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Outline
� Linear Regression, Logistic Regression

� Generalized Linear Models (GLM)

� Example: Poisson Regression

� Exposure and Offsets

� Overdispersion

� Zero-inflation

� I’ve been slow to get hw solutions out but it 

should be better now  

� HW01 and HW02 solutions are online now, and HW03 

solutions will be out soon

� HW04 (due next week) is posted online
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Linear Regression, Logistic Regression

� The linear regression model is:

� Each yi ǫ (-∞, ∞) has some mean θi = E[yi]

� Each θi has some linear structure

� There is a statistical distribution N( *, σ) that describes unmodeled variation 
around θi = E[yi]

� The logistic regression model is:

� Each y ǫ {0, 1} has some mean pi = E[yi]

� Each θi = g(pi) has some linear structure [ g(p) = log p/(1-p) ! ]

� There is a statistical distribution Bernoulli(*) that describes unmodeled variation 
around pi = E[yi]
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� The generalized linear model (glm) is:

� Each yi has some mean µi = E[yi]

� Each θi = g(µi) has some linear structure [g(µ) is the “link function”]

� There is a statistical distribution f(yi|µi, …)  that describes unmodeled variation 
around µi = E[yi]

� There may be other parameters “…” in f(yi|µi, …) but the “main” parameter is
µi = g-1(θi) = g-1(Xiβ)

� For ordinary linear regression
� f(yi|µi, …) = N(µi,σ

)    [µi = E[yi]]

� g(µ) = µ [the “identity link function”]

� For logistic regression
� f(yi|pi) = Bernoulli(pi)  [pi = E[yi]]

� g(p) = log p/(1-p) [the “logit link function”]

Generalized Linear Models
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Some Other GLM’s

� Poisson Regression Model

� yi ǫ {0, 1, 2, 3, …}

� f(yi|λi) = Poiss(λi) [λi = E[yi]]

� θi = log(λi) = Xi β

(confusingly: G&H use θ where I use λ... sorry!)

� Logistic-Binomial Model (aka logistic regression)

� yi ǫ {0, 1, …, ni}

� f(yi|pi,ni) = Binomial(ni,pi)

� θi = log pi/(1-pi) = Xiβ
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A Few More GLM’s

� Probit Regression Model

� yi ǫ {0, 1}

� f(yi|pi) = Bernoulli(pi)

� θi = Φ−1(pi) = Xiβ

� Ordered Multinomial Logit Model

� yi ǫ {1, 2, …, K}

� f(yi|pi1, …, piK): P[yi>k] = pik k = 1, …, K-1

� θi = log pik/(1-pik) = Xiβ – ck           k = 1, …, K-1

� This is one kind of “multinomial regression” model

-- there are many others!
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Poisson Regression Example

� Poisson Regression Model

� yi ǫ {0, 1, 2, 3, …}

� f(yi|λi) = Poiss(λi) [λi = E[yi]]

� θi = log(λi) = Xi β

� We will fit this model to data, and then look at 
some modifications of the model involving

� offsets

� overdispersion

� zero-inflation

(the same kinds of modifications can be helpful 
with logistic regression and other GLM’s…)
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Poisson Regression – The Data

� Data from an experiment on the effectiveness of 

an "integrated pest management system" in 

apartment buildings in a particular city (from 

G&H Ch 8).

roachdata <- read.csv ("roachdata.csv")

str(roachdata)

'data.frame':   262 obs. of  6 variables:

$ X        : int  1 2 3 4 5 6 7 8       [observation number]

$ y        : int  153 127 7 7 0 0       [# of roaches trapped after expmt]

$ roach1   : num  308 331.25 1.67       [# of roaches before experiment]

$ treatment: int  1 1 1 1 1 1 1 1       [pest mgmt tx in this apt bldg?]

$ senior   : int  0 0 0 0 0 0 0 0       [apts restricted to sr citzns?]

$ exposure2: num  0.8 0.6 1 1 1.14      [avg # of trap-days per apt for y]
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Poisson Regression – Fitting the Model

> glm.0 <- glm (y ~ roach1 + treatment + senior,        
family=poisson)

> summary(glm.0)

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  3.136e+00  2.124e-02  147.64   <2e-16 ***

roach1       6.444e-03  8.832e-05   72.97   <2e-16 ***

treatment   -5.124e-01  2.465e-02  -20.79   <2e-16 ***

senior      -3.760e-01  3.355e-02  -11.21   <2e-16 ***
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Poisson Regression – Interpreting the 

Coefficients
� Intercept = 3.14: exp(3.14) = 23.10 is the average  # of roaches 

trapped after the experiment, in an apt bldg with no roaches before
the experiment (roach1=0), no treatment (treatment=0) and not a 
seniors' building (senior=0).

� In this case there are about 60 buildings with no roaches at the start of 
the experiment, so this is probably a meaningful description

� roach1 = 0.00644: exp(0.00644) = 1.006 is the factor increase in 
average roaches caught after the experiment, per roach caught before
the experiment (does this make sense?).

� treatment = -0.512: exp(-0.512) = 0.60 is the factor reduction in 
average roaches caught after the experiment, due to treatment

� senior = -0.38: exp(-0.38) = 0.68 is the factor reduction in the 
average roaches caught after the experiment, due to being a senior 
bldg
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� We have not made use of exposure2 = average 
number of trap-days 

� If twice as many traps, expect to catch 2x roaches

� If 3 times as many days, expect to catch 3x roaches

� To accommodate this multiplicative effect, we 
can try

where ui = exposure2.

Poisson Regression - Exposure

129/19/2016

Poisson Regression – Exposure

� Taking logs, the “linear regression” form is

This is like including log(ui) in the model, and basically 

forcing its coefficient to be exactly 1.

� In R we accomplish this with the “offset” argument

� This makes interpretation of the coefficients easier

� coefficients measure deviations from expected counts under the 

various numbers of trap-days

� This “unconfounds” exposure from treatment, bldg type, etc.
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Poisson Regression – Exposure and 

Offsets
> glm.1 <- glm (y ~ roach1 + treatment + 

senior, family=poisson, 
offset=log(exposure2))

> round(cbind(glm.0=coef(glm.0), 
glm.1=coef(glm.1)),4) 

glm0       glm1                                                

(Intercept)   3.1360     3.0892

roach1        0.0064     0.0070

treatment    -0.5124    -0.5167

senior       -0.3760    -0.3799
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Poisson Regression – Looking at 

Residuals
par(mfrow=c(2,2))

plot(glm.1)
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Poisson Regression – Looking at 

Residuals
par(mfrow=c(3,1))

xvar <- predict(glm.1)

yvar <- resid(glm.1)

binnedplot(xvar,yvar)

xvar <- roach1

binnedplot(xvar,yvar,xlab
="Number of Roaches at 
Start of Experiment")

xvar <- log(exposure2)

binnedplot(xvar,yvar,xlab
="Number of Trap-Days 
Used in Data 
Collection")
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Poisson Regression – Testing Lack of Fit

� If yi ∼ Poisson(λi) then the standardized residual

is approximately normal, so that

should follow a χ distribution on n – k df

� n = sample size, k = number of betas in the model
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Poisson Regression – Testing Lack of Fit

> E.y. <-
predict(glm.1,type="response")

> z <- (y - E.y.)/sqrt(E.y.)

> test.statistic <- sum(z^2)

> n <- length(y)

> k <- length(coef(glm.1))

> pchisq(test.statistic,n-
k,lower.tail=F)

[1] 0

> test.statistic

[1] 16883.04        # this is *huge*!

> n-k

[1] 258

>  test.statistic/(n-k)

[1] 65.43815  

We found that the residuals are 

extremely overdispersed: the 

variability of the z’s is about 65

times what it should be!
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Poisson Regression - Overdispersion

� We can adjust our inferences for overdispersion by 

adjusting the standard errors of the coefficients:

round(coef(summary(glm.1))[,1:2],2)

#             Estimate Std. Error

# (Intercept)     3.09       0.02

# roach1          0.01       0.00

# treatment      -0.52       0.02

# senior         -0.38       0.03

round(coef(summary(glm.1))[,1:2] %*% 

diag(c(1,sqrt(test.statistic/(n-k)))),2)

#              [,1] [,2]

# (Intercept)  3.09 0.17

# roach1       0.01 0.00

# treatment   -0.52 0.20

# senior      -0.38 0.27

After adjusting, every-

thing remains signifi-

cant, except for “senior” 

housing status.
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Poisson Regression - Overdispersion

� We can also get R to estimate the overdispersed 

poisson regression model directly.

> glm.2 <- glm (y ~ roach1 + treatment + senior, family=quasipoisson,

offset=log(exposure2))

> summary(glm.2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  3.0892463  0.1717721  17.985   <2e-16 ***

roach1       0.0069829  0.0007179   9.727   <2e-16 ***

treatment   -0.5167262  0.2001254  -2.582   0.0104 *  

senior      -0.3798751  0.2703380  -1.405   0.1612    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for quasipoisson family taken to be 65.4403)
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Poisson Regression – Zero Inflation

� If we explore the data a little more we find that there 
may be too many zeros for the Poisson model to fit well:

> stem(y)

The decimal point is 1 digit(s) to the right of the |

0 | 00000000000000000000000000000000000000000000000000000000000000000000+111

2 | 011244566778923477888

4 | 02458889000399

6 | 0234993777

8 | 081

10 | 249

12 | 0127756

14 | 8039

16 | 189

18 | 33

20 | 3

22 | 

24 | 3

26 | 

28 | 3

30 | 

32 | 

34 | 7

> length(y)

[1] 262

> (lambda <- mean(y))

[1] 25.65

> tbl <- NULL 

> for (k in 0:5) {

+ tbl <- rbind(tbl,c(obs=sum(y==k),

+ exp=262*exp(-25.65)* 25.65^k / 

+ factorial(k)))

+ }

> tbl

obs          exp

[1,]  94 1.899537e-09

[2,]  20 4.872313e-08

[3,]  11 6.248742e-07

[4,]  10 5.342674e-06

[5,]   7 3.425990e-05

[6,]   7 1.757533e-04
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Poisson Regression – Zero Inflation

� In cases like this it can also be useful to 

separately model 

� What distinguishes zero-cockroach buildings from 

others; and 

� what drives cockroach counts in the buildings that 

have them

� We combine a logistic regression analysis and a 

Poisson regression analysis to try to answer these 

questions
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Poisson Regression – Zero Inflation
> some.cockroaches <-

ifelse(y>0, 1, 0)

> zero.fit <-
glm(some.cockroaches ~ roach1 
+ treatment + senior + 
exposure2, family=binomial)

> display(zero.fit)

glm(formula = some.cockroaches ~ 
roach1 treatment + senior +  
exposure2, family = binomial)

coef.est coef.se

(Intercept)  0.85     0.57  

roach1       0.03     0.01  

treatment   -0.64     0.30  

senior      -0.86     0.31  

exposure2   -0.20     0.48  

---

n = 262, k = 5

residual deviance = 281.7, 
null deviance = 342.0 
(difference = 60.3)

> glm.3 <- glm (y ~ roach1 + treatment 
+ senior, family=quasipoisson,

offset=log(exposure2),subset = (y>0))

> display(glm.3)

glm(formula = y ~ roach1 + treatment + 
senior, family = quasipoisson, 

subset = (y > 0), offset = 
log(exposure2))

coef.est coef.se

(Intercept)  3.49     0.16  

roach1       0.01     0.00  

treatment   -0.47     0.19  

senior      -0.22     0.26  

---

n = 168, k = 4

residual deviance = 7764.6, null 
deviance = 10979.5 (difference = 
3214.9)

overdispersion parameter = 61.2

Everything is a significant predictor,

except for # of trap-days
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Poisson Regression – Zero Inflation

� A building with no roaches at the start of the experiment  

(roach1=0) in the treatment group (treatment=1) that is 

a seniors‘ building (senior=1) with 1.5 trap-days 

(exposure2=1.5) has probability

invlogit(0.85 + (0)*(0.03) + (-0.64)*(1) + 

(-0.86)*(1) + (1.5)*(-0.20)) = 0.28

of having roaches at the end of the experiment

� Given that the building does have roaches at the end, the 

expected number of roaches is

exp(log(1.5) + 3.48 + (0)*(0.0056) + 

(1)*(-0.47) + (1)*(-0.22)) = 25
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Summary

� Linear Regression, Logistic Regression

� Generalized Linear Models (GLM)

� Example: Poisson Regression

� Exposure and Offsets

� Overdispersion

� Zero-inflation

� HW04 is posted online


