1)[3]+ x*coef(fit.1)[2],

from=50,to=85,col="red",add=T)

plot(age,stay,col=new+1)

legend(50,40,pch="o",col=1:2,legend=c("std tx","new tx"))

fit.2 <- lm(stay ˜ age + new + I(age*new),data=bypass)

curve(coef(fit.2)[1] + x*coef(fit.2)[2],from=75,to=90,col="black",add=T)

curve(coef(fit.2)[1] + coef(fit.2)[3]+ x*(coef(fit.2)[2]+coef(fit.2)[4]),

from=50,to=85,col="red",add=T)

• Does this seem like an appropriate setting in which to implement a regression discontinuity analysis?
As the figures below show, a regression discontinuity analysis with equal slopes does not seem to fit the
data well, since the slope of stay on age does not seem constant in the two treatment groups.
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A bigger problem is that there is overlap in the age groups that do and do not receive the new treatment.
If this overlap could be considered to be “random”, we might still use the “parallel lines” regression
discontinuity analysis to estimate the effect of the new treatment (surgery) on patients near the discontinuity
age. However, the overlap is not random; it depends on the doctors’ assessment of the ability of the patient
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to withstand the surgery. So, there is some confounding of a treatment effect with the effect of the patient’s
robustness or frailty with respect to surgery (most patients above 80 are too frail for the new procedure).

• The variables are age, stay, severity, new. Can you find any evidence using these data that the regres-
sion discontinuity design is inappropriate?
From the age × severity and severity × stay plots below, we can see that (a) age has very little to do with
severity; and (b) treatment was not assigned with respect to severity. From the severity × stay plot, it does
appear that there may be an effect for the new treatment, but it may not be well-estimated by the regression
discontinuity analysis. However, we still do not know if the treatment effect is due to the new surgery or
due to the fact that patients who are more frail anyway are not selected for surgery, regardless of age.

• Estimate the treatment effect using a regression discontinuity estimate (ignoring severity). Estimate the
treatment effect in any way you like, taking advantage of the information in severity. Explain the discrep-
ancy between these estimates.
The simple parallel-lines RD analysis is illustrated in the first figure above. The estimated effect of the new
tx (surgery) is −2.89 days, with an SE of 0.75.

> coef(summary(fit.1))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.3524305 2.6422622 2.404164 1.713565e-02

age 0.3109125 0.0308759 10.069746 1.665959e-19

new -2.8919093 0.7508948 -3.851284 1.588309e-04

It’s difficult to do a “good” causal analysis here, because we really don’t have the variable that would help
us to completely understand treatment assignment, that is, the frailty or robustness of the patient to this
type of surgery.
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However, a simple analysis might simply include all of the other variables in the regression model

> fit.3 <- lm(stay ˜ age + new + severity,data=bypass)

> coef(summary(fit.3))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.7238960 0.267188667 2.709307 7.339575e-03

age 0.2011527 0.003184931 63.157646 3.031392e-132

new -4.9034229 0.076431614 -64.154382 1.621653e-133

severity 0.3023016 0.002163839 139.706113 3.243480e-198

The effect of “new” now is about −4.90, about twice as large as the effect under the RD analysis (and with
a smaller SD as well). The effect is larger, and more precise, because “severity” better matches patients to
compare the effect with and without the new treatment (surgery), reducing the influence of variability in
severity at particular ages (see again the six scatter plots above).
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