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Outline

� Announcements & Office Hours

� What is Statistics For?

� Distributions as Models

� Confidence Intervals

� Hypothesis Tests

� G&H Ch’s 3-4 start reading now

� I will not cover everything in the chapters

� You will need to read & try some things on your own!



Announcements & Office Hours

� HW02: Due next Tue Sep 13, on Blackboard.

� Nick’s Regular Office Hours (BH 132M):

� Mon 5-6

� Brian’s Regular Office Hours (132E Baker):

� Tue, Thu 3-4

� Some Tuesdays after class

39/5/2016
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What is Statistics For?
� Statistical inference is used to learn from incomplete or 

imperfect data.

� Sampling model: the data are incomplete because of sampling.  

� E.g. estimate the opinions of the entire United States based on a 

sample of 1,000 respondents. 

� No random error in people’s answers

� Uncertainty arises from which & how many persons we ask

� Measurement error model: the data are imperfect because of 

errors in measurement

� Your test score is not an exact measure of your knowledge

� In yi = β + β xi + ǫi, the “linear part” is not an exact relationship 

between y and x...   ǫi is the error.

� Uncertainty arises because the pairs (xi,yi) have extraneous 

information in them, for estimating β and β.
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What is Statistics For?

� There can be measurement error in survey sampling.  It 

is ideally dealt with by careful design and pre-testing of 

questions, to make it go away.

� Sometimes measurement error models needed anyway (NAEP)

� There can be sampling in measurement error problems

� In the London schools example, looks like not all students from 

each of the 38 schools were in the data set.

� Most regression models combine measurement and sampling 

uncertainty:
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Distributions as Models

� Statistical distributions are tools for modeling 
uncertainty

� Distributions can represent the population from which 
we are sampling and/or the method by which we 
sample (sampling models)

� Distributions can represent the messy or unknown 
part of the process of generating data (generative 

models)

� Statistical distributions can be used either for 
sampling or generative models

� It’s important to know some common situations 
that different distributions are good at modeling!
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Distributions as Models: Normal

� Arises when an observation is a sum of many  similar 

small independent contributions:
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Aside: Building Sums in R…
> old.opt <- options(digits=3)

> (x <- rnorm(10))

[1] -0.632 -0.207 -1.745  0.150 -1.098 -0.528  0.236 -0.518 -0.377 -0.364

> (xsum <- sum(x))

[1] -5.08

� We want to produce many (perhaps 100’s) of 

sums like this

� For example, to draw a histogram of sums of 10 x’s

� Doing by hand and storing each one is tedious

� How can we automate this process?

� Produce a vector of sums…
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Aside: Building Sums in R…
> old.opt <- options(digits=3)

> (x <- rnorm(10))

[1] -0.632 -0.207 -1.745  0.150 -1.098 -0.528  0.236 -0.518 -0.377 -0.364

> (xsum <- sum(x))

[1] -5.08

> (xdata <- matrix(rnorm(5*10),ncol=10))

[,1]     [,2]      [,3]      [,4]      [,5]      [,6]      [,7]       [,8]      [,9]        [,10]

[1,] -2.889 0.621 -1.129 -2.116  0.720  0.770  0.780 -0.4469  0.180  1.0100

[2,] -0.826 0.131  1.605  0.885 -0.388  1.133 -1.086  0.1395 -1.443 -0.6977

[3,]  0.741 0.917  1.119  0.906 -1.058 -0.192  0.788 -0.0322  0.196 -0.0779

[4,]  0.278 1.853 -0.286  0.100  1.162  0.192 -1.314  1.0876 -1.839  0.2338

[5,]  0.068 0.925  0.420  0.152 -1.015 -1.605  1.908  0.9469  1.040 -0.5053

> (xsum <- apply(xdata,1,sum))

[1] -2.499 -0.547  3.306  1.466  2.335

> options(old.opt)
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Distributions as Models: Normal

Z_i <- matrix(runif(n=500*20,

min=-0.25,max=0.75),ncol=20)

Z <- apply(Z_i,1,sum)

par(mfrow=c(2,1))

hist(Z,probability=T)

x <- seq(min(Z),max(Z),length=100)

lines(x, dnorm(x,mean(Z),sd(Z)))

plot(density(Z), main=

"Smooth Density of Z",xlab="Z")

Histogram of 500 Z values
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Distributions as Models: Normal

ZZ_i <- matrix(runif(n=500*20,

min=0,max=1),ncol=20)

ZZ <- apply(ZZ_i,1,sum)

par(mfrow=c(2,1))

hist(ZZ,probability=T,

main="Histogram of Z‘ ",xlab="Z‘ ")

x <- seq(min(ZZ),max(ZZ),length=100)

lines(x, dnorm(x,mean(ZZ),sd(ZZ)))

plot(density(ZZ), main=

"Smooth Density of Z‘ ", xlab="Z‘ ")

Histogram of 500 Z' values
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Distributions as Models: Normal

Histogram of 1000 sums

Z and Z' sums
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Aside: the d, p, q and r functions…

� dnorm(x,mean,sd) produces values of the (norm)al 

(d)ensity

� pnorm(x,mean,sd) prodices values of the (norm)al 

(p)robability P[Z ≤ x] (i.e. the normal cdf)

� qnorm(p,mean,sd) produces the (q)uantile x for which

P[z ≤ x] = p (i.e., the inverse normal cdf)

� rnorm(n,mean,sd) produces n independent (r)andom 

draws of Z

� Every distribution that R knows about has a d,p,q and r

function!
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Distributions as Models: Log-Normal

� Some distributions (dollars earned, distance ball 

thrown, etc.) are naturally skewed right.  

� A common “remedy” is to take the logarithm of 

the data.  

� We will always use the natural log (log base e, where 

e=2.71828… is Euler’s constant)

� Since there will never be any confusion, we will just 

write log(x) 

� Not ln(x), not loge(x)

� This “fix” leads to the “log-normal” distribution
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Distributions as Models: Log-Normal

� Y ∼ lognormal(µ,σ) iff 

log(Y) ∼ normal(µ,σ)

� With a little calculus, can 

show that the density of Y 

is dnorm(log(y))/y
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mean <- 5

sd <- 0.2

z <- rnorm(1000,mean,sd)

y <- exp(z) # so that log(x) ~ N(0,1)

par(mfrow=c(2,1))

hist(y,probability=T)

x <- seq(min(y),max(y),length=100)

lines(x,dnorm(log(x),mean,sd)/x)

qqnorm(y)

169/5/2016

Distributions as Models: Chi-squared

� Chi-squared on k df is the sum of k N(0,1)2 ’s

� Distribution of sample variance is a constant times a chi-squared

� Chi-squared also arises in

� Likelihood ratio tests

� Testing independence in tables of counts
Histogram of chi.sq on 5 df

chi.sq

D
e

n
s
it
y

0 5 10 15 20

0
.0

0
0

.0
5

0
.1

0
0

.1
5

df = 5

chi <- matrix(rnorm(500*df),ncol=df)

chi.sq <- apply(chi^2,1,sum)

hist(chi.sq,probability=T,main=

paste("Histogram of chi.sq on",df,"df"))

plot(function(x) {dchisq(x,df=df)},add=T,

from=min(chi.sq),to=max(chi.sq))
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Distributions as Models: others…

� Binomial

� Beta

� Poisson

� Student’s t

� Multivariate Normal

We do not have to memorize these for now, 

but don’t be surprised when they arise!

� Multinomial

� Dirichlet

� Gamma

� Wishart

� …and many more…
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Confidence Intervals: Normal Data

� A 100(1-α)% CI for the mean of a normal population 

based on a sample of size n is:

(xbar + qt(α/2,n-1)·SE, xbar + qt(1-α/2,n-1)·SE)

> y <- c(35,34,38,35,37)

> n <- length(y)

> x.bar <- mean(y)

> se <- sd(y)/sqrt(n)

> (int.50 <- x.bar + qt(c(.25,.75),n-1)*se)

[1] 35.2557 36.3443

> (int.95 <- x.bar + qt(c(.025,.975),n-1)*se)

[1] 33.75974 37.84026
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Conf. Intervals: Binomial Proportion

� A 100(1-α)% CI for a binomial proportion, based on a 

sample of size n is:

(p.hat + qnorm(α/2)·SE, p.hat + qnorm(1-α/2)·SE)

> y <- 700

> n <- 1000

> p.hat <- y/n

> se <- sqrt (p.hat*(1-p.hat)/n)

> (int.95 <- p.hat + qnorm(c(.025,.975))*se)

[1] 0.6715974 0.7284026

> (int.95.approx <- p.hat + c(-2,2)*se)

[1] 0.6710172 0.7289828
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Confidence Intervals: Simulation

� Suppose we survey men and women’s attitudes 

toward death penalty

� 375 of 500 men favor death penalty (75%)

� 325 of 500 women favor death penalty (65%)

� The ratio of support of men to women is 

0.75/0.65 = 1.15.  

� How could we build a confidence interval for this 

ratio (as a way of estimating the ratio in the full 

population that these men and women were 

samped from)?
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Confidence Intervals: Simulation
> n.men <- 500

> p.hat.men <- 0.75

> se.men <- sqrt (p.hat.men*(1-p.hat.men)/n.men)

> n.women <- 500

> p.hat.women <- 0.65

> se.women <- sqrt (p.hat.women*(1-p.hat.women)/n.women)

> n.sims <- 10000

> p.men <- rnorm (n.sims, p.hat.men, se.men)

> p.women <- rnorm (n.sims, p.hat.women, se.women)

> (ratio <- p.men/p.women)

[1] 1.1363384 1.1389650 1.0696729 ... ... ...

[9997] 1.1661268 1.1745934 1.0499191 1.1391952

> (int.95 <- quantile (ratio, c(.025,.975)))

2.5%    97.5% 

1.062888 1.251581 
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Hypothesis Testing
� Deciding about a null Hypothesis H0 vs an 

alternative Hypothesis HA

� Key question: is the data very unlikely under the 

null hypothesis?

� If the data is unlikely under the null hypothesis this is 

evidence to reject H0

� If the data seem pretty likely under the null 

hypothesis, then we can’t reject H0

� Logic of tradit. hypothesis testing never allows us 

to accept H0 or HA, only to assess evidence 

against H0,  reject H0 with some confidence
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Hypothesis Testing by Eyeballing 

Confidence Intervals

� If the parameter value under H0 is not in the 95% 
confidence interval, we reject H0 at level α=0.05.

� In the normal-data CI example, let’s test H0: µ=35.  Since 
the 95% CI was (33.8, 37.8), and 35 is in this interval, we 
fail to reject at α=0.05.

� In the binomial proportion example, let’s test H0: p=0.65. 
Since the 95% CI was (0.67, 0.73), we reject H0 at α=0.05

� In the death penalty example, is it plausible that men and 
women think equally of the death penalty (H0: ratio=1)?  
The 95% CI was (1.06, 1.25), so we would reject ratio=1 
at the α=0.05 level.
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Hypothesis Testing Using a Null 

Distribution

� A sample of 50 people are asked their favorite color and also 

asked to take an introversion / extroversion test.  

� H0: these are independent factors; HA: dependent

Observed

Counts

Blue Red Yellow TOTAL

Introverted 5 20 5 30

Extroverted 10 5 5 20

TOTAL 15 25 10 50
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Hypothesis Testing Using a Null 

Distribution

� The “expected” counts under H0: independence are

(row total)*(column total)/(grand total)

Expected 

Counts

Blue Red Yellow TOTAL

Introverted 9 15 6 30

Extroverted 6 10 4 20

TOTAL 15 25 10 50
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Hypothesis Testing Using a Null 

Distribution

� The Chi-squared test statistic is 

� The model for this statistic under H0 is chi-

squared on k df, where k=(rows-1)*(cols-1)=2

� Our data would be unlikely if our test statistic is 

far out in the tail of this model

� If our data is unlikely under the H0 model, reject H0
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Hypothesis Testing Using a Null 

Distribution

� Since P[worse data than 9.02 | 

H0] = 0.01 (small), we can reject 

H0: color preference and 

introversion aren’t independent!
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P[worse than 9.02|H0] 

= 0.01 roughly

psy.table <- matrix(c(5,20,5,10,5,5),byrow=T,nrow=2)

row.sums <- apply(psy.table,1,sum)

col.sums <- apply(psy.table,2,sum)

expected <- outer(row.sums,col.sums)/sum(psy.table)

(chi.sq <- sum((psy.table-expected)^2/expected))

[1] 9.027778

plot(function(x) { dchisq(x,df=2) }, from=0, to=12, 

ylab="Density")

lines(c(chi.sq,chi.sq),c(-1,2*dchisq(chi.sq,df=2)))

abline(h=0)

pchisq(9.02,2,lower=F)

[1] 0.01099846
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Hypothesis Testing Using Simulation

� We want to know if we can compare mean test scores of 

students in two schools.  If the variances of the test 

scores in the two schoosl are similar, we can compare 

means with a two-sample t-test.  

� School A: nA = 130 students, s2
A = 25.1

� School B: nB = 120 students, s2
B = 20.9

� There is an exact F-test (assuming the test scores are 

normally distributed) but rather than look it up, let’s 

proceed by simulation.

� H0: σ
A / σ2

b = 1

� HA: not
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Hypothesis Testing Using Simulation
> nsims <- 10000

> 

> n.A <- 130

> s2.A <- 25.1

> 

> n.B <- 120

> s2.B <- 20.9

> 

> (obsd.ratio <- 25.1/20.9)

[1] 1.200957

> s2.pooled <- (s2.A*(n.A-1) + s2.B*(n.B-1))/(n.A + n.B - 1)

> sims.A <- matrix(rnorm(nsims*n.A,0,sqrt(s2.pooled)),byrow=T,nrow=nsims)

> vars.A <- apply(sims.A,1,var)

> 

> sims.B <- matrix(rnorm(nsims*n.B,0,sqrt(s2.pooled)),byrow=T,nrow=nsims)

> vars.B <- apply(sims.B,1,var)

> 

> ratios <- vars.A/vars.B

> worse <- (obsd.ratio <= ratios)

> 

> (pval <- sum(worse)/nsims)

[1]  0.1544

> 

> plot(density(ratios),main="Density of 

ratios",xlab="Ratios",ylab="Density")

> lines(c(obsd.ratio,obsd.ratio),c(0,1.85))

> # see plot on next page…
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Hypothesis Testing Using Simulation

1.2

P[worse than 

1.2 | H_0] = 

0.1544

� Since P[worse 

data than 1.2 | 

H0] = 0.1544 

(big), we cannot 

reject H0: the 

variances in the 

two groups 

effectively the 

same.
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Summary
� What is Statistics For?

� Distributions as Models

� Confidence Intervals

� Hypothesis Tests

� G&H Ch’s 3-4 – start reading now

� I will not cover everything in the chapters

� You will need to read & try some things on your own!

� Office Hours

� HW02 Due next Tues Sep 13


