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Logistic Regression

� Basic Setup

� y = 0 or 1, indicating some outcome of interest (passed 

test, responded to treatment, is a water well of type A 

rather than type B, switched brands of soap, etc.)

� x1, x2, …, xk are continuous or discrete predictor 

variables (income, SES, test score, mother’s IQ, 

amount of sulphur, parents divorced, etc.)

� We want to build a linear model to predict y 

from the x’s, just like linear regression
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Logistic Regression

� The linear regression model was

� Each yi has some mean θi = E[yi]

� Each θi has some linear structure

� There is a statistical distribution N( *, σ) that 

describes unmodeled variation around θi

� Obviously y = 0 or 1 cannot have a normal 

distribution, but we want the same structure!
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Logistic Regression

� By analogy with linear regression, we model as

� Since pi ǫ [0,1], we often use an S-shaped 
function to stretch pi out to the whole real line 
(so unrestricted linear modeling is possible)

� Some choices:

� Tangent function: 

� Probit function: 

� Logit function:
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Aside… S –shaped Functions

curve(tan(pi*(x-1/2)),xlab="p",ylab=expression(tan(pi*(p-1/2))))

curve(qnorm(x),xlab="p",ylab=expression({Phi^{-1}}(p)))

curve(log(x/(1-x)),xlab="p",ylab=expression(log(p/(1-p))))
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Logistic Regression
� The logistic regression model is:

� Two useful functions:

(sometimes invlogit known as “expit”…)

logit <- function (p) { log(p/(1-p)) }

invlogit <- function(x) {exp(x)/(1 + exp(x))}
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Interpreting the Coefficients

�

� Difficult to predict effect 

of change from xi to xi + 1 

on pi because it depends 

on where pi (or xi) is!

� Maximum effect when

β + β xi = 0; can show 

the effect is to change pi

by β/4 

(“divide by 4” rule)
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Interpreting the Coefficients

�

� Oi = pi/(1-pi) is the Odds

� If there is a 50-50 chance, pi=1/2, and so Oi = 1 (even 
odds)

� If pi = 1/3 then Oi =1/2, two-to-one odds against

� log Oi = log-odds (logit)

� Going from xi to xi+1 produces 

� An additive change of β in the log-odds

� A multiplicative change of eβ in the odds

� No matter where xi or pi are!
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� The log-odds (logit) form

has the same interpretation as before: a change 

from xj to xj + 1 produces a change of βj in the log 

odds

� Assumes xj can be manipulated w/o changing other x’s

Interpreting the Coefficients

� When there is more than one predictor

is useful for prediction, but difficult to interpret
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Digression: Odds Ratios
� If p1 and p2 are probabilities with odds O1 = p1/(1-p1) and 

O2 = p2/(1-p2) then OR12 = O1/O2 is the odds ratio

� If p1 = 2/3 and p2 = 1/3 then OR12 = 2/(1/2) = 4, so the odds of 

event 1 are 4 times the odds of event 2.

� log(OR12) is the log odds ratio

� Suppose 

then

� βj is the log-odds ratio for going from xj to xj + 1
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Example
� Mosteller & Tukey (1977) data on average verbal test 

scores for 6th graders at 20 mid-Atlantic schools taken from 
The Coleman Report:

� X1 = staff salaries per pupil; X2 = percent of fathers in white 
collar jobs; X3 = socioeconomic status; X4 = average verbal 
test scores for teachers at each school; X5 = (mothers’ 
years of schooling)/2; Z = mean verbat test scores for 
students at each school; and  Y = 1 if Z > 37 and Y = 0 if not

X1    X2     X3    X4   X5 Y     Z

1  3.83 28.87   7.20 26.60 6.19 1 37.01

2  2.89 20.10 -11.71 24.40 5.17 0 26.51

.

.

.

20 2.37 76.73  12.77 24.51 6.96 1 41.01
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Example, Cont’d

� We begin by fitting an additive (main effects 

only) logistic regression to the above data
> schools <- read.table("mosteller-tukey.txt")

> summary(fit0 <- glm(y ~ x1 + x2 + x3 +x4 +x5,data=schools,family=binomial))

Call:

glm(formula = y ~ x1 + x2 + x3 + x4 + x5, family = binomial,data = schools)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept)  -4.5635    33.1771  -0.138    0.891

x1            2.1346     3.3235   0.642    0.521

x2            0.1135     0.1592   0.713    0.476

x3            0.9789     0.8487   1.153    0.249

x4            2.0242     1.3251   1.528    0.127

x5          -10.0928     9.7992  -1.030    0.303

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.526  on 19  degrees of freedom

Residual deviance:  8.343  on 14  degrees of freedom

AIC: 20.343

No R2 but think of
this as a χ2 test

of fit…
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Interpreting the Coefficients, Cont’d

� Reading off the coefficients table in the example,

� If we increase staff salaries per pupil by 1 unit, the 

model predicts an increase in log-odds of a successful 

school of 2.13;

� If we increase the percent of fathers in white collar 

jobs by one unit, the model predicts an increase in log-

odds of a successful school increase by 0.11; etc.

� This assumes we can manipulate xj, and can do so 

without affecting the other xj’s! 
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Interpreting the Coefficients, Cont’d
� When βj is (insignificantly different from) zero, we can infer that y 

and xj are independent, conditional on the other x’s in the model

� In our example, none of the coefficients are significantly different 

from zero! Same sorts of suspects as with ordinary linear 

regression:

� Small sample size—only 20 observations

� Collinearity in the x’s—indeed:

> X <- model.matrix(fit0)

> cor(X[,-1])

x1         x2        x3         x4        x5

x1 1.0000000 0.18113980 0.2296278 0.50266385 0.1967731

x2 0.1811398 1.00000000 0.8271829 0.05105812 0.9271008

x3 0.2296278 0.82718291 1.0000000 0.18332924 0.8190633

x4 0.5026638 0.05105812 0.1833292 1.00000000 0.1238087

x5 0.1967731 0.92710081 0.8190633 0.12380866 1.0000000
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Improving the Model

� Improving logistic regression models is like improving 

linear regression models

� Add variables and interactions that make sense

� Add variables and interactions if they greatly increase R2, or if 

they improve residuals, etc.

� Transform X variables to improve interpretation and fitting

� Unlike lm(), glm() does not report R2.  Instead it reports 

AIC:

� AIC = -2*log(likelihood) + 2*(df)                 [small is good]

� Like a likelihood ratio test, but penalized for the complexity of 

the model (df = number of regression coefficients)
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Improving the Model

� stepAIC() in library(MASS) will search through a 

set of models, minimizing AIC.
> library(MASS)

> basemodel <- glm(y  ̃x1 + x2 + x3 +x4 + x5 ,

+  data=schools,family=binomial)

> fit1 <- eval(stepAIC(basemodel, scope=list(lower=. ̃1,

+ upper=.x̃1 + x2 + x3 +x4 + x5,k=2))$call)

> anova(fit1,fit0,test="Chisq")

Analysis of Deviance Table

Model 1: y  ̃x3 + x4

Model 2: y  ̃x1 + x2 + x3 + x4 + x5

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 17 10.1414

2 14 8.3429 3 1.7984 0.6153

> summary(fit1)$coef

Estimate Std. Error   z value   Pr(>|z|)

(Intercept) -41.8188263 24.5239239 -1.705226 0.08815233

x3            0.3646223  0.1798581  2.027277 0.04263408

x4            1.5614704  0.9427877  1.656227 0.09767586

Chi-squared test

finds no evidence 

against smaller model

ses

tchr sco
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Improving the Model

� If we try to expand the model to consider 

interactions of all orders, something interesting 

happens:
> fit2 <- eval(stepAIC(basemodel,

+ scope=list(lower=.~ 1,

+ upper=.~(x1 + x2 + x3 +x4 + x5)^5,k=2))$call)

y ~ x3 + x4 + x5 + x4:x5

Df Deviance    AIC

<none>       0.0000 10.000

+ x3:x5  1   0.0000 12.000

+ x3:x4  1   0.0000 12.000

+ x1     1   0.0000 12.000

+ x2     1   0.0000 12.000

- x3     1   9.2741 17.274

- x4:x5  1   9.2821 17.282

There were 50 or more warnings 

(use warnings() to see the first 50)

> warnings()

Warning messages:

1: glm.fit: fitted probabilities 

numerically 0 or 1 occurred

2: glm.fit: algorithm did not converge

3: glm.fit: fitted probabilities 

numerically 0 or 1 occurred

4: glm.fit: algorithm did not converge

5: glm.fit: fitted probabilities 

numerically 0 or 1 occurred
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Overfitting and Identifiability

� Comparing fitted(fit2) to the actual y’s you will 
see that they agree closely:

� log pi/(1-pi) can’t be evaluated accurately when p 
≈ 0 or 1.  Estimates of the regression coefficients 
can go haywire too.

> y - fitted(fit2)

1             2             3             4             5 

2.220446e-16 -2.220446e-16 -2.712309e-09  1.053467e-09  2.171825e-10 

6             7             8             9            10 

-2.220446e-16  2.220446e-16 -2.220446e-16  6.313647e-10  2.220446e-16 

11            12            13            14            15 

-2.220446e-16 -2.220446e-16 -2.220446e-16 -2.220446e-16 -2.220446e-16 

16            17            18            19            20 

2.220446e-16 -2.220446e-16 -2.220446e-16  1.574083e-09  2.220446e-16 
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The Effect of Dichotomization
� Finally we recall that y is a dichotomized version of z: y = 1 if z > 37; 

otherwise y = 0

� Even though the stepwise procedure had access to interactions of all 
orders, the interaction x4*x5 was not in the final model for z.

� This suggests that the x4*x5 interaction was more useful for predicting 
the simpler response y (dichotomized z) than for predicting the more 
complex response z itself.

� We should dichotomize with care, and then only if the substantive 
question requires it.

� Dichotomization always changes the information in the data.

� If you must dichotomize, I’d suggest doing a sensitivity analysis (try 
different dichotomizations and see how that affects the results).

> basemodel <- lm(z  ̃x1 + x2 + x3 +x4 + x5 ,data=schools)

> norm1 <- eval(stepAIC(basemodel,

scope=list(lower=. ̃1,

upper=.(̃x1 + x2 + x3 +x4 + x5)ˆ5),

k=2)$call) # k=2 for AIC

> norm1$call

lm(formula = z  ̃x1 + x3 + x4, data = schools)
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Assessing Residuals

par(mfrow=c(2,2))

plot(fit0,

add.smooth=F)

� Residual plots for logistic 

regression usually look 

terrible!

� Fit is pretty good:

� Resid deviance = 8.3

� Good fit: χ
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Assessing Residuals

� We can make the behavior of the residual plot more like 

residuals in linear regression by binning the data: make 

10 (say) bins of predicted values, and then average the 

y’s in each bin

� library(arm) has the binnedplot() function to help us with 

it.

� The binned plots are not so useful for small data sets like 

the Mosteller/Tukey data (see next page)

� They are more useful in problems with many 

observations to average within each bin
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Binned Residuals for Mosteller/Tukey 

data
> library(arm)

> y <- resid(fit0)

> x <- predict(fit0)

> binnedplot(x,y)

� The dots are average 
residuals within bins of 
fitted values

� The grey lines are 
approximate 95% 
confidence intervals for the 
resduals
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Not so useful for small sample (n=20!)

249/22/2016

Final Example: Wells in Bangladesh

� G&H do extensive exploration of models for this data, 

and it is well worth reading what they do and why they 

do it – much good data analysis common sense here!

� We will fit one of their earlier models to illustrate binned 

residual plots with a bigger data set

� Researchers classified wells as “safe” or “contaminated 

with arsenic” and collected data on families using the 

wells. They encouraged those with unsafe wells to switch 

to safe wells (a neighbor’s well, a community well,  or a 

new well).

� Several years later they came back to see who switched.
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Final Example: Wells in Bangladesh

> wells <- read.table("Ch.5/wells.dat“)

> str(wells)

#'data.frame':   3020 obs. of  5 variables:

# $ switch : int  1 1 0 1 1 1 1 1 1 1 ...            did the family switch wells?

# $ arsenic: num  2.36 0.71 2.07 1.15 1.1 ... how much arsenic in old well?

# $ dist   : num  16.8 47.3 21 21.5 40.9 ...   distance (m) to nearest safe well

# $ assoc  : int  0 0 0 0 1 1 1 0 1 1 ...             anyone in fam active in cmty?

# $ educ   : int  0 0 10 12 14 9 4 10 0 0 ...    education level of head of h'hold

G&H consider many transformations, but one of the first is to rescale dist to 
be dist100 = dist/100 (so its units are now 100’s of meters).
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Bangladesh Wells – Fitting a Simple 

Model

> attach(wells)

> dist100 <- dist/100

> fit.3 <- glm (switch ~ dist100 + arsenic, 

+    family=binomial(link="logit"))

> summary(fit.3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.002749   0.079448   0.035    0.972    

dist100     -0.896644   0.104347  -8.593   <2e-16 ***

arsenic      0.460775   0.041385  11.134   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Null deviance: 4118.1  on 3019  degrees of freedom

Residual deviance: 3930.7  on 3017  degrees of freedom

AIC: 3936.7
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Bangladesh Wells – Plotting P[switch] vs 

distance to safe well

jitter.binary <- function(a, jitt=.05){

ifelse (a==0, runif (length(a), 0, jitt), runif (length(a), 1-

jitt, 1))

}

switch.jitter <- jitter.binary(switch)

plot(dist,switch.jitter,xlim=c(0,max(dist)),ylab="P[switch]")

curve (invlogit(cbind (1, x/100, .5) %*% coef(fit.3)), add=TRUE)

curve (invlogit(cbind (1, x/100, 1.0) %*% coef(fit.3)), add=TRUE)

text (50, .27, "if As = 0.5", adj=0, cex=.8)

text (75, .50, "if As = 1.0", adj=0, cex=.8)

(plot on next page)

289/22/2016

Bangladesh Wells – Plotting P[switch] vs 

distance to safe well

0 50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dist

P
[s

w
it
c
h

]

if As = 0.5

if As = 1.0



299/22/2016

Bangladesh Wells – Plotting P[switch] vs 

arsenic level of old well
plot(arsenic,switch.jitter,xlim=c(0,max(arsenic)),ylab="P[switch]")

curve (invlogit(cbind (1, 0/100,  x) %*% coef(fit.3)), add=TRUE)

curve (invlogit(cbind (1, 50/100, x) %*% coef(fit.3)), add=TRUE)

text (1.5, .78, "if dist = 0", adj=0, cex=.8)

text (2.2, .6, "if dist = 50", adj=0, cex=.8)
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Bangladesh Wells – Standard R Residual 

Plots

par(mfrow=c(2,2))

plot(fit.3)
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Bangladesh – Binned Residuals

par(mfrow=c(1,1))

x <- predict(fit.3)

y <- resid(fit.3)

binnedplot(x,y)
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� Grey lines are 95% envelope

� Inverted U-shape suggests 
transforming one or more x’s
� log(dist), log(arsenic)

� dist + dist^2  …

329/22/2016

Bangladesh – Binned Residuals

0 50 100 150

-0
.2

0
.0

0
.2

0
.4

Binned residual plot

dist

A
v
e

ra
g

e
 r

e
s
id

u
a

l

1 2 3 4 5

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

Binned residual plot

arsenic

A
v
e

ra
g

e
 r

e
s
id

u
a

l

� Little pattern; fit 

seems OK

� Rise and fall suggests 
log(arsenic), etc.
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