‘ 36-463/663: Multilevel &
Hierarchical Models

R as a Statistical Calculator
Brian Junker

132E Baker Hall
brian@stat.cmu.edu

9/5/2016

‘ Outline

= Announcements & Office Hours
m What is Statistics For?

m Distributions as Models

m Confidence Intervals

= Hypothesis Tests

m G&H Ch’s 3-4 start reading now
o | will not cover everything in the chapters
o You will need to read & try some things on your own!
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Announcements & Office Hours

= HWO02: Due next Tue Sep 13, on Blackboard.

= Nick’s Regular Office Hours (BH 132M):
o Mon 5-6

= Brian’s Regular Office Hours (132E Baker):
o Tue, Thu 3-4
o Some Tuesdays after class
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What is Statistics For?

m Statistical inference is used to learn from incomplete or
imperfect data.

o Sampling model: the data are incomplete because of sampling.

m E.g. estimate the opinions of the entire United States based on a
sample of 1,000 respondents.

= No random error in people’s answers
m  Uncertainty arises from which & how many persons we ask

o Measurement error model: the data are imperfect because of
errors in measurement

= Your test score is not an exact measure of your knowledge

= Iny, =03, + [0, X +¢€, the “linear part” is not an exact relationship
betweeny and x... ¢, is the error.

m Uncertainty arises because the pairs (x;y;) have extraneous
information in them, for estimating 3, and 3,.
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‘ What is Statistics For?

m There can be measurement error in survey sampling. It
is ideally dealt with by careful design and pre-testing of
questions, to make it go away.

o Sometimes measurement error models needed anyway (NAEP)

m There can be sampling in measurement error problems

2 Inthe London schools example, looks like not all students from
each of the 38 schools were in the data set.

0 Most regression models combine measurement and sampling
uncertainty:

yi = Po+bizite
¢; is drawn from a N (0, 0?) distribution
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‘ Distributions as Models

m Statistical distributions are tools for modeling
uncertainty
o Distributions can represent the population from which

we are sampling and/or the method by which we
sample (sampling models)

o Distributions can represent the messy or unknown
part of the process of generating data (generative
models)

m Statistical distributions can be used either for
sampling or generative models

= It’s important to know some common situations
that different distributions are good at modeling!
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‘ Distributions as Models: Normal

= Arises when an observation is a sum of many similar
small independent contributions:

If Z is a sum of independent contributions
Z=7T+Za+Zn=Y 7
i=1

then, approximately, Z ~ N (., 02), with
v = B2 = Y EZ = S
i=1 i—1

o? = Var(2) = iVar(Zi) = > a2
=1

i=1

as long as each o2 is small relative to 02, and the y.,’s aren’t too different from
each other.
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Aside: Building Sums in R...

> old.opt <- options(digits=3)

> (x <- rnorm(10))

[1]-0.632 -0.207 -1.745 0.150 -1.098 -0.528 0.236 -0.518 -0.377 -0.364

> (xsum <- sum(x))
[1]-5.08

= We want to produce many (perhaps 100’s) of
sums like this
o For example, to draw a histogram of sums of 10 x’s
m Doing by hand and storing each one is tedious
= How can we automate this process?

o Produce a vector of sums...
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‘Aside: Building Sums in R...
> old.opt <- options(digits=3)

> (x <- rnorm(10))

[1]-0.632 -0.207 -1.745 0.150 -1.098 -0.528 0.236 -0.518 -0.377 -0.364
> (xsum <- sum(x))

[1]-5.08

> (xdata <- matrix(rnorm(5*10),ncol=10))

(11 [2] [3] [4] [5 [6] [7] [8] [9] [10]
[1,] -2.889 0.621 -1.129 -2.116 0.720 0.770 0.780 -0.4469 0.180 1.0100
[2,]-0.826 0.131 1.605 0.885 -0.388 1.133 -1.086 0.1395 -1.443 -0.6977
[3,] 0.7410.917 1.119 0.906 -1.058 -0.192 0.788 -0.0322 0.196 -0.0779
[4,] 0.278 1.853 -0.286 0.100 1.162 0.192 -1.314 1.0876 -1.839 0.2338
[5,] 0.068 0.925 0.420 0.152-1.015-1.605 1.908 0.9469 1.040 -0.5053
> (xsum <- apply(xdata,1,sum))
[1] -2.499 -0.547 3.306 1.466 2.335

> options(old.opt)
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‘ Distributions as Models: Normal

|f 2 o~ Un|f<_i’%) Histogram of 500 Z values

n .
Then z =) .,z is
approximately normal

Density
0.00 0.10 0.20 0.30

Z_i <- matrix(runif(n=5007*20,
min=-0.25,max=0.75),ncol=20) .
Z <- apply(Z_i,1,sum)

Smooth Density of 500 Z values

par(mfrow=c(2,1))
hist(Z,probability=T)
X <- seq(min(Z),max(Z),length=100)
lines(x, dnorm(x,mean(Z),sd(Z)))
plot(density(Z), main=

"Smooth Density of Z",xlab="Z2")

Density
0.00 0.10 0.20 0.30
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‘ Distributions as Models: Normal

Histogram of 500 Z' values

If 2/ ~ Unif(0,1)
Then 2/ =77 2l is
approximately normal

Density

0.00 0.10 0.20 0.30

Ny
77 i <- matrix(runif(n=500*20, == ‘ ‘ ‘

min=0,max=1 ),nco|=20) 6 8 10 12 14
ZZ <- apply(ZZ_i,1,sum) z

Smooth Density of 500 Z' values

par(mfrow=c(2,1))
hist(ZZ,probability=T,
main="Histogram of Z' " ,xlab="Z"")
X <- seq(min(ZZ),max(ZZ),length=100)
lines(x, dnorm(x,mean(ZZ),sd(ZZ2)))
plot(density(ZZ), main=
"Smooth Density of Z* ", xlab="Z"")

Density
0.00 0.10 0.20 0.30

I R T T
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Distributions as Models: Normal

If the means are not similar
this will not work:

Histogram of 1000 sums

., 13 1 -
zi ~ Unif(——, ), Elz]=— %3
( 4’ 4)’ (2] 4 &g
/ . / 1 =
Z,L' ~ Un|f(0, 1), E[ZZ] = — = T T T T T T !
2 2 4 6 8 10 12 14
.. Zand Z sums
Combining 500 samples of
each Of Smooth Density of 1000 sums
n n 3:
/ / = l
z = E z;, and z' = E z; 7 .1
i=1 i=1 N
will not produce a normal 0 5 10 15
distribution. ZandZ sums
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‘ Aside: the d, p, g and r functions...

= dnorm(x,mean,sd) produces values of the (norm)al
(d)ensity

= pnorm(x,mean,sd) prodices values of the (norm)al
(p)robability P[Z < x] (i.e. the normal cdf)

= gnorm(p,mean,sd) produces the (g)uantile x for which
Plz < x] =p (i.e., the inverse normal cdf)

= rnorm(n,mean,sd) produces n independent (r)Jandom
draws of Z

m FEvery distribution that R knows about has a d,p,q and r

function!
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‘ Distributions as Models: Log-Normal

= Some distributions (dollars earned, distance ball
thrown, etc.) are naturally skewed right.

= A common “remedy” is to take the logarithm of
the data.

o We will always use the natural log (log base e, where
e=2.71828... is Euler’s constant)

o Since there will never be any confusion, we will just
write log(x)
= Not In(x), not log,(x)

= This “fix” leads to the “log-normal” distribution

9/5/2016 14



‘ Distributions as Models: Log-Normal

| Y ~ |Ognorma|(/,[/,0-2) |ff Histogram of y
log(Y) ~ normal(u,0?)

= With a little calculus, can
show that the density of Y
is dnorm(log(y))/y w  ow om om w

mean <- 5 !
sd <-0.2

z <- rnorm(1000,mean,sd)

y <- exp(z) # so that log(x) ~ N(0,1)

Density
0.000 0.006 0.012

Normal Q-Q Plot

par(mfrow=c(2,1))
hist(y,probability=T) g
X <- seq(min(y),max(y),length=100) T ‘ ‘ ‘ ‘ ‘ ‘
lines(x,dnorm(log(x),mean,sd)/x) T
qgnorm(y)

Sample Quantiles
00 200
1 1 1
o
o
\.
o
°

Theoretical Quantiles
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‘ Distributions as Models: Chi-squared

m Chi-squared on k df is the sum of k N(0,1)?’s

o Distribution of sample variance is a constant times a chi-squared
m Chi-squared also arises in

o Likelihood ratio tests

o Testing independence in tables of counts
df=5 3
chi <- matrix(rnorm(500*df),ncol=df) XX
chi.sq <- apply(chi*2,1,sum)

Histogram of chi.sq on 5 df

0.15

0.10

hist(chi.sq,probability=T,main= 8
paste("Histogram of chi.sq on",df,"df"))

plot(function(x) {dchisq(x,df=df)},add=T,
from=min(chi.sq),to=max(chi.sq))

0.05
I

0.00
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‘ Distributions as Models: others...

= Binomial = Multinomial

= Beta m Dirichlet

m Poisson m Gamma

m Student’st = Wishart

m Multivariate Normal = ..and many more...

We do not have to memorize these for now,
but don’t be surprised when they arise!
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‘ Confidence Intervals: Normal Data

= A100(1-a)% Cl for the mean of a normal population
based on a sample of size n is:
(xbar + gt(c/2,n-1)-SE, xbar + gt(1-a/2,n-1)-SE)

>y <- c(35,34,38,35,37)

> n <- length(y)

> x.bar <- mean (y)

> se <- sd(y)/sqgrt(n)

> (int.50 <- x.bar + gt(c(.25,.75),n-1) *se)
[1] 35.2557 36.3443

> (int.95 <- x.bar + gt(c(.025,.975),n-1) *se)
[1] 33.75974 37.84026
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‘ Conf. Intervals: Binomial Proportion

= A 100(1-a)% Cl for a binomial proportion, based on a
sample of size n is:
(p.hat + gnorm(a/2)-SE, p.hat + gnorm(1-«/2)-SE)

>y <= 700

> n <= 1000

> p.hat <- y/n

> se <- sqgrt (p.hat*(l-p.hat)/n)

> (int.95 <- p.hat + gnorm(c(.025,.975)) *se)
[1] 0.6715974 0.7284026

> (int.95.approx <- p.hat + c(-2,2) *se)

[1] 0.6710172 0.7289828
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‘ Confidence Intervals: Simulation

= Suppose we survey men and women’s attitudes
toward death penalty
o 375 of 500 men favor death penalty (75%)
o 325 of 500 women favor death penalty (65%)

m The ratio of support of men to women is
0.75/0.65 = 1.15.

= How could we build a confidence interval for this
ratio (as a way of estimating the ratio in the full
population that these men and women were
samped from)?
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‘ Confidence Intervals: Simulation

n.men <- 500
p.-hat.men <- 0.75
se.men <- sqgrt (p.hat.men* (l1-p.hat.men)/n.men)

vV V V

\%

n.women <- 500
p.hat.women <- 0.65
se.women <- sqgrt (p.hat.women* (1-p.hat.women)/n.women)

\YARY,

n.sims <- 10000
p.men <- rnorm (n.sims, p.hat.men, se.men)
p.women <- rnorm (n.sims, p.hat.women, se.women)
(ratio <- p.men/p.women)

[1] 1.1363384 1.1389650 1.0696729 ... e e
[9997] 1.1661268 1.1745934 1.0499191 1.1391952
> (int.95 <- quantile (ratio, c(.025,.975)))

2.5% 97.5%
1.062888 1.251581

vV V V V
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‘ Hypothesis Testing

= Deciding about a null Hypothesis H, vs an
alternative Hypothesis H,

m Key question: is the data very unlikely under the
null hypothesis?

o If the data is unlikely under the null hypothesis this is
evidence to reject H,

o If the data seem pretty likely under the null
hypothesis, then we can’t reject H,
m Logic of tradit. hypothesis testing never allows us
to accept H, or H,, only to assess evidence
against H,, reject H, with some confidence
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Hypothesis Testing by Eyeballing
Confidence Intervals

If the parameter value under H, is not in the 95%
confidence interval, we reject H, at level a:=0.05.

In the normal-data Cl example, let’s test H,: 4=35. Since
the 95% Cl was (33.8, 37.8), and 35 is in this interval, we
fail to reject at «=0.05.

In the binomial proportion example, let’s test H,: p=0.65.
Since the 95% Cl was (0.67, 0.73), we reject H, at @=0.05

In the death penalty example, is it plausible that men and
women think equally of the death penalty (H,: ratio=1)?
The 95% Cl was (1.06, 1.25), so we would reject ratio=1
at the a=0.05 level.
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Hypothesis Testing Using a Null
Distribution

A sample of 50 people are asked their favorite color and also
asked to take an introversion / extroversion test.

Ho: these are independent factors; H,: dependent

Observed Blue Red Yellow |TOTAL
Counts

Introverted 5 20 5 30
Extroverted |10 5 5 20
TOTAL 15 25 10 50

9/

5/2016

24



Hypothesis Testing Using a Null
Distribution

m The “expected” counts under H,: independence are
(row total)*(column total)/(grand total)

Expected Blue Red Yellow |TOTAL
Counts

Introverted 9 15 6 30
Extroverted |6 10 4 20
TOTAL 15 25 10 50
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Hypothesis Testing Using a Null
Distribution

m The Chi-squared test statistic is

2

9 5 (obs;; — exp; -)2
=) ) —- I —9.03

EXPij

i=1 j=1
= The model for this statistic under H, is chi-
squared on k df, where k=(rows-1)*(cols-1)=2

= Our data would be unlikely if our test statistic is
far out in the tail of this model

o If our data is unlikely under the H, model, reject H,
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Hypothesis Testing Using a Null
Distribution

0.5

psy.table <- matrix(c(5,20,5,10,5,5),byrow=T,nrow=2)

row.sums <- apply(psy.table,1,sum)
col.sums <- apply(psy.table,2,sum)
expected <- outer(row.sums,col.sums)/sum(psy.table)

0.4
|

(chi.sq <- sum((psy.table-expected)"2/expected))

[1]19.027778

plot(function(x) { dchisq(x,df=2) }, from=0, to=12,
ylab="Density")

lines(c(chi.sq,chi.sq),c(-1,2*dchisq(chi.sq,df=2)))

abline(h=0)

pchisq(9.02,2,lower=F)

[1] 0.01099846

0.3

Density

P[worse than 9.02|H,]
=0.01 roughly

0.1

= Since P[worse data than 9.02 |
Hol = 0.01 (small), we can reject  ~ % ‘ ‘ : : : :

0

H,: color preference and R
introversion aren’t independent!
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‘ Hypothesis Testing Using Simulation

= We want to know if we can compare mean test scores of
students in two schools. If the variances of the test
scores in the two schoosl| are similar, we can compare
means with a two-sample t-test.
o School A: n, = 130 students, s?a = 25.1
o School B: ng = 120 students, s = 20.9

m There is an exact F-test (assuming the test scores are
normally distributed) but rather than look it up, let’s
proceed by simulation.
0 Hyo%a/o%=1

o Hu:inot
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‘ Hypothesis Testing Using Simulation

> nsims <- 10000 > worse <- (obsd.ratio <= ratios)

> >

>n.A<-130 > (pval <- sum(worse)/nsims)
>s2.A<-251 [1] 0.1544

> >

>n.B<-120 > plot(density(ratios),main="Density of
>s2.B<-20.9 ratios",xlab="Ratios",ylab="Density")

> > lines(c(obsd.ratio,obsd.ratio),c(0,1.85))
> (obsd.ratio <- 25.1/20.9) > # see plot on next page...

[1] 1.200957

> s2.pooled <- (s2.A*(n.A-1) + s2.B*(n.B-1))/(n. A+ n.B - 1)

> sims.A <- matrix(rnorm(nsims*n.A,0,sqrt(s2.pooled)),byrow=T,nrow=nsims)
> vars.A <- apply(sims.A,1,var)

>

> sims.B <- matrix(rnorm(nsims*n.B,0,sqrt(s2.pooled)),byrow=T,nrow=nsims)
> vars.B <- apply(sims.B,1,var)

>

> ratios <- vars.A/vars.B
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‘ Hypothesis Testing Using Simulation

Density of ratios

= Since P[worse o
data than 1.2 | Plworse than
Hol = 0.1544 @ 12| H 0] =
(big), we cannot 0.1544

Density
1.0

reject H,: the
variances in the
two groups
effectively the
same.

0.5
|

0.0

05 10 \ 20
Ratios
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‘ Summary
m What is Statistics For?
m Distributions as Models
m Confidence Intervals
= Hypothesis Tests

m G&H Ch’s 3-4 — start reading now
o | will not cover everything in the chapters
o You will need to read & try some things on your own!

= Office Hours
m HWO02 Due next Tues Sep 13
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