
36-463/663: Multilevel & Hierarchical Models
Fall 2016

HW06 – SOLUTIONS

Problem One

A
Corr(yi, yi′ ) =

Cov(yi,yi′ )√
Var(yi)Var(yi′

. We know
√

Var(yi)Var(yi′ ) = τ2 + σ2, so now only need the covariance. We find

Cov(yi, yi′ ) = Cov(εi, εi′ ) + Cov(η j, εi′ ) + Cov(ηi′ , εi) + Cov(η j, η j′ ) (1)
= 0 + 0 + 0 + 0. (2)

In this case, all the covariances are of IID gaussians or are from distinct, independent gaussians, and are all zero.
So Corr(yi, yi′ ) =

Cov(yi,yi′ )√
Var(yi)Var(yi′

= 0.

B
We do the same computations, but this time find that:

Cov(yi, yi′ ) = Cov(εi, εi′ ) + Cov(η j, εi′ ) + Cov(ηi′ , εi) + Cov(η j, η j′ ) (3)
= 0 + 0 + 0 + Cov(η j, η j) (4)
= Var(η j) (5)

Cov(yi, yi′ ) = τ2 (6)

So Corr(yi, yi′ ) =
Cov(yi,yi′ )√

Var(yi)Var(yi′ )
= τ2

τ2+σ2 .

C
If we are excluding our average to those observations in group j, each observation is yi = β0 + η j + εi. Then, summing
over all entries in j,

Var(y j) =
1
n2

j

ΣaΣbCov(ya, yb) (7)

Var(y j) =
1
n2

j

ΣaΣbCov(β0 + η j + εa, β0 + η j + εb). (8)

The covariances across εs for a , b are 0, as are the covariances with β0, and those across εs and ηs. This leaves
only the n j matches of εs, which have covariance σ2, and n2

j matches of Cov(η j, η j), which is τ2. So

Var(y j) =
1
n2

j

(ΣaΣbIa==bCov(εa, εb) + ΣaΣbCov(η j, η j)) (9)
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Var(y j) =
1
n2

j

(ΣaΣbIa==bσ
2 + ΣaΣbτ

2) (10)

Var(y j) =
1
n2

j

(n jσ
2 + n2

jτ
2) (11)

Var(y j) =
1
n j
σ2 + τ2. (12)

D
in part (c) we proved that Var(yi) = τ2 + σ2

n j
.

It should be clear that Var(y j) = Var(y∗j). Now for Cov(y j, y∗j) = Cov( 1
n j

∑n j

i=1 yi,
1
n j

∑n j

i=1 y∗i ) = Cov(ηi, ηi) = τ2

similar to part (b). So Corr( 1
n j

∑n j

i=1 yi,
1
n j

∑n j

i=1 y∗j) = τ2

τ2+ σ2
n j

.

Problem Two - G&H 12.9
summary(full_fit = lmer(log.radon ˜ floor + log.uranium + (1|county),data = data))

Random effects:

Groups Name Variance Std.Dev.

county (Intercept) 0.024462 0.15640

Residual 0.575230 0.75844

Number of obs: 919, groups: county, 85

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.46576 0.03794 38.64

floor -0.66824 0.06880 -9.71

log.uranium 0.72027 0.09176 7.85

Correlation of Fixed Effects:

(Intr) floor

floor -0.357

log.uranium 0.145 -0.009

index = 1:nrow(data)

summary(subfit = lmer(log.radon ˜ floor + log.uranium + (1|county),data = data[sample(index,0.2*nrow(data)),]))

Random effects:

Groups Name Variance Std.Dev.

county (Intercept) 0.07807 0.2794

Residual 0.55835 0.7472

Number of obs: 183, groups: county, 57

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.4456 0.0839 17.230

floor -0.5726 0.1504 -3.808

log.uranium 0.6786 0.1905 3.563
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Correlation of Fixed Effects:

(Intr) floor

floor -0.409

log.uranium 0.193 0.018

The model fitted to the sampled data has but with larger standard errors. This is not surprising, since there is only 1/5
of the data. The variance components are also fairly similar to the full data set fit (but see next part).

(b) I ran the analysis on randomly sampled subsets of 1/5 of the data a few times; here are the estimated county-
level variance (τ2) and individual residual variance (σ2) over these runs:

Parameter Estimates from 1/5 samples
τ2 0.009286 0.0000 0.007461 0.06655 0.03364
σ2 0.602252 0.5238 0.438762 0.56025 0.53395

As we might expect, the estimates of τ2 vary a lot more than the estimates of σ2.

(c)

index = unique(data$county)

sampled_index = sample(index,0.2*length(index))

subfit = lmer(log.radon ˜ floor + log.uranium + (1|county),data = data[data$county %in% sampled_index,])

summary(subfit)

Random effects:

Groups Name Variance Std.Dev.

county (Intercept) 0.047496 0.21793

Residual 0.660934 0.81298

Number of obs: 266, groups: county, 17

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.46784 0.09177 15.994

floor -0.71208 0.14122 -5.042

log.uranium 0.77388 0.19377 3.994

Correlation of Fixed Effects:

(Intr) floor

floor -0.292

log.uranium 0.094 -0.095

It seems the fixed effects coefficient estimates from the cluster sample fitted model are closer to the full data. However,
the across county variance estimate still seem variable and different from the full data estimate.
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Problem Three: G&H Chapter 12, #6
(a)

yi, j = αi + εi, j, εi, j ∼ N(0, σ2), αi ∼ N(0, τ2)

i : instructor index, yi, j course evaluation score for jth evaluation and ith instructor

fit = lmer(courseevaluation ˜ 1 + (1 | profnumber),data = data)

summary(fit)

Formula: courseevaluation ˜ 1 + (1 | profnumber)

Data: data

AIC BIC logLik deviance REMLdev

650 662.5 -322 639.7 644

Random effects:

Groups Name Variance Std.Dev.

profnumber (Intercept) 0.14703 0.38344

Residual 0.17022 0.41257

Number of obs: 463, groups: profnumber, 94

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.93573 0.04519 87.09

fixef(fit)

3.936

ranef(fit)

1 0.049842665

2 -0.290355041

3 -0.307649827

4 0.067064271

5 0.347270330

.....

The fixed effect is the estimated mean intercept of all instructors. The random effect tells us how individual score
deviates from the mean intercept. For example, the first teacher is 0.05 above the mean.

(b)

yi, j = αi + εi, j, αi = β0 + β1beautyi + β2 f emalei + β3tenuredi + ηi, εi, j ∼ N(0, σ2), ηi ∼ N(0, τ2)

fit = lmer(courseevaluation ˜ 1 + btystdave + female + tenured + (1 | profnumber),data = data)

summary(fit)

Formula: courseevaluation ˜ 1 + btystdave + female + tenured + (1 | profnumber)

Data: data

AIC BIC logLik deviance REMLdev

655.7 680.6 -321.9 629.3 643.7

Random effects:

Groups Name Variance Std.Dev.
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profnumber (Intercept) 0.13234 0.36379

Residual 0.17027 0.41263

Number of obs: 463, groups: profnumber, 94

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.06842 0.08415 48.34

btystdave 0.13157 0.05412 2.43

female -0.22001 0.09157 -2.40

tenured -0.06179 0.09150 -0.68

Correlation of Fixed Effects:

(Intr) btystd female

btystdave -0.011

female -0.604 -0.129

tenured -0.730 0.131 0.231

This is a varying intercept model with the intercept for each group/instructor determined by three group level pre-
dictors. For example, the first instructor has an estimated intercept 0.09 + 4.07 + 0.13 ∗ btystdave − 0.22 ∗ f emale −
0.06 ∗ tenured

(c) We know that the estimated σ2 = 0.17, τ2 = 0.13, so we can calculate the intraclass correlation 0.17/(0.17+0.13) =

0.43. It measure how much information grouping conveys about individuals within the group, with 0 being no infor-
mation to 1 if all members of a group are identical (and so maximum information).

Problem Four: G&H Chapter 13, #1.
(a) First we can use “lower” or “onecredit” or a combination of them, as a class category variable. For this solution I
will use “lower”.

A plausible model that retains clustering by professor (which makes sense for the overall problem of relating
course ratings in the courses that a professor teaches with his or her overall beauty rating) and allows the coefficient
on “lower” to depend on the beauty rating would be

yi = α0 j[i] + α1 j[i](lower)i + εi , εi ∼ N(0, σ2)
α0 j = β00 + β01(beauty) j + η0 j , η0 j ∼ N(0, τ2

0)
α1 j = β10 + β11(beauty) j + η1 j , η1 j ∼ N(0, τ2

1)

Substituting the 2nd and 3rd equation into the first, we get the variance components form

yi = β00 + β10(lower)i + β01(beauty) j[i] + β11(beauty) j[i](lower)i + η0 j[i] + η1 j[i](lower)i + εi

which shows

(i) the intercept β00 + β10(lower)i does vary by course category;

(ii) the slope on beauty β01(beauty) j[i] + β11(beauty) j[i](lower)i = (β01 + β11(lower)i)(beauty) j[i] does vary by course
category;
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(iii) the lmer model formula will be y ˜ lower*beauty + (lower|profnumber).

(b) Following the model given above,

summary(fit <- lmer(courseevaluation ˜ lower*btystdave + (lower|profnumber), data=data))

Random effects:

Groups Name Variance Std.Dev. Corr

profnumber (Intercept) 0.1436 0.379

lower 0.3410 0.584 -0.63

Residual 0.1467 0.383

Number of obs: 463, groups: profnumber, 94

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.92284 0.04972 78.90

lower 0.08763 0.09292 0.94

btystdave 0.08633 0.06301 1.37

lower:btystdave 0.04085 0.11015 0.37

Our estimates are

Parameter β00 β01 β10 β11 σ2 τ2
0 τ2

1
Estimate 3.92284 0.08763 0.08633 0.04085 0.1467 0.1436 0.3410

The η0 j’s are the first column and the η1 j’s are the second column of the following:

ranef(fit)

$profnumber

(Intercept) lower

1 0.0475999598 -0.046461537

2 -0.2373790576 0.231701789

3 -0.2752656779 0.268682295

.

.

.

93 0.2169006210 -0.305841630

94 -0.5107574563 0.533169561

None of the fixed effects are significant in this model, although btystdave nearly is. It would be interesting and worth-
while to augment this model by adding other class-level or professor-level covariates, as a way of understanding better
what variables influence course ratings for professors.

(c) Because of the changes in the current version of ggplot2, this plot is easier to make using the xyplot function
in library(lattice)...

The basic plot we make will have one subgraph per professor, with “level” on the X axis and course evaluation
on the Y axis. The slope and intercept of the line relating “level” to course evaluation will be determined by (1) the
beauty rating of that professor, and (2) the random effects in the model.

The next page contains the code to make the plot, and the plot is on the following page after that.
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attach(data)

profsubset <- sample(sort(unique(profnumber)),9)

# take 9 professors at random

profbeauty <- btystdave[match(sort(unique(profnumber)), profnumber)]

# get the unique beauty value for each professor

xyplot(courseevaluation ˜ lower | profnumber,

subset=profnumber %in% profsubset,

panel=function(x,y) {

panel.xyplot(x,y)

j <- profsubset[panel.number()]

b00 <- fixef(fit)[1]

b01 <- fixef(fit)[2]

b10 <- fixef(fit)[3]

b11 <- fixef(fit)[4]

eta0 <- ranef(fit)$profnumber[j,1]

eta1 <- ranef(fit)$profnumber[j,2]

panel.abline(b00+b10*profbeauty[j]+eta0,

b10+b11*profbeauty[j]+eta1,col="Green")

panel.abline(b00+b10*profbeauty[j],

b10+b11*profbeauty[j],col="Red")

panel.text(0.05,2.75,paste("Prof #",j,sep=""),cex=0.5)

}

)

trellis.focus("toplevel")

panel.text(.73,.163,"Slope and intercept depend on...",cex=.5,pos=4)

panel.text(.73,.150,"Red = Beauty only",col="Red",cex=.5,pos=4)

panel.text(.73,.137,"Green = Beauty & Rand Effects",col="Green",cex=.5,pos=4)

trellis.unfocus()

detach(data)
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Because “lower” can only be 0 (for lower-division classes) and 1 (for upper division classes), the individual course
ratings cluster in lines above 0 and 1 in each subplot.

We see from the plot that the beauty rating does affect the slope and intercept for the relationship between “lower”
and course evaluation somewhat, and that the random effects can be bigger than the effect of beauty.

Problem Five - G&H 12.2

0.1 A
Write a model predicting CD4 percentage as a function of time with varying intercepts across children. Fit using lmer()
and interpret the coefficient for time.

We used ’age’ as a variable for time, since it wasn’t clear what to use for that, and we thought just using the visit
date would be inappropriate. We also could have used ”VISIT” which are the visit numbers, but, without knowing
anything about visit scheduling, we thought using age would be more appropriate.
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Linear mixed model fit by REML [’lmerMod’]

Formula: CD4PCT ˜ visage + (1 | newpid)

Data: d

REML criterion at convergence: 7903.5

Scaled residuals:

Min 1Q Median 3Q Max

-4.4747 -0.4553 -0.0562 0.3799 6.6349

Random effects:

Groups Name Variance Std.Dev.

newpid (Intercept) 125.5 11.201

Residual 53.7 7.328

Number of obs: 1075, groups: newpid, 251

Fixed effects:

Estimate Std. Error t value

(Intercept) 29.7404 1.3150 22.616

visage -1.5833 0.2717 -5.827

Correlation of Fixed Effects:

(Intr)

visage -0.820

A lot of the variation here is attributable to patient identity. Different children have very different base CD4 levels.
But, within each child, this model says that you can expect CD4 to decrease by 1.6 every year. The decrease over time
appears significant, and looks like it should be about 1.3 to 1.9 per year.

0.2 B
Extend your model to include child-level predictors for treatment and age at baseline. Fit using lmer() and interpret
the coefficients on time, treatment, and age at baseline.

Linear mixed model fit by REML [’lmerMod’]

Formula: model

Data: d

REML criterion at convergence: 7868.2

Scaled residuals:

Min 1Q Median 3Q Max

-4.4799 -0.4553 -0.0554 0.3841 6.8081

Random effects:

Groups Name Variance Std.Dev.

newpid (Intercept) 125.23 11.191

Residual 53.27 7.299
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Number of obs: 1072, groups: newpid, 250

Fixed effects:

Estimate Std. Error t value

(Intercept) 26.5005 2.6212 10.110

visage -2.9639 0.5084 -5.830

baseage 2.0154 0.6118 3.294

treatmnt 1.2092 1.5089 0.801

Correlation of Fixed Effects:

(Intr) visage baseag

visage -0.099

baseage -0.150 -0.841

treatmnt -0.849 0.011 -0.011

We first look at whether or not including the additional variables improves our model.

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
m1 4 7911.97 7931.89 -3951.98 7903.97
m2 6 7884.23 7914.10 -3936.12 7872.23 31.73 2 0.0000

It looks like including the group level (i.e. child-level) variables here definitely improves our model.
Our interpretations for each coefficient are:

• for time, ”visage”, it looks like the decrease in CD4 over time has become more substantial, now that we have
included other child-level variables. We should expect a decrease of about 2.5 to 3.5 in CD4 each year, in any
given child.

• for treatment, we estimated an increase in CD4 of 1.2. But I wouldn’t trust this very much, considering the
standard error, the increase is closer to -0.3 to 2.8. It’s hard to tell if the treatment impacted CD4 at all using this
model.

• for base age, it looks like children who were included in the study earlier have higher CD4. I’m somewhat
skeptical of this estimate, since base age ought to be somewhat associated with ’treatment’. A child who has
been on treatment longer ought to have different CD4 from someone who just was put on treatment. We should
expect some kind of interaction between (visit age - base age)*(treatment), rather than a simple effect from
treatment, if time on treatment matters at all.

0.3 C
Investigate the change in partial pooling from (A) to (B) both graphically and numerically.

As an example, we plot the random effects from the first model against those in the second model, sized by the
number of observations in each group (i.e. for each child.) The first plot colors the plotted points by base age; and the
second colors the plotted points by treatment vs. control.

In this case, it was easier to do the plots using ggplot2 (though the 2nd plot could be cleaned up somewhat since
there are only two colors that matter, darkest blue for tx=1 and lightest blue for tx=2).

The code is on the next page, and the plots are on the pages following that.
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reduced.data <- data[with(data,!is.na(visage+baseage+treatmnt)),]

## ensuring that the two models are fitted to exactly the same data sets...

summary(fit.a <- lmer(CD4PCT ˜ visage + (1 | newpid),data=reduced.data))

summary(fit.b <- lmer(CD4PCT ˜ visage + baseage + treatmnt + (1 | newpid),

data=reduced.data))

plotdata <- data.frame(mod1=ranef(fit.a)[[1]][,1],mod2=ranef(fit.b)[[1]][,1],

count=as.vector(table(reduced.data$newpid)),

baseage=sapply(split(reduced.data$baseage,

reduced.data$newpid),

function(x) x[1]),

tx=sapply(split(reduced.data$treatmnt,

reduced.data$newpid),

function(x) x[1]))

ggplot(plotdata,aes(x=mod1,y=mod2)) +

geom_point(aes(size=count,color=baseage)) +

xlab("First Model’s Random Effects") +

ylab("Second Model’s Random Effects") +

ggtitle("Comparing Random Effects by Sample Size and Base Age")

ggplot(plotdata,aes(x=mod1,y=mod2)) +

geom_point(aes(size=count,color=tx)) +

xlab("First Model’s Random Effects") +

ylab("Second Model’s Random Effects") +

ggtitle("Comparing Random Effects by Sample Size and Treatment Status")
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It looks like the random effects in model 1 were incorporating some information from ’treatment’ and ’base age’.
Generally the random effects are very consistent from model to model.

Numerically, the pooling does not seem very different. We see variance in the random effects of 125.5 and 125.2,
which are not very different.
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