36-463/663: Multilevel & Hierarchical Models

Generalized Linear Models Brian Junker 132E Baker Hall brian@stat.cmu.edu

9/19/2016

Outline

- Linear Regression, Logistic Regression
- Generalized Linear Models (GLM)
- Example: Poisson Regression
 - Exposure and Offsets
 - Overdispersion
 - Zero-inflation
- I've been slow to get hw solutions out but it should be better now
 - HW01 and HW02 solutions are online now, and HW03 solutions will be out soon
- HW04 (due next week) is posted online

Linear Regression, Logistic Regression

The <u>linear regression</u> model is:

$$y_i \stackrel{indep}{\sim} N(\theta_i, \sigma^2), \ i = 1, \dots, n$$

$$\theta_i = X_i \beta = \beta_1 X_{i1} + \cdots + \beta_k X_{ik}$$

- □ Each $y_i \in (-\infty, \infty)$ has some mean $\theta_i = E[y_i]$
- Each θ_i has some linear structure
- There is a statistical distribution N(*, σ^2) that describes unmodeled variation around $\theta_i = E[y_i]$
- The <u>logistic regression</u> model is:

$$y_i \stackrel{indep}{\sim} Bernoulli(p_i), \ i = 1, \dots, n$$

$$\theta_i = \log \frac{p_i}{1 - p_i} = X_i \beta = \beta_1 X_{i1} + \dots + \beta_k X_{ik}$$

- **Each** y ϵ {0, 1} has some mean p_i = E[y_i]
- □ Each $\theta_i = g(p_i)$ has some linear structure [$g(p) = \log p/(1-p)$!]
- There is a statistical distribution Bernoulli(*) that describes unmodeled variation around p_i = E[y_i]

9/19/2016

Generalized Linear Models

The generalized linear model (glm) is:

$$y_i \stackrel{indep}{\sim} f(y_i|\mu_i,\ldots), \ i = 1,\ldots,n$$

$$\theta_i = g(\mu_i) = X_i\beta = \beta_1 X_{i1} + \cdots + \beta_k X_{ik}$$

- Each y_i has some mean $\mu_i = E[y_i]$
- □ Each $\theta_i = g(\mu_i)$ has some linear structure [g(μ) is the "link function"]
- There is a statistical distribution $f(y_i | \mu_i, ...)$ that describes unmodeled variation around $\mu_i = E[y_i]$
- □ There may be other parameters "…" in $f(y_i | \mu_i, ...)$ but the "main" parameter is $\mu_i = g^{-1}(\theta_i) = g^{-1}(X_i\beta)$
- For <u>ordinary linear regression</u>
 - $\Box \quad f(y_{i} | \mu_{i}, ...) = N(\mu_{i}, \sigma^{2}) \quad [\mu_{i} = E[y_{i}]]$
 - \Box g(μ) = μ [the "identity link function"]
- For <u>logistic regression</u>
 - $\Box f(y_i | p_i) = Bernoulli(p_i) [p_i = E[y_i]]$
 - □ g(p) = log p/(1-p) [the "logit link function"]

Some Other GLM's

- Poisson Regression Model
 - \Box y_i ϵ {0, 1, 2, 3, ...}
 - $\Box f(\mathbf{y}_i | \lambda_i) = Poiss(\lambda_i) [\lambda_i = E[\mathbf{y}_i]]$
 - $\theta_{i} = \log(\lambda_{i}) = X_{i} \beta$ (confusingly: G&H use θ where I use λ ... sorry!)
- Logistic-Binomial Model (aka logistic regression)
 - $\Box \ \mathbf{y_i} \ \epsilon \ \{\mathbf{0, 1, ..., n_i}\}$
 - $\Box f(y_i | p_i, n_i) = Binomial(n_i, p_i)$
 - $\Box \quad \theta_i = \log p_i / (1 p_i) = X_i \beta$

9/19/2016

A Few More GLM's

- Probit Regression Model
 - \square y_i ϵ {0, 1}
 - $\Box f(y_i | p_i) = Bernoulli(p_i)$
 - $\Box \quad \theta_i = \Phi^{-1}(\mathbf{p}_i) = \mathbf{X}_i \beta$
- Ordered Multinomial Logit Model
 - □ y_i *ε* {1, 2, ..., K}
 - □ $f(y_i | p_{i1}, ..., p_{iK})$: $P[y_i > k] = p_{ik}$ k = 1, ..., K-1
 - $\square \ \theta_i = \log p_{ik} / (1 p_{ik}) = X_i \beta c_k \qquad k = 1, ..., K-1$
 - This is one kind of "<u>multinomial regression</u>" model
 - -- there are many others!

Poisson Regression Example

- Poisson Regression Model
 - \Box y_i ϵ {0, 1, 2, 3, ...}
 - $\Box f(y_i | \lambda_i) = Poiss(\lambda_i) [\lambda_i = E[y_i]]$
 - $\Box \quad \theta_i = \log(\lambda_i) = X_i \beta$
- We will fit this model to data, and then look at some modifications of the model involving
 - offsets
 - overdispersion
 - zero-inflation

(the same kinds of modifications can be helpful with logistic regression and other GLM's...)

9/19/2016

Poisson Regression – The Data

 Data from an experiment on the effectiveness of an "integrated pest management system" in apartment buildings in a particular city (from G&H Ch 8).

Poisson Regression – Fitting the Model

```
> glm.0 <- glm (y ~ roach1 + treatment + senior,
  (family=poisson)
> summary(glm.0)
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
               3.136e+00 2.124e-02 147.64
(Intercept)
                                                   <2e-16 ***
                                                   <2e-16 ***
               6.444e-03 8.832e-05 72.97
roach1
treatment
              -5.124e-01 2.465e-02 -20.79
                                                   <2e-16 ***
                            3.355e-02
                                        -11.21
senior
              -3.760e-01
                                                   <2e-16 ***
  \lambda_i = E[Y_i]
\log \lambda_i = 3.14 + 0.00064(roach1) - 0.5(treatment) - 0.38(senior)
  \lambda_i
      = \exp(3.14 + 0.00064(roach1) - 0.5(treatment) - 0.38(senior))
      = \exp(3.14) \exp(0.00064(roach1)) \exp(-0.5(treatment)) \exp(-0.38(senior))
```

9/19/2016

Poisson Regression – Interpreting the Coefficients

- Intercept = 3.14: exp(3.14) = 23.10 is the average # of roaches trapped <u>after</u> the experiment, in an apt bldg with no roaches <u>before</u> the experiment (roach1=0), no treatment (treatment=0) and not a seniors' building (senior=0).
 - In this case there are about 60 buildings with no roaches at the start of the experiment, so this is probably a meaningful description
- roach1 = 0.00644: exp(0.00644) = 1.006 is the factor increase in average roaches caught <u>after</u> the experiment, per roach caught <u>before</u> the experiment (does this make sense?).
- <u>treatment = -0.512</u>: exp(-0.512) = 0.60 is the factor reduction in average roaches caught <u>after</u> the experiment, due to treatment
- <u>senior = -0.38</u>: exp(-0.38) = 0.68 is the factor reduction in the average roaches caught <u>after</u> the experiment, due to being a senior bldg

Poisson Regression - Exposure

- We have not made use of exposure2 = average number of trap-days
 - □ If twice as many traps, expect to catch 2x roaches
 - □ If 3 times as many days, expect to catch 3x roaches
- To accommodate this multiplicative effect, we can try

$$\lambda_i = u_i e^{X_i \beta}$$

where $u_i = exposure2$.

9/19/2016

11

Poisson Regression – Exposure

Taking logs, the "linear regression" form is

$$\log(\lambda_i) = \log(u_i) + X_i\beta$$

This is like including $log(u_i)$ in the model, and basically forcing its coefficient to be exactly 1.

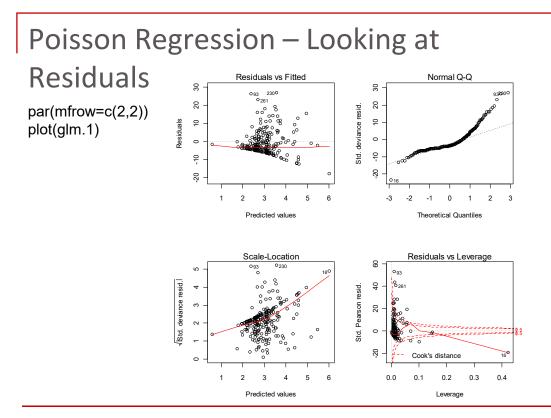
- In R we accomplish this with the "offset" argument
- This makes interpretation of the coefficients easier
 - coefficients measure deviations from expected counts under the various numbers of trap-days
 - □ This "unconfounds" exposure from treatment, bldg type, etc.

Poisson Regression – Exposure and Offsets

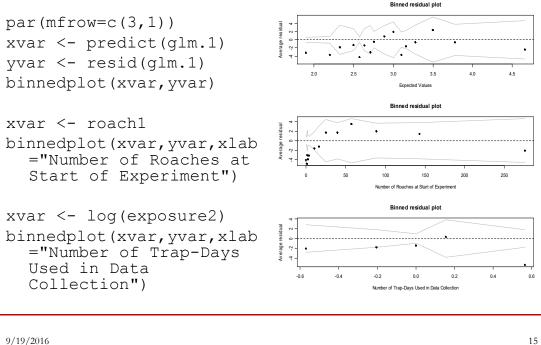
- > glm.1 <- glm (y ~ roach1 + treatment + senior, family=poisson, offset=log(exposure2))
- > round(cbind(glm.0=coef(glm.0),
 glm.1=coef(glm.1)),4)

	glm0	glml
(Intercept)	3.1360	3.0892
roach1	0.0064	0.0070
treatment	-0.5124	-0.5167
senior	-0.3760	-0.3799

9/19/2016



Poisson Regression – Looking at Residuals



Poisson Regression – Testing Lack of Fit

If y_i ~ Poisson(λ_i) then the standardized residual $z_i = rac{y_i - \lambda_i}{\sqrt{\lambda_i}}$

is approximately normal, so that

$$\sum_{i=1}^{n} z_i^2$$

should follow a χ^2 distribution on n – k df n = sample size, k = number of betas in the model

Poisson Regression – Testing Lack of Fit

> E.y. <-	> test.statistic	
predict(glm.1,type="response" > z <- (y - E.y.)/sqrt(E.y.)	") [1] 16883.04 # this is *huge*!	
> test.statistic <- sum(z^2)	> n-k	
	[1] 258	
> n <- length(y) > k <- length(coef(glm.1))	> test.statistic/(n-k)	
	[1] 65.43815	
<pre>> pchisq(test.statistic,n- k,lower.tail=F)</pre>	We found that the residuals are	
	extremely <u>overdispersed</u> : the	
[1] 0	variability of the z's is about 65	
	times what it should be!	

9/19/2016

17

Poisson Regression - Overdispersion

 We can adjust our inferences for overdispersion by adjusting the standard errors of the coefficients:

round(coef(sum	nmary(glm.1))	[,1:2],2)	
#	Estimate Sto	l. Error	
<pre># (Intercept)</pre>	3.09	0.02	
# roach1	0.01	0.00	
<pre># treatment</pre>	-0.52	0.02	
# senior	-0.38	0.03	
			— After adjusting, every-
round(coef(sum	mary(alm 1))	[1·2] º*º	thing remains signifi-
	1 . 2	stic/(n-k)))),2	cant, except for "senior"
	1 . 2		
diag(c(1,sq	t(test.stati		cant, except for "senior"
diag(c(1,sq) #	rt(test.stati [,1] [,2]		cant, except for "senior"
<pre>diag(c(1,sq) # # (Intercept)</pre>	t(test.stati [,1] [,2] 3.09 0.17		cant, except for "senior"

Poisson Regression - Overdispersion

 We can also get R to estimate the overdispersed poisson regression model directly.

```
> glm.2 <- glm (y ~ roach1 + treatment + senior, family=quasipoisson)
  offset=log(exposure2))
> summary(glm.2)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0892463 0.1717721 17.985
                                         <2e-16 ***
           0.0069829 0.0007179
                                 9.727
                                         <2e-16 ***
roachl
treatment -0.5167262 0.2001254 -2.582
                                         0.0104 *
          -0.3798751 0.2703380 -1.405 0.1612
senior
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
(Dispersion parameter for quasipoisson family taken to be (65.4403))
```

9/19/2016

Poisson Regression – Zero Inflation
 If we explore the data a little more we find that there may be too many zeros for the Poisson model to fit well:

```
The decimal point is 1 digit(s) to the right of the |
```

2 01124456677892347 4 02458889000399 6 0234993777 8 081 10 249 12 0127756	00000000000000000000000000000000000000	000000000000000000000000000000000000000
14 8039 16 189	> length(y)	> tbl
18 33	[1] 262	obs exp
20 3	> (lambda <- mean(y))	[1,] 94 1.899537e-09
	[1] 25.65	[2,] 20 4.872313e-08
22	> tbl <- NULL	[2,] 20 4.072313e 00 [3,] 11 6.248742e-07
24 3	> for (k in 0:5) {	
26	+ tbl <- rbind(tbl,c(obs=sum(y==k),	[4,] 10 5.342674e-06
28 3	+ $exp=262*exp(-25.65)*25.65^k$ /	[5,] 7 3.425990e-05
30	· ·	[6,] 7 1.757533e-04
32	+ factorial(k)))	
34 7	+ }	

> stem(y)

Poisson Regression – Zero Inflation

- In cases like this it can also be useful to separately model
 - What distinguishes zero-cockroach buildings from others; and
 - what drives cockroach counts in the buildings that have them
- We combine a logistic regression analysis and a Poisson regression analysis to try to answer these questions

```
9/19/2016
```

```
Poisson Regression – Zero Inflation
                                  > glm.3 <- glm (y ~ roach1 + treatment
> some.cockroaches <-</pre>
                                      + senior, family=quasipoisson,
   ifelse(y>0, 1, 0)
                                    offset=log(exposure2) (subset = (y>0))
> zero.fit <-
                                  > display(glm.3)
  glm(some.cockroaches ~ roach1
   + treatment + senior +
   exposure2, family=binomial)
                                  glm(formula = y ~ roach1 + treatment +
                                     senior, family = quasipoisson,
                                      subset = (y > 0), offset =
> display(zero.fit)
                                     log(exposure2))
                                              coef.est coef.se
glm(formula = some.cockroaches /
                                  (Intercept) 3.49 0.16
  roach1 treatment + senior +
                                  roachl
                                             0.01
                                                       0.00
   exposure2, family = binomial)
                                  treatment -0.47
                                                       0.19
           coef.est coef.se
                                             -0.22
                                  senior
                                                       0.26
                   0.57
(Intercept) 0.85
                                  ____
           0.03
                      0.01
roach1
                                    n = 168, k = 4
treatment -0.64
                      0.30
                                    residual deviance = 7764.6, null
senior
            -0.86
                      0.31
                                      deviance = 10979.5 (difference =
exposure2 -0.20
                      0.48
                                      3214.9)
                                    overdispersion parameter = 61.2
___
  n = 262, k = 5
  residual deviance = 281.7,
                                   Everything is a significant predictor,
  null deviance = 342.0
                                   except for # of trap-days
   (difference = 60.3)
```

Poisson Regression – Zero Inflation

A building with no roaches at the start of the experiment (roach1=0) in the treatment group (treatment=1) that is a seniors' building (senior=1) with 1.5 trap-days (exposure2=1.5) has probability
 invlogit(0.85 + (0)*(0.03) + (-0.64)*(1) +
 (-0.86)*(1) + (1.5)*(-0.20)) = 0.28
 of having roaches at the end of the experiment
 Given that the building does have roaches at the end, the expected number of roaches is
 exp(log(1.5) + 3.48 + (0)*(0.0056) +
 (1)*(-0.47) + (1)*(-0.22)) = 25

9/19/2016

Summary

- Linear Regression, Logistic Regression
- Generalized Linear Models (GLM)
- Example: Poisson Regression
 - Exposure and Offsets
 - Overdispersion
 - Zero-inflation
- HW04 is posted online