36-463/663: Multilevel & Hierarchical Models

Causal Inference Brian Junker 132E Baker Hall brian@stat.cmu.edu

9/29/2016

Outline

- Causal Inference [G&H Ch 9]
 - The Fundamental Problem
 - Confounders, and how Controlled Randomized Trials control them
 - Adjusting an analysis for pre-treatment covariates (but not posttreatment ones!)
 - Observational Studies
- More sophisticated tools for causal inference [G&H Ch 10]
 - Instrumental Variables
 - Matching and propensity scores
 - Regression discontinuity designs

Causal Inference

- Want to test a new pain reliever for headaches
- Have 200 patients i=1,...,200.
 - □ T_i=1 (patient gets drug) for i=1..100,
 - \Box T_i=0 (patient gets nothing) for i=101..200.
- Suppose drug is worthless, but
 - i=1..100 are healthy and
 - □ i=101..200 all have flu, colds, etc.
 - How will the drug look?
- Suppose drug is effective, but
 - i=1..100 have colds & flu, and
 - i=101..200 are healthy.
 - How will the drug look now?
- What is wrong with these examples?

9/29/2016

Causal Inference—The Fundamental Problem

- We really would like to see the difference between pain level "with the drug" vs pain level "without", <u>for each individual patient.</u>
 - y_i^0 = outcome without treatment
 - y_i^1 = outcome with treatment

 $y_i^1 - y_i^0 \hspace{0.1 in} = \hspace{0.1 in} \text{treatment effect for unit } i$

- But we cannot try the drug, and then go back in time and try without the drug.
 - For each patient i, can see either y⁰ or y¹ but not both!

Causal Inference—The Fundamental Problem

 If we average the individual treatment effect over all patients, get the average causal effect (ACE):

$$\begin{aligned} \mathsf{ACE} &= \frac{1}{N} \sum_{i=1}^{N} (y_i^1 - y_i^0) = \frac{1}{N} \sum_{i=1}^{N} y_i^1 - \frac{1}{N} \sum_{i=1}^{N} y_i^0 \\ &= E[y^1] - E[y^0] \end{aligned}$$

- Most studies try to estimate ACE. A good way to do this would be:
 - □ Estimate $E[y^1] \approx \overline{y}^1$ from unbiased sample y_1^1 , ... $y_{n_1}^1$
 - □ Estimate $E[y^0] \approx \overline{y}^0$ from unbiased sample y_1^0 , ... $y_{n_0}^{10}$

9/29/2016

Causal Inference—The Fundamental Problem

- The problem with the examples we started with was that <u>the samples were not unbiased</u>.
- There are basically two ways to deal with bias
 - Design a study for which the samples are guaranteed to be unbiased
 - Do some statistical adjustment to account for the bias
- To understand how to design an "unbiased" study, we first consider how "bias" arises...

Causal inference - Confounders

If some patients have $T_i = 1$ and others have $T_i = 0$, we know that $E[y^1] - E[y^0] \approx \hat{\beta}_1$ in the regression

$$y_i = \beta_0 + \beta_1 T_i + \epsilon_i$$

• However, if there is a "confounding" variable x_i , the correct $\hat{\beta}_1$ should come from

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i$$

How bad can the bias be if we omit x_i?

9/29/2016

Causal inference - Confounders

We suppose the correct model is

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i \tag{1}$$

but we fit instead

$$y_i = \beta_0^* + \beta_1^* T_i + \epsilon_i^* \tag{2}$$

Note that x_i also has some relationship with T_i that can be expressed as a linear regression:

$$x_i = \gamma_0 + \gamma_1 T_i + \nu_i \tag{3}$$

If we substitute (3) into (1) and do a little rearranging, we get

$$y_i = (\beta_0 + \beta_2 \gamma_0) + (\beta_1 + \beta_2 \gamma_1) T_i + (\epsilon_i + \beta_2 \nu_i)$$

$$\tag{4}$$

Equating coefficients in (2) and (4), we see

$$\beta_1^* = \beta_1 + \beta_2 \gamma_1 \tag{5}$$

Thus, estimating $E[y^1] - E[y^0] \approx \hat{\beta}_1^*$ will be biased, unless

- $\gamma_1 = 0$, i.e. x_i is independent of treatment assignment T_i
- $\beta_2 = 0$, i.e. x_i has no influence on y_i after considering T_i (x_i not really a confounder!)

Causal inference - Confounders

• If X is a confounder, the total effect of T on Y is $\beta_1 + \beta_2 \gamma_1$:

If we omit X (or it is hidden!) then we only get the right answer from $y = \beta_0 + \beta_1 T + \epsilon$, if β_2 or γ_1 is zero.

```
9/29/2016
```

Causal inference – Estimating ACE

- We can get an unbiased estimate of ACE in any of the following ways
 - If there are no confounders, estimate $eta_{_1}$ in $y_i=eta_0+eta_1T_i+\epsilon_i$
 - □ *If there are confounders*, *find them all*, include them as x's, and then estimate β_1 in
 - $y_i = \beta_0 + \beta_1 T_i + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_K x_{Ki} + \epsilon_i$
 - <u>Design the experiment</u> so that all confounders x_i are independent of treatment assignment T_i and then estimate β₁ from

$$y_i = \beta_0 + \beta_1 T_i + \epsilon_i$$

Causal inference – randomized trials

- In a <u>randomized experiment</u>, each unit i is assigned T_i = 1 (treatment) or T_i = 0 (no tx) randomly (e.g. by random coin toss!).
 - □ This forces every potential confounder x_i to be independent of T_i , whether we "discover" x_i or not! $(\gamma_1 = 0)$
 - □ From a randomized experiment we can always estimate ACE by estimating β_1 in

$$y_i = \beta_0 + \beta_1 T_i + \epsilon_i$$

9/29/2016

11

Causal inference – randomized trials

- In many settings you can't completely randomize
 - A study of effectiveness of a new math curriculum might involve several schools.
 - Can't put all math classes in all schools together in one "pot" and randomly assign some to new math curriculum
 - Instead assign ½ the classes to the new math program and ½ to the old math program within each school
 - Since schools contain other factors that affect math performance, school becomes an x_i and we can estimate the ACE for the new math program from

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i$$

A lot of experimental design is like this...

Causal inference – pre-treatment covariates in randomized trials • Even in a randomized experiment, if we can identify a confounder x_i , it is good to include it in the model. • Estimating ACE = $\hat{\beta}_1$ from $y_i = \beta_0 + \beta_1 T_i + \epsilon_i$ is unbiased, but not efficient (more uncertainty) • Estimating ACE = $\hat{\beta}_1$ from $y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i$ will be more efficient (less uncertainty).

9/29/2016

Causal inference – randomized trials

 If R is a random treatment assignment (coin flip!), then \$\gamma_1\$ must equal zero!

We can now get the right treatment effect from

$$y = \beta_0 + \beta_1 T + \epsilon$$

It is still worth including X in the model if possible,

$$\mathbf{y} = \beta_{0} + \beta_{1} \mathbf{T} + \beta_{2} \mathbf{X} + \epsilon$$

because including X will reduce $SE(\beta_1)$!

Randomized trials – pre-treatment covariates – uniform tx effect

9/29/2016

Randomized trials - pre-treatment covariates - nonuniform tx effect

be useful...

Randomized trials – *do not include* post-treatment covariates!

Including z in the mode completely dilutes the effect of T that we are trying to estimate!	 y is a post-test score, of course affected by x T is treatment (new curriculum) z is a secondary effect of T 		
(Intercept) 58.11903 1.660045 T 22.43931 2.347659	■ x is a pretest score		
<pre>> summary(lm(y ~ T))\$coef[,1:2] Estimate Std. Error</pre>	x 10.416234 0.4859765 z 1.608895 0.5843686		
<pre>mean(y[T==0])) [1] 22.43931</pre>	т 10.505663 3.8573971		
<pre>legend=c("Non-treated","Treated")) > (ACE <- mean(y[T==1]) -</pre>	Estimate Std. Error (Intercept) 64.884033 1.9499540		
<pre>> plot(x,y,col=T+2) > legend(-2,100,pch=c(1,1),col=2:3,</pre>	<pre>> summary(lm(y ~ T + x + z))\$coef[,1:2]</pre>		
<pre>> T <- rbinom(100,1,.5) > y <- ifelse(T==1,y+20,y) > z <- ifelse(T==1,rnorm(100,3),</pre>	(Intercept) 59.85651 0.7068169 T 20.78911 0.9959064 x 10.58185 0.4983279		
<pre>> n <- 100 > x <- rnorm(n) > y <- 60 + 10*x + 5*rnorm(n)</pre>	<pre>> summary(lm(y ~ T + x))\$coef[,1:2] Estimate Std. Error</pre>		

Causal inference – Post-tx covariates

 If R is a random treatment assignment (coin flip!), then \$\gamma_1\$ must equal zero!

the estimate of β_1 will only include the influence of the part of T not explained by Z... That might not be much!

Observational Studies

- Often have the form of randomized trials
 - Treatment T_i
 - Covariate(s) x_i possible confounders
- Want to know causal effect of T_i...
 - Can run same regressions as before to estimate β₁ Generally should include all known confounders

```
y_i = \beta_0 + \beta_1 T_i + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_K x_{Ki} + \epsilon_i
```

- But since we do not have control over T_i there could be hidden confounders (lurking variables)
- Often associated with selection effects (why does someone volunteer for the treatment?)
- Usually cannot make causal statements

9/29/2016

19

Observational Studies

- Sometimes hard to say exactly what T_i is
 - Try to make an analogy from the observational study to the "ideal" randomized trial to see what T_i is (or even if there could be a T_i!)
 - If the ideal experiment involves randomly assigning classrooms to different math curricula, then T_i could be a cause
 - If the ideal experiment involves randomly assigning race or gender to people, then T_i probably is not a cause
 - The regression analyses can suggest whether a further randomized experiment is worth doing, but generally we cannot make causal inferences (lurking variables!)

Observational Studies

- Sometimes <u>causal inferences</u> can be made from observational studies. Here are four methods:
 - Instrumental variables substitute for the coin flip in randomized trials to eliminate selection effects
 - <u>Propensity score matching</u> rearrange the data to eliminate selection effects
 - <u>Regression discontinuity designs</u> exploit random errors in selection effects
 - <u>Bounding the influence of confounders</u> sometimes the effect (ACE) of T_i is so big, that we can calculate that no reasonable set of confounders could be responsible for it. (This is basically how the link between smoking and lung cancer was made.)

9/29/2016

21

Instrumental Variables

 An instrumental variable I is another variable that "works like" randomization:

- Need
 - \square Monotonicity: $\gamma_1
 eq 0$
 - Ignorable assignment:
 - I affects Y only through T (β_2 =0)
 - I is independent of X

Instrumental Variables

The regression equations are

$$y = \beta_0 + \beta_1 T + \beta_2 I + \epsilon \tag{1}$$

$$T = \gamma_0 + \gamma_1 \mathbf{I} + \nu \tag{2}$$

- Substituting (2) into (1), we get $y = (\beta_0 + \beta_1 \gamma_0) + (\beta_1 \gamma_1 + \beta_2)I + (\text{error terms})$
- And so if we fit the regressions

$$y = \delta_0 + \delta_1 \mathbf{I} + \epsilon$$
$$T = \gamma_0 + \gamma_1 \mathbf{I} + \nu$$

we find $\beta_1 = (\delta_1 - \beta_2)/\gamma_1 = \delta_1/\gamma_1$, since $\beta_2 = 0$.

9/29/2016

Coin-Flip is the perfect instrument!

 An instrumental variable I is another variable that "works like" randomization:

Fit

$$y = \delta_0 + \delta_1 \mathbf{I} + \epsilon$$
$$T = \gamma_0 + \gamma_1 \mathbf{I} + \nu$$

• $\beta_1 = (\delta_1 - \beta_2)/\gamma_1 = \delta_1$ since $\beta_2 = 0$ & $\gamma_1 = 1$.

Example – just to give the flavor of instrumental variables

What is the effect of watching Sesame Street on childrens' letter-recognition skills?

pretest	- letter skills test before experiment		
У	- letter skills test after experiment		
encouraged	- 1 = encouraged to watch; $0 = not$		
watched	- 1 = did watch Sesame Street; 0 = not		
site	- 1,2,3,4,5: combos of age, SES,		
language, urbanicity			
setting	-1 = at home; 0 = at school		

9/29/2016

25

Example – Simple IV Estimate

 What we can actually manipulate is "encouraging" kids to watch β₂

- We might be interested in two things:
 - □ The effect of "encouraged" on post-test score y
 - (the "intention to treat", ITT, analysis)
 - The effect of actually watching, on post-test score y
 - (the "instrumental variables", IV, analysis)

IV's – Two-stage least-squares

- The "Ratio" estimate $\hat{\delta}_1/\hat{\gamma}_1$ is the "Wald Estimate".
- A more popular method is called "Two-stage leastsquares" (TSLS):

 There is a function tsls() in library("sem") that does tsls estimates automatically.

Causal inference – Propensity Scores

• The propensity score P is used to rearrange the data so that $\gamma_1 \approx 0$.

 $\gamma_1 = 0$: No selection effect!

- Use logistic regression to predict T as well as possible from all the X's. P(T=1) from this logistic regression is the propensity score.
- For each unit in with T=1, match it to a unit with T=0 with the same (or similar) propensity score.
 - Discard non-matching units at the end of the process

9/29/2016

31

Making the matched data set

Is $\gamma_1 \approx 0$ in the Matched Data Set?

9/29/2016

33

How do we do estimating effect of watching Sesame Street?

> coef(lm(y ~ watched + encouraged + pretest + factor(site) +					
+ setting, date=big.sesame)					
(Intercept)	watched	encouraged	pretest		
factor(site)2				Linmatabad	
4.52	9.04	1.71	0.73	Unmatched	
8.55				Tx Effect Est.	
factor(site)3	factor(site)4	factor(site)5	setting		
-4.52	-0.78	1.29	1.33		
<pre>> coef(lm(y ~ watched + encouraged + pretest + factor(site) +</pre>					
+ setting,data=matched))					
(Intercept)	watched	encouraged	pretest		
factor(site)2				Matched	
3.06	10.47	0.25	1.04	Tx Effect Est.	
9.02					
factor(site)3	factor(site)4	factor(site)5	setting		
-5.43	-3.71	-1.20	0.68		

Propensity Scores: How did we do?

- The estimate of the effect of watching Sesame Street is a bit bigger for the matched data than for the non-matched data.
- It is not as big as the IV estimate, in part because the matching isn't very good yet. More effort needed to build a good logistic regression for the propensity scores!
- SE's are again problematic (we are using the data twice). See Gelman & Hill for details & solutions.

9/29/2016

35

Regression Discontinuity Designs

- In the case of IV and Propensity Scores, we were looking for ways to break the relationship between X (covariates) and T (treatment)
- What if X is intimately tied up with T?
 - <u>Example</u>: Kids with low test scores (X low) get remedial math (T=1); Kids with high test scores (X high) get regular math (T=0).
 - Can we still assess whether T causes a change in the end of year test scores (Y)?

Regression Discontinuity Designs

- Is the treatment effect the size of the jump?
- For most of the data we can't make causal claim, because X is a confounder of T and Y.
- <u>IF</u> we can argue that people just either side of the cutoff are similar to each other, <u>THEN</u> the jump can represent a causal effect.

9/29/2016

Regression Discontinuity Designs

What does the RD design look like in terms of our regression diagram?

X = pretest T = remedial math Y = posttest

- All of the data can be used to get a really good estimate of β₂. This also improves SE's for β₁.
- For subjects near the jump, $\gamma_1 \approx 0$, so β_1 represents a causal effect for them.
- How far can we generalize β_1 away from the jump?

Regression Discontinuity Designs

Estimation is very straightforward:

9/29/2016

39

Summary

- Causal Inference [G&H Ch 9]
 - The Fundamental Problem
 - Confounders, and how Controlled Randomized Trials control them
 - Adjusting an analysis for pre-treatment covariates (but not posttreatment ones!)
 - Observational Studies
- More sophisticated tools for causal inference [G&H Ch 10]
 - Instrumental Variables
 - Matching and propensity scores
 - Regression discontinuity designs