Homework 10
Problem One - Crossed Random Effects

The Penicillin data setin Library(lme4) is derived from Table 6.6, page 144, of Davies and Goldsmith (1972),
where it is described as coming from an investigation to

assess the variability between samples of penicillin by the B. subtilis method. In this test
method a bulk-innoculated nutrient agar medium is poured into a Petri dish of approximately
90 mm. diameter, known as a plate. When the medium has set, six small hollow cylinders or
pots (about 4 mm. in diameter) are cemented onto the surface at equally spaced intervals. A
few drops of the penicillin solutions to be compared are placed in the respective cylinders,
and the whole plate is placed in an incubator for a given time. Penicillin diffuses from the
pots into the agar, and this produces a clear circular zone of inhibition of growth of the
organisms, which can be readily measured. The diameter of the zone is related in a known
way to the concentration of penicillin in the solution.

The variables in the data set are

» diameter: the diameter of the zone of inhibition due to penicillin

» plate: the plate (petri dish) in which the diameters are measured

» sample: one of the six areas in the dish where the diameter of the zone of inhibition was measured. Each area
corresponds to a different penicillin solution; the same six solutions are used in each plate.

Use str(Penicillin) , View(Penicillin) , efc. to familiarize yourself with the data.

Because the samples are associated with the same six penicillin solutions in each plate, we will treat the sample and
plate factors as crossed: for each plate, the same six different solution samples are tried.

First we familiarize ourselves with the data.

library(1lme4)

## Loading required package: Matrix
## Loading required package: Rcpp

summary(Penicillin)

#it diameter plate sample
## Min. :18 a 6 A:24
## 1st Qu.:22 b 6 B:24
## Median :23 ¢ 6 C:24
## Mean 123 d 6 D:24
## 3rd Qu.:24 e 6 E:24
## Max. 27 f 6 F:24

it (Other):108



hist(Penicillin$diameter, main = "Diameter of Inhibition Zone",

xlab = "mm", ylab = "")
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Devise a plot that shows the data nested within each unique pair of “plate” and “sample” levels for this completely
crossed design. Provide your plot, and write a short paragraph explaining how to interpret this plot, in terms of the
crossed factors “sample” and “plate”.

library(reshape2)
library(ggplot2)

attach(Penicillin)

platesample_heatmap <- gplot(
x = plate, y = sample,
data
fill = value, geom = "tile") +
xlab("Plate") + ylab("Sample")

platesample_heatmap + coord_flip()

melt(diameter),
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We made a heatmap showing diameters for each combination of plate and sample. The clearest features are 1.
Sample looks like it matters more than plate. 2. Samples A and C seem to have unusually large diameters, while
sample F has smaller diameters. 3. There is some variation across plates. Plate t has larger diameters than plate s, for
example.

Fit the additive linear model
(dia’meter)i = Bo + ﬂplatej[i] + Bsamplek[i} + €€ N(O’ 02)

using Lm() in R, where the B’s are all fixed effects, Bplatej is the effect of plate j and 3 samplek 1S the effect of sample
k.

Provide a fitted model summary and one paragraph describing the model’s fit and interpretation.
modellb <- 1lm(diameter ~ plate + sample)

summary (modellb)



##

## Call:

## Im(formula = diameter ~ plate + sample)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.1528 -0.3715 ©0.0139 0.3472 1.6806

##

## Coefficients:

i Estimate Std. Error t value Pr(>|t])

## (Intercept) 2.60e+01 2.47e-01 105.47 < 2e-16 ***
## plateb 5.50e-14 3.17e-01 0.00 1.00000

## platec -6.67e-01 3.17e-01 -2.10 0.03794 *
## plated -5.00e-01 3.17e-01 -1.57 0.11805

## platee -8.33e-01 3.17e-01 -2.62 0.00985 **
## platef -1.33e+00 3.17e-01 -4.20 5.3e-05 ***
## plateg -2.33e+00 3.17e-01 -7.35 3.1le-11 ***
## plateh 5.01e-14 3.17e-01 0.00 1.00000

## platei -1.67e+00  3.17e-01  -5.25 7.1e-07 ***
## platej -1.67e+00 3.17e-01 -5.25 7.1le-07 ***
## platek 1.67e-01 3.17e-01 0.52 0.60064

## platel -3.33e-01 3.17e-01 -1.05 0.29598

## platem 6.67e-01 3.17e-01 2.10 0.03794 *
## platen -3.33e-01 3.17e-01 -1.05 0.29598

## plateo 1.67e-01 3.17e-01 0.52 0.60064

## platep -8.33e-01 3.17e-01 -2.62 0.00985 **
## plateq -1.17e+00 3.17e-01 -3.67 0.00036 ***
## plater -1.17e+00 3.17e-01 -3.67 ©0.00036 ***
## plates -2.33e+00 3.17e-01 -7.35 3.1le-11 ***
## platet 1.67e-01 3.17e-01 0.52 0.60064

## plateu -1.83e+00 3.17e-01 -5.77 6.7e-08 ***
## platev -1.17e+00 3.17e-01 -3.67 0.00036 ***
## platew -1.50e+00 3.17e-01 -4.72 6.6e-06 ***
## platex -2.17e+00 3.17e-01 -6.82 4.4e-10 ***
## sampleB -3.21e+00 1.59e-01 -20.21 < 2e-16 ***
## sampleC -2.50e-01 1.59e-01 -1.57 0.11805

## sampleD -2.29e+00 1.59e-01 -14.44 < 2e-16 ***
## sampleE -2.21e+00  1.59e-01 -13.91 < 2e-16 ***
## sampleF -5.21e+00 1.59e-01 -32.81 < 2e-16 ***
#t ---

## Signif. codes: © '***' 9,001 '**' ©9.01 '*' ©.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.55 on 115 degrees of freedom
## Multiple R-squared: 0.941, Adjusted R-squared: ©0.927
## F-statistic: 65.6 on 28 and 115 DF, p-value: <2e-16

The model here treats plate a and sample A as the baseline. Every sample is significant other than C, which does look
very much like our baseline A. Some plates are highly significant, some not at all, seems to match the plot.

We also look at a heatmap of the residuals. There’s a bit of structure, but they seem reasonably random.



residuals_heatmap <- gplot(
x = plate, y = sample,
data = melt(modellb$residuals),
fill = value, geom = "tile") +
xlab("Plate") + ylab("Sample")

residuals_heatmap + coord_flip()

value

One (C)

In an experiment like this, the effect of plate is not really of interest, so we could model it as a random effect. We
might also be more concerned about the variability among the samples, rather than the effect of each particular sample
type, so we could model sample as a random effect also. Use mer() to fit a random intercept model to the data, with

random effects for plate and sample:”

Levell :
(diameter); = By + Opiatejli] + Csampiekfi] + €is €; ~ N(0,0%)i = samples
Level2 :
Qplatej = 0+ Tlplates s Tlplatej ™ N (07 T,gzlate)j = plates
Asamplek = 0 + Nsamplek Nsamplek ~ N (0, 72,00 ) = samples

where (3 is a fixed effect, and the random effects Qplatej aNd asamplek are all centered at zero. Since the factors
that define the random effects are crossed, this is a crossed random effects model.

Provide a fitted model summary and one paragraph describing the model’s fit and interpretation.



modellc <- lmer(diameter ~ (1|plate) + (1]|sample))

summary (modellc)

## Linear mixed model fit by REML ['lmerMod']
## Formula: diameter ~ (1 | plate) + (1 | sample)
##

## REML criterion at convergence: 330.9

##
## Scaled residuals:
## Min 1Q Median 3Q Max

## -2.0792 -0.6714 0©.0629 0.5838 2.9796
##

## Random effects:

## Groups Name Variance Std.Dev.
## plate (Intercept) 0.717 0.847

## sample (Intercept) 3.731 1.932

## Residual 0.302 0.550

## Number of obs: 144, groups: plate, 24; sample, 6
##

## Fixed effects:

#it Estimate Std. Error t value
## (Intercept) 22.972 0.809 28.4



# Calculate ICC for plate and sample
tau2plate <- as.numeric(summary(modellc)$varcor)[1]
tau2sample <- as.numeric(summary(modelilc)$varcor)[2]

sigma2 <- summary(modellc)$sigmar2

icc_plate <- tau2plate / (tau2plate + tau2sample + sigma2)

icc_sample <- tau2sample / (tau2plate + tau2sample + sigma2)

# Check if random effects are normally distributed
plate_effects <- unlist(ranef(modellc)$plate)

sample_effects <- unlist(ranef(modellc)$sample)

normpval_plate <- shapiro.test(plate_effects)$p.value

normpval_sample <- shapiro.test(sample_effects)$p.value

platelab <- paste("Shapiro test p-value",
round(normpval_plate, 2))
samplelab <- paste("Shapiro test p-value",

round(normpval_sample, 2))

par(mfrow = c(1,2))

plot(density(plate_effects), main = "Plate Effects",
xlab = platelab, ylab = "")

plot(density(sample_effects), main = "Sample Effects",
xlab = samplelab, ylab = "")
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The sample component has by far the largest influence. We can calculate an intraclass correlation of 0.1509 for the
plates and a very high 0.7854 for the samples.

Surprisingly, the random effects actually do appear reasonably normally distributed.

Use AIC and BIC to assess whether each of the random effects is needed in the mixed effects model.

emptymodel <- lm(diameter ~ 1)
justplate <- lmer(diameter ~ (1|plate))

justsample <- lmer(diameter ~ (1|sample))

# Adding plate first

anova(justplate, modellc)
## refitting model(s) with ML (instead of REML)

## Data:

## Models:

## justplate: diameter ~ (1 | plate)

## modellc: diameter ~ (1 | plate) + (1 | sample)

i Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## justplate 3 618 627 -306 612

## modellc 4 340 352 -166 332 279 1 <2e-16 ***
#H# ---

## Signif. codes: © '***' @9.001 '**' @.01 '*' @0.05 '.' 0.1 ' ' 1

# Adding sample first

anova(justsample, modellc)

## refitting model(s) with ML (instead of REML)

## Data:

## Models:

## justsample: diameter ~ (1 | sample)

## modellc: diameter ~ (1 | plate) + (1 | sample)

i Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## justsample 3 443 452 -219 437

## modellc 4 340 352 -166 332 105 1 <2e-16 ***
#H# ---

## Signif. codes: @ '***' g.@01 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1

Starting with either random effect, ANOVA tells us to add the other. We can also check AIC and BIC for all models.



modelslist <- list(emptymodel, justplate, justsample, modellc)

aics <- sapply(modelslist, AIC)
bics <- sapply(modelslist, BIC)

aics

## [1] 615.7 619.3 441.9 338.9

bics

## [1] 621.7 628.2 450.8 350.7

Both AIC and BIC would say there is not enough variation in the plates themselves to warrant including them as a
random effect, when looking at no effects vs including the plates.

But both prefer a model with sample over a model without sample, and when you consider adding a plate effect to a
model already haveing a sample effect, both criteria would tell you to add it. So AIC and BIC support including both
random effects.

residuals_heatmaplc <- gplot(
x = plate, y = sample,
data = melt(summary(modelic)$residuals),
fill = value, geom = "tile") +
xlab("Plate") + ylab("Sample")

residuals_heatmaplc + coord_flip()



value

detach(Penicillin)

Problem Two - Nested Random Effects

The Pastes data setin the Lme4 package also comes from Davies and Goldsmith (1972 table 6.5 page 138). They
describe the data as coming from

deliveries of a chemical paste product contained in casks where, in addition to sampling and
testing errors, there are variations in quality between deliveries. . . As a routine, three casks
selected at random from each delivery were sampled and the samples were kept for
reference. . . Ten of the delivery batches were sampled at random and two analytical tests
carried out on each of the 30 samples.

(That is to say two identical tests were performed on each sample.) The variables in the data set are:

- *stength: strength of the paste sample in each anlytical test*
- *batch: which delivery batch the paste sample same from*
- *cask: which cask within the delivery batch the paste sample came from*

- *sample: another identifier for the cask and batch that each paste sample came from*

Familiarize yourself with the data.

Note that the casks are nested within the delivery batches; each sample can be in one and only one cask, and each
cask can be in one and only one delivery batch. Also, the cask labels are not unique; they are repeated within each
batch. If we did not know that cask was nested within batch, this might lead us to belive that the cask and batch factors



were crossed instead of nested.

A random intercepts model for this data with casks nested within batches might look like this:

Levell :
(strength); = o) + €, €; ~ N(0,0?)i = samples within cask
Level2 :
a; = Buj) + My m; ~ N(0, 72)j = cask within delivery batch
Level3 :
Br = po + Mak, N3, ~ N(0,w?)k = delivery batch

Here, the aus are random effects at level 1, the Bs are random effects at level 2, and WUo is a fixed effect (the grand
mean).

Two (A)

Make a tree diagram showing how each pair of observations is nested within each cask, and the casks are nested
within each delivery batch. Label the branches of the tree with the appropriate parameters from the multi-level model
above.

Two (B)

Make a plot showing the raw data in each cask, and each cask within each sample.



attach(Pastes)

# Set up ten plots, one for each batch.
par(mfrow = c(2,5))

# For each plot, give the casks a random color and plot the strengths.
batches <- unique(batch)

casks <- unique(cask)

library(colorRamps)

for (i in 1:10) {
curbatch = batches[i]

curdata <- Pastes[Pastes$batch == curbatch, ]

plot(c(0,1), c(0,0), xlim = c(0,1), ylim = c(54, 68),
xlab = "", ylab = "", main = paste("Batch", i),
xaxt = "n")

threecolors <- sample(primary.colors(), 3, replace = FALSE)

# Use random colors and a random x Llocation.

for (caskj in 1:3) {
curcask = casks[caskj]
cursamples <- curdata[curdata$cask == curcask, ]
points(runif(2), cursamples$strength,

col = threecolors[caskj], pch = 16)
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This plot shows every batch seperately, and then plots each cask as a distinct random color.

Two (C)

Build a random intercept model for this data. Use the term (1 | cask:batch) to force Lmer() to treat cask as nested
within batch .

model2c <- lmer(strength ~ (1|batch) + (1]|cask:batch))

summary (model2c)



## Linear mixed model fit by REML ['lmerMod']
## Formula: strength ~ (1 | batch) + (1 | cask:batch)
##

## REML criterion at convergence: 247

##

## Scaled residuals:

#i# Min 1Q Median 3Q Max
## -1.4798 -0.5156 0.0095 0.4720 1.3897
##t

## Random effects:

## Groups Name Variance Std.Dev.
## cask:batch (Intercept) 8.434 2.904
## batch (Intercept) 1.657 1.287
## Residual 0.678 0.823
## Number of obs: 60, groups: cask:batch, 30; batch, 10
##

## Fixed effects:

#it Estimate Std. Error t value
## (Intercept) 60.053 0.677 88.7

It looks like the seperate casks are the source of most of the variation in strength. We’'ll also check the normality of our
random effects.

batchtau2 <- as.numeric(summary(model2c)$varcor)[2]
casktau2 <- as.numeric(summary(model2c)$varcor)[1]

sigma2 <- summary(model2c)$sigmar2

icc_batch <- batchtau2 / (batchtau2 + casktau2 + sigma2)
icc_cask <- casktau2 / (batchtau2 + casktau2 + sigma2)

We find an ICC in batches of 0.1539, and a higher ICC for casks, 0.7831.

batcheffects <- unlist(ranef(model2c)$batch)
caskeffects <- unlist(ranef(model2c)$"cask:batch")

batch_normpval <- shapiro.test(batcheffects)$p.value

cask_normpval <- shapiro.test(caskeffects)$p.value

batch_label <- paste("Shapiro test p-value",
round(batch_normpval, 2))
cask_label <- paste("Shapiro test p-vaue",

round(cask_normpval, 2))

par(mfrow = c(1,2))

plot(density(batcheffects), main = "Batch Effects",
xlab = batch_label, ylab = "")

plot(density(caskeffects), main = "Cask Effects",
xlab = cask_label, ylab = "")
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Two (D)

The sample variable in the pPastes dataset provides unique labels for each cask within each batch. So the model
Lmer(strength ~ 1 + (1[sample) + (1/batch)) should produce the same fit and parameter estimates as your model in
part 2c. Fit this model and verify that it agrees with the previous model.

model2d <- lmer(strength ~ (1|batch) + (1]|sample))
summary (model2d)



## Linear mixed model fit by REML ['lmerMod']
## Formula: strength ~ (1 | batch) + (1 | sample)
##

## REML criterion at convergence: 247

##

## Scaled residuals:

## Min 1Q Median 3Q Max
## -1.4798 -0.5156 0.0095 0.4720 1.3897
##t

## Random effects:

## Groups Name Variance Std.Dev.
## sample (Intercept) 8.434 2.904
## batch (Intercept) 1.657 1.287

## Residual 0.678 0.823

## Number of obs: 60, groups: sample, 30; batch, 10
##

## Fixed effects:

#t Estimate Std. Error t value

## (Intercept) 60.053 0.677 88.7

The summary output looks exactly the same.

Use AIC and BIC to assess whether each of the random effects is needed in the mixed effects model.
justbatch <- lmer(strength ~ (1|batch))
justcask <- lmer(strength ~ (1|sample))
noeffects <- lm(strength ~ 1)

models_list <- list(noeffects, justbatch, justcask, model2d)

aics <- sapply(models_list, AIC)
bics <- sapply(models_list, BIC)

aics
## [1] 314.3 307.6 253.6 255.90
bics

## [1] 318.5 313.9 259.9 263.4

The selection criteria agree that the best model is the one with random effects only for casks. The model with just a
batch effect is preferred by both over the empty model, but this is likely just due to batch capturing variation that would
otherwise be covered by cask IDs. Both models prefer just casks over casks and batches.

Problem Three - Fake Data Testing



In problem 2e, you used AIC and BIC to decide whether to keep the batch random effect. In this problem we will
construct a fake data test to confirm or disconfirm the approximate inference you made with AIC and BIC.

Letmq, Mo, ..., mpbe the mean strength in each of the B batches, let m = % Zle my, be their mean, and let
T(Pastes) = ﬁ S0, (my, — )2, the sample variance of the batch means. This will be our test statistic - if it is

small, we do not need the batch random effect; if it is large, we do need the batch random effet. For 1000 fake data
sets simulated from the H, model (without the batch random effect) we will calculate $T(fake.Pastes) $ and compare
the observed value T'( Pastes) to the distribution of simulated T'( fake. Pastes) values to determine if T'(pastes) is
small or large.

3(A)
Compute T'(Pastes).

gett <- function(strengthlist) {
# I'm always assuming this is in the same
# order as in the original data frame.
means <- aggregate(strengthlist, list(batch), mean)[,2]
ng <- length(unique(batch))
return ((ng/(ng-1)) * var(means))

tstat <- gett(strength)

We get T'(pastes) = 5.0906.

3 (B)

Use the sim() function from Library(arm) to generate 1000 sets of plausible parameter values from the model that
omits the batch random effect.

library(arm)

## Loading required package: MASS

##

## arm (Version 1.7-07, built: 2014-8-27)
##

## Working directory is /Users/patrickfoley/Box Sync/463 TAing

justcasks <- lmer(strength ~ 1 + (1|sample))

newparameters <- sim(justcasks, 1000)

3 (C)

Use the fitted() function to generate 1000 fake data sets of 60 observations each from the 1000 sets of parameter
values you produced.



newdata <- fitted(newparameters, justcasks)

dim(newdata)

## [1] 60 1000

Find T'(‘ fake. datal[, i|*) for each column i of the matrix of simulted fake data sets, and make a histogram of the
result. Plot T(Pastes) sa a vertical red line on the histogram. Does the fake-data test reject Hy ? Why? Is this

consistent with the AIC and BIC results?
# Using the function we defined earlier:
newts <- apply(newdata, 2, gett)
hist(newts, main = "Fake Data 'T' Statistics",

xlab = un, ylab - un, ant - unu)

abline(v = tstat, col = "red")

Fake Data 'T' Statistics

quantiletstat <- mean(newts < tstat)

From the histogram, our real data’s T doesn’t look very high at all. It's in the 0.653 quantile. We can’t reject H|, (that
we do not need the (1|batch) effect) with any confidence.



This agrees with the AIC and BIC results.



