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‘ Outline

m Linear Regression, Logistic Regression
m Generalized Linear Models (GLM)

m Example: Poisson Regression
o Exposure and Offsets
o Overdispersion
o Zero-inflation

= |'ve been slow to get hw solutions out but it
should be better now

o HWO1 and HWO02 solutions are online now, and HW03
solutions will be out soon

HWO04 (d ). | onll
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Linear Regression, Logistic Regression

m The linear regression model is:

indep

yi ~ N(0;,0%),i=1,....n
0, = X8 = [iXu+-BeXik

o Eachy; e (-o0, o0) has some mean 6; = E[y|]
o Each 6; has some linear structure

o Thereis a statistical distribution N( *, 2) that describes unmodeled variation
around 6, = E[y|]

m The logistic regression model is:
ind : :
yi |~ Bernoulli(p;), i=1,...,n

= Xif = biXa+-BeXik

0; = log

o Eachye€{0, 1} has some mean p, = E[y,]
o Each 6, = g(p,) has some linear structure [ g(p) = log p/(1-p) ! ]

o Thereis a statistical distribution Bernoulli(*) that describes unmodeled variation
around p, = E[y]
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‘ Generalized Linear Models

m The generalized linear model (gim) is:

ind .
Y anep f(y@m@,), 1 = 1,...,n

0, = glw) = XB = pHhXa+ - BrXik

o Eachy, has some mean p; = E[y|]
o Each 6, = g(u;) has some linear structure [g(x) is the “link function”]

u There is a statistical distribution f(y,| x;, ...) that describes unmodeled variation
around g, = E[y;]

o There may be other parameters “...” in f(y;| i1,, ...) but the “main” parameter is
w; =g*0,) =g(X,0)
m For ordinary linear regression
a flyilpy ) = N(p;,0%) [ = Ely]]
o g(u) = p [the “identity link function”]
= For logistic regression

o f(y:|p;) = Bernoulli(p,) [p; = E[yi]]
o g(p) =log p/(1-p) [the “logit link function”]
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‘ Some Other GLM'’s

m Poisson Regression Model
ovye€e{0,1,2,3,..}
a fy;|A;) = Poiss(A) [A,= Ely/]]
o 0, =log(\) =X,
(confusingly: G&H use #where | use ... sorry!)
m Logistic-Binomial Model (aka logistic regression)
oy e{0,1,..,n;}
a f(y,|p,,n;) = Binomial(n,p,)
0 0;,=log pi/(l'pi) = X8
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A Few More GLM'’s

m Probit Regression Model
o vy, €1{0, 1}
a f(y;|p;) = Bernoulli(p))
o 6.=07p)=Xp0
= Ordered Multinomial Logit Model
oy ef{l,2,..,K}
o fy;I iy, - Pik): PLy>K] = Py k=1, .. K-1
o 6, =logp,/(1-p,) =XB-c, k=1,..K-1
o This is one kind of “multinomial regression” model
-- there are many others!
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Poisson Regression Example

m Poisson Regression Model

oy e{0,1,2,3,..}

a f(y,| A,) = Poiss(A) [\, = Ely/]]

o 0,=log(\;,) =X 0
= We will fit this model to data, and then look at

some modifications of the model involving

o offsets

0 overdispersion

o zero-inflation

(the same kinds of modifications can be helpful
with logistic regression and other GLM’s...)
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Poisson Regression — The Data

= Data from an experiment on the effectiveness of
an "integrated pest management system" in
apartment buildings in a particular city (from
G&H Ch 8).

roachdata <- read.csv

str (roachdata)

'data.frame':
$ X
$y
$ roachl
$ treatment:
$ senior
S exposure?2:

262 obs.

: int
: int
: num

int

: int

num

12345
153 127 7 7

of 6 v
6 7
0

a

308 331.25 1.6

1111
0000
6111

r
8
0
1
0
1

("roachdata.csv")

iables:

4

[observation number]

[# of roaches trapped after expmt]
[# of roaches before experiment]
[pest mgmt tx in this apt bldg?]
[apts restricted to sr citzns?]
[avg # of trap-days per apt for y]
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‘ Poisson Regression — Fitting the Model

> glm.0 <- glm (y ~ roachl + treatment + senior,
Family=poisson)

> summary (glm.O0)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.136e+00 2.124e-02 147.064 <2e-16 ***

roachl 6.444e-03 8.832e-05 72.97 <2e-16 **xx*
treatment -5.124e-01 2.465e-02 -20.79 <2e-16 **xx*
senior -3.760e-01 3.355e-02 -11.21 <2e-16 **xx*
Ai = E[Y]]
logA; = 3.144 0.00064(roachl) — 0.5(treatment) — 0.38(senior)
Ai = exp(3.14 4+ 0.00064(roachl) — 0.5(treatment) — 0.38(senior))

= exp(3.14) exp(0.00064(roachl)) exp(—0.5(treatment)) exp(—0.38(senior))
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Poisson Regression — Interpreting the
Coefficients

= Intercept = 3.14: exp(3.14) = 23.10is the average # of roaches
trapped gafter the experiment, in an apt bldg with no roaches before
the experiment (roach1=0), no treatment (treatment=0) and not a
seniors' building (senior=0).
o Inthis case there are about 60 buildings with no roaches at the start of
the experiment, so this is probably a meaningful description

= roachl = 0.00644. exp(0.00644) = 1.006 is the factor increase in
average roaches caught after the experiment, per roach caught before
the experiment (does this make sense?).

m treatment =-0.512: exp(-0.512)=0.60 is the factor reduction in
average roaches caught after the experiment, due to treatment

m senior =-0.38: exp(-0.38) = 0.68 is the factor reduction in the
average roaches caught after the experiment, due to being a senior
bldg
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Poisson Regression - Exposure

= We have not made use of exposure2 = average
number of trap-days

o If twice as many traps, expect to catch 2x roaches
o If 3 times as many days, expect to catch 3x roaches

= To accommodate this multiplicative effect, we
can try
)\7; — Uy, GXiB

where u, = exposure2.
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Poisson Regression — Exposure

= Taking logs, the “linear regression” form is
log(A;) = log(u;) + X;8

This is like including log(u,) in the model, and basically
forcing its coefficient to be exactly 1.

= In R we accomplish this with the “offset” argument
= This makes interpretation of the coefficients easier

o coefficients measure deviations from expected counts under the
various numbers of trap-days

o This “unconfounds” exposure from treatment, bldg type, etc.
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‘ Poisson Regression — Exposure and

Offsets

> glm.1 <- glm

senior, familvyv=poisson,
offset=1log(exposurez))

> round (cbind(glm.0O=coef (glm.0),

glm.l=coef (glm.1)),4)

(y ~ roachl + treatment +

glmO glml
(Intercept) 3.1360 3.0892
roachl 0.0064 0.0070
treatment -0.5124 -0.5167
senior -0.3760 -0.3799
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Poisson Regression — Looking at
R e S i d u a I S < Residuals vs Fitted . Normal Q-Q —
par(mfrow=c(2,2))  *© i :
plot(gim.1) gi: ¢ ,ﬂ—‘//f,
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Poisson Regression — Looking at
Residuals

par (mfrow=c(3,1))

xvar <- predict(glm.1)
yvar <- resid(glm.1)
binnedplot (xvar, yvar) : ) " st

Binned residual plot

Binned residual plot

xvar <- roachl

binnedplot (xvar, yvar, xlab
="Number of Roaches at - : ‘ ‘ ‘ ‘
Start of Experiment") 0 w o 0 = =

ey

xvar <- log(exposure?)

binnedplot (xvar, yvar, xlab
="Number of Trap-Days
Used in Data 06 -04 -02 O‘O 02 04 06
Collection") Nrborf Tap oys L st Glcton
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Poisson Regression — Testing Lack of Fit

= If y, ~ Poisson(),;) then the standardized residual

Yi — A

Vi

is approximately normal, so that

n
2
27
i=1

should follow a x2 distribution on n —k df

Zp =

0 n=sample size, k = number of betas in the model
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Poisson Regression — Testing Lack of Fit

> E.y. <- > test.statistic
predict(glm.1,type="response")

icic * * |
>7<-(y - E.y.)/sqrt(E.y.) [1] 16883.04 # this is *huge™!

> n-k
> test.statistic <- sum(z”2)

[1] 258
> n <- length(y)

> k <- length(coef(glm.1)) > test.statistic/(n-k)

[1] 65.43815
> pchisq(test.statistic,n- )
k,lower.tail=F) We found that the residuals are

extremely overdispersed: the
variability of the z's is about 65
times what it should be!

[1]0
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Poisson Regression - Overdispersion

= We can adjust our inferences for overdispersion by
adjusting the standard errors of the coefficients:

round (coef (summary (glm.1)) [,1:2],2)
# Estimate Std. Error
# (Intercept) 3.09 0.02
# roachl 0.01 0.00
# treatment -0.52 0.02
# senior \
After adjusting, every-
round (coef (summary (glm.1)) [,1:2] %*% thing remains signifi-
diag(c(1l,sgrt (test.statistic/ (n-k)))),2) cant, except for “senior”
4 [,1]1 [,2] housing status.
# (Intercept) 3.09 0.17
4 roachl 0.01 0.00 /
# treatment -0.52 0.20
# senior -0.38 0.27
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Poisson Regression - Overdispersion

= We can also get R to estimate the overdispersed
poisson regression model directly.

> glm.2 <- glm (y ~ roachl + treatment + senior,(family=quasipoisson

offset=log (exposure?))
> summary (glm.2)

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 3.0892463 0.1717721 17.985 <2e-16 ***
roachl 0.0069829 0.0007179 9.727 <2e-16 ***
treatment -0.5167262 0.2001254 -2.582 0.0104 =
senior -0.3798751 0.2703380 -1.405 0.1612

Signif. codes: Q0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 *." 0.1 Y"1
(Dispersion parameter for quasipoisson family taken to be (65.4403)
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Poisson Regression — Zero Inflation

= If we explore the data a little more we find that there
may be too many zeros for the Poisson model to fit well:

> stem(y)

The decimal point is 1 digit(s) to the right of the |

0 | 00000000000000000000000000000000000000000000000000000000000000000000+111

2 | 011244566778923477888

4 | 02458889000399

6 | 0234993777

8 | 081

10 | 249

12 | 0127756

14 | 8039

16 | 189 > length(y) > tbl

18 | 33 [1] 262 obs exp
20 | 3 > (lambda <- mean(y)) [1,] 94 1.899537e-09
22 | [1] 25.65 [2,] 20 4.872313e-08
24 | 3 > tbl <- NULL [3,1] 11 6.248742e-07
26 | > for (k 1nIO:5) { [4,] 10 5.342674e-06
28 | 3 + tbl <- rbind(tbl, c(obs=sum(y==k), [5,] 7 3.425990e-05
30 | + exp=262*exp (-25.65)* 25.65"k / 6, ] 7 1.757533e-04
32 | + factorial(k)))
34 | 7 t
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Poisson Regression — Zero Inflation

m In cases like this it can also be useful to
separately model

o What distinguishes zero-cockroach buildings from
others; and

o what drives cockroach counts in the buildings that
have them
= We combine a logistic regression analysis and a
Poisson regression analysis to try to answer these
guestions
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Poisson Regression — Zero Inflation

> some.cockroaches <- > glm.3 <- glm (y ~ roachl + treatment

ifelse(y>0, 1, 0) + senior, family=quasipoissen
offset=1log (exposure2) {subset = (y>0))

> zero.fit <-

glm (some.cockroaches ~ roachl > display(glm.3)
+ treatment + senior +
exposure2, family=binomial) glm(formula = y ~ roachl + treatment +
senior, family = quasipoisson,
> display(zero.fit) subset = (y > 0), offset =

log (exposure2))
coef.est coef.se

glm (formula = some.cockroaches ~
roachl treatment + senior + (Intercept) 3.49 0.16
exposure2, family = binomial)  roachl 0.01 0.00
coef.est coef.se treatment -0.47 0.19
(Intercept) 0.85 0.57 senior —0.22 0.26
roachl 0.03 0.01 o 168 K - 4
treatment -0.64 0.30 o= ! B

residual deviance = 7764.6, null

senior w deviance = 10979.5 (difference =
exposure? 3214.9)

. overdispersion parameter = 61.2
n =262, k=5 \
residual deviance = 281.7, Everything is a significant predictor,

null deviance = 342.0
(difference = 60.3) except for # of trap-days
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Poisson Regression — Zero Inflation

m A building with no roaches at the start of the experiment
(roach1=0) in the treatment group (treatment=1) that is
a seniors’ building (senior=1) with 1.5 trap-days
(exposure2=1.5) has probability

invlogit(0.85 + (0)*(0.03) + (-0.64)*(1) +
(-0.86)*(1) + (1.5)*(-0.20)) = 0.28
of having roaches at the end of the experiment

m Given that the building does have roaches at the end, the
expected number of roaches is

exp(log(1.5) + 3.48 + (0)*(0.0056) +
(1)*(-0.47) + (1)*(-0.22)) = 25
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‘Summary

m Linear Regression, Logistic Regression
= Generalized Linear Models (GLM)
Example: Poisson Regression

0o Exposure and Offsets
o Overdispersion
o Zero-inflation

= HWO04 is posted online
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