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Outline

� Causal Inference [G&H Ch 9]

� The Fundamental Problem 

� Confounders, and how Controlled Randomized Trials control 

them

� Adjusting an analysis for pre-treatment covariates (but not post-

treatment ones!) 

� Observational Studies

� More sophisticated tools for causal inference [G&H 

Ch 10]

� Instrumental Variables 

� Matching and propensity scores

� Regression discontinuity designs
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Causal Inference
� Want to test a new pain reliever for headaches

� Have 200 patients i=1,…,200.  

� Ti=1 (patient gets drug) for i=1..100, 

� Ti=0 (patient gets nothing) for i=101..200.

� Suppose drug is worthless, but

� i=1..100 are healthy and

� i=101..200 all have flu, colds, etc.

� How will the drug look?

� Suppose drug is effective, but 

� i=1..100 have colds & flu, and 

� i=101..200 are healthy.

� How will the drug look now?

� What is wrong with these examples?
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Causal Inference—The Fundamental 

Problem

� We really would like to see the difference 

between pain level “with the drug” vs pain level 

“without”, for each individual patient.

� But we cannot try the drug, and then go back in 

time and try without the drug.  

� For each patient i, can see either yi
0 or yi

1 but not both!
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Causal Inference—The Fundamental 

Problem

� If we average the individual treatment effect over 
all patients, get the average causal effect (ACE):

� Most studies try to estimate ACE.  A good way to 
do this would be:

� Estimate E[y1] ≈ y
1

from unbiased sample y1
1, … yn1

1

� Estimate E[y0] ≈ y
0

from unbiased sample y1
0, … yn0

0
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Causal Inference—The Fundamental 

Problem

� The problem with the examples we started with 

was that the samples were not unbiased.

� There are basically two ways to deal with bias

� Design a study for which the samples are guaranteed 

to be unbiased

� Do some statistical adjustment to account for the bias

� To understand how to design an “unbiased” 

study, we first consider how “bias” arises…
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Causal inference - Confounders

� If some patients have Ti = 1 and others have Ti = 0, 
we know that                                in the regression

� However, if there is a “confounding” variable xi , 
the correct      should come from 

� How bad can the bias be if we omit xi?
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Causal inference - Confounders



� If X is a confounder, the total effect of T on Y is 

:

� If we omit X (or it is hidden!) then we only get the right 

answer from y = β + β T + ǫ, if       or      is zero.

Causal inference - Confounders
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Causal inference – Estimating ACE

� We can get an unbiased estimate of ACE in any of 
the following ways

� If there are no confounders, estimate β in

� If there are confounders, find them all, include them 
as x’s, and then estimate β in 

� Design the experiment so that all confounders xi are 
independent of treatment assignment Ti  and then 
estimate β from 
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Causal inference – randomized trials

� In a randomized experiment, each unit i is 

assigned Ti = 1 (treatment) or Ti = 0 (no tx) 

randomly (e.g. by random coin toss!).  

� This forces every potential confounder xi to be 

independent of Ti, whether we “discover” xi or not!

� From a randomized experiment we can always 

estimate ACE by estimating β in
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Causal inference – randomized trials
� In many settings you can’t completely randomize

� A study of effectiveness of a new math curriculum 
might involve several schools.

� Can’t put all math classes in all schools together in one “pot” 
and randomly assign some to new math curriculum

� Instead assign ½ the classes to the new math program and ½ 
to the old math program within each school

� Since schools contain other factors that affect math 
performance, school becomes an xi and we can estimate the 
ACE for the new math program from 

� A lot of experimental design is like this…
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Causal inference – pre-treatment 

covariates in randomized trials

� Even in a randomized experiment, if we can 
identify a confounder xi, it is good to include it in 
the model.

� Estimating ACE =     from

is unbiased, but not efficient (more uncertainty)

� Estimating ACE =     from 

will be more efficient (less uncertainty).

� If R is a random treatment assignment (coin flip!), 

then      must equal zero!

� We can now get the right treatment effect from 

y = β + β T + ǫ.

� It is still worth including X in the model if possible, 

y = β + β T + β X + ǫ

because including  X  will reduce SE(β) !

Causal inference – randomized trials
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Randomized trials – pre-treatment 

covariates – uniform tx effect
> x <- rnorm(n)

> y <- 60 + 10*x + 5*rnorm(n)  

# x is a confounder

> T <- rbinom(100,1,.5)        

# treatment by random experiment

> y <- ifelse(T==1,y+20,y)     

# add treatment effect for treated

> plot(x,y,col=T+2)

> legend(-3,100,pch=c(1,1),col=2:3,

legend=c("Non-treated","Treated"))

> (ACE <- mean(y[T==1]) - mean(y[T==0]))

[1] 20.26647

> 

> summary(lm(y ~ T))$coef[,1:2]

Estimate Std. Error 

(Intercept) 60.63675   1.854682 

T           20.26647   2.523902

> 

> summary(lm(y ~ T + x))$coef[,1:2]

Estimate Std. Error 

(Intercept) 60.13741  0.6815005

T           19.49961  0.9275130

x           10.49448  0.4182943
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� x is a pretest score

� y is a post-test score, of course 

affected by x

� T is treatment (new curriculum)

ACE is estimated

better when 

covariate

in the model
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Randomized trials – pre-treatment 

covariates – nonuniform tx effect
> n <- 100

> x <- rnorm(n)

> y <- 60 + 10*x + 5*rnorm(n)

> T <- rbinom(100,1,.5)

> y <- ifelse(T==1,y+5+15*x,y)

> plot(x,y,col=T+2)

> legend(-2,100,pch=c(1,1),col=2:3,

legend=c("Non-treated","Treated"))

> (ACE <- mean(y[T==1]) - mean(y[T==0]))

[1] 5.684276

> summary(lm(y ~ T))$coef[,1:2]

Estimate Std. Error

(Intercept) 62.599809   3.164975

T            5.684276   4.229376

> (coef <- summary(lm(y ~ T + x + 
T:x))$coef[,1:2])

Estimate Std. Error

(Intercept) 59.205524  0.8095489

T            6.149310  1.0646086

x            9.499872  0.6574682

T:x         15.653435  0.9527179

> mean(coef[2,1] + coef[4,1]*x)

[1] 9.631048

� x is a pretest score

� y is a post-test score, of course 

affected by x

� T is treatment (new curriculum)
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ACE not 

all that 

meaningful

Here’s a kind 

of ACE that may 

be useful…

Tx affects not only 

the intercept but 

also the slope!
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Randomized trials – do not include

post-treatment covariates!
> n <- 100

> x <- rnorm(n)

> y <- 60 + 10*x + 5*rnorm(n)

> T <- rbinom(100,1,.5)   

> y <- ifelse(T==1,y+20,y)

> z <- ifelse(T==1,rnorm(100,3), 
rnorm(100,-3))

> plot(x,y,col=T+2)

> legend(-2,100,pch=c(1,1),col=2:3,

legend=c("Non-treated","Treated"))

> (ACE <- mean(y[T==1]) -
mean(y[T==0]))

[1] 22.43931

> summary(lm(y ~ T))$coef[,1:2]

Estimate Std. Error

(Intercept) 58.11903   1.660045

T           22.43931   2.347659

> summary(lm(y ~ T + 
x))$coef[,1:2]

Estimate Std. Error

(Intercept) 59.85651  0.7068169

T           20.78911  0.9959064

x           10.58185  0.4983279

> summary(lm(y ~ T + x + 
z))$coef[,1:2]

Estimate Std. Error

(Intercept) 64.884033  1.9499540

T           10.505663  3.8573971

x           10.416234  0.4859765

z            1.608895  0.5843686

� x is a pretest score

� y is a post-test score, of course 

affected by x

�T is treatment (new curriculum)

� z is a secondary effect of T 

Including z in the model

completely dilutes the 

effect of T that we are 

trying to estimate!

� If R is a random treatment assignment (coin flip!), 

then      must equal zero!

� In the model 

y = β + β T + β X + β Z + ǫ

the estimate of β will only include the influence of the part 

of T not explained by Z…  That might not be much!

Causal inference – Post-tx covariates
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Observational Studies

� Often have the form of randomized trials

� Treatment Ti

� Covariate(s) xi – possible confounders

� Want to know causal effect of Ti…

� Can run same regressions as before to estimate β Generally 

should include all known confounders

� But since we do not have control over Ti there could be hidden 

confounders (lurking variables)

� Often associated with selection effects (why does someone 

volunteer for the treatment?)

� Usually cannot make causal statements
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Observational Studies

� Sometimes hard to say exactly what Ti is

� Try to make an analogy from the observational study 
to the “ideal” randomized trial to see what Ti is (or 
even if there could be a Ti!)

� If the ideal experiment involves randomly assigning 
classrooms to different math curricula, then Ti could be a 
cause

� If the ideal experiment involves randomly assigning race or 
gender to people, then Ti probably is not a cause

� The regression analyses can suggest whether a further 
randomized experiment is worth doing, but generally 
we cannot make causal inferences (lurking variables!)



219/29/2016

Observational Studies

� Sometimes causal inferences can be made from 
observational studies.  Here are four methods:

� Instrumental variables – substitute for the coin flip in 
randomized trials to eliminate selection effects

� Propensity score matching – rearrange the data to 
eliminate selection effects

� Regression discontinuity designs – exploit random 
errors in selection effects

� Bounding the influence of confounders – sometimes 
the effect (ACE) of Ti is so big, that we can calculate 
that no reasonable set of confounders could be 
responsible for it.  (This is basically how the link 
between smoking and lung cancer was made.)

Instrumental Variables

� An instrumental variable I is another variable that 

“works like” randomization:

� Need

� Monotonicity:

� Ignorable assignment:

� I affects Y only through T (β=0)

� I is independent of X

229/29/2016
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Instrumental Variables

� The regression equations are

� Substituting (2) into (1), we get

� And so if we fit the regressions

we find 
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Coin-Flip is the perfect instrument!

� An instrumental variable I is another variable that 

“works like” randomization:

� Fit

�

249/29/2016

X

T
Y

R



Example – just to give the flavor of 

instrumental variables
� What is the effect of watching Sesame Street 

on childrens’ letter-recognition skills?

pretest - letter skills test before experiment

y - letter skills test after experiment

encouraged - 1 = encouraged to watch; 0 = not

watched - 1 = did watch Sesame Street; 0 = not

site - 1,2,3,4,5: combos of age, SES,

language, urbanicity

setting - 1 = at home; 0 = at school
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Example – Simple IV Estimate

� What we can actually manipulate is 

“encouraging” kids to watch

� We might be interested in two things:

� The effect of “encouraged” on post-test score y

� (the “intention to treat”, ITT, analysis)

� The effect of actually watching, on post-test score y

� (the “instrumental variables”, IV, analysis)

269/29/2016
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Simple IV analysis– Intention to 

Treat (ITT), and IV estimates
� ITT effect of “encouraged” on post-test y
> fit.1b <- lm(y ~ encouraged)

> coef(fit.1b) # the ITT effect

(Intercept)  encouraged 

24.920455    2.875598

� IV effect of “watched” on post-test y
> fit.1a <- lm(watched ~ encouraged)

> coef(fit.1a)

(Intercept)  encouraged 

0.5454545   0.3624402 

> coef(fit.1b)[2]/coef(fit.1a)[2]

encouraged 

7.933993 
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This is the effect of encouragement

on the post-test score

This is the effect of watching S.Street

on the post-test score

IV’s – Two-stage least-squares

� The “Ratio” estimate             is the “Wald Estimate”. 

� A more popular method is called “Two-stage least-

squares” (TSLS):
> coef(fit.2a <- lm (watched ~ encouraged))

(Intercept)  encouraged 

0.5454545   0.3624402 

> watched.hat <- fit.2a$fitted

> coef(fit.2b <- lm (y ~ watched.hat))

(Intercept) watched.hat

20.592822    7.933993 

� There is a function tsls() in library(“sem”) that does 

tsls estimates automatically. 
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This TSLS estimate is 

identical to the Wald estimate

on the previous slide.

In TSLS, second regression 

Uses fitted values from first

regression..



IV’s – Including covariates
> fit.3a <- lm (watched ~ encouraged +

+   pretest + factor(site) + setting)

> watched.hat <- fit.3a$fitted

> fit.3b <- lm (y ~ watched.hat +

+   pretest + factor(site) + setting)

> coef(fit.3b)

(Intercept)   watched.hat pretest  

1.22         14.03          0.70 

factor(site)2 factor(site)3  factor(site)4 

8.40         -3.94           0.94

factor(site)5       setting 

2.76          1.60 

� SE’s are more work; see G&H or use tsls() function…
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The covariates get put

In both regressions

The IV estimate of the effect

of watching Sesame Streetm

after controlling for covariates.

� The propensity score P is used to rearrange the data 

so that  

� Use logistic regression to predict T as well as possible 

from all the X’s.  P(T=1) from this logistic regression is the 

propensity score.

� For each unit in with T=1, match it to a unit with T=0 

with the same (or similar) propensity score.  

� Discard non-matching units at the end of the process

Causal inference – Propensity Scores
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Making the propensity scores

> big.sesame <- cbind(y, sesame,

+ watched, encouraged, pretest)

> p.fit <- glm(watched ~

+ encouraged + pretest +

+ factor(site) + setting,             

+ family = binomial, 

+ data=big.sesame)

> p.scores <- predict(p.fit,

+ type="link")

> plot(p.scores, jitter(watched,

+ amount=0.05), xlab="Propensity 

Score",ylab="P[Watched=1])")

> o.scores <- sort(p.scores)

> lines(o.scores, exp(o.scores)

+ / (1 + exp(o.scores)))
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Making the matched data set

> matches <- matching(z =

+ watched, score = p.scores)

> matched <- big.sesame[

+ matches$matched,]

> dim(big.sesame)

[1] 240  32

> dim(matched)

[1] 108  32

> b.stats <-

+ balance(big.sesame, 

+ matched, p.fit)

> plot(b.stats)
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Standardized Difference in Means

-0.5 0.0 0.5 1.0

encouraged

pretest

factor(site)1
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factor(site)3

factor(site)4

factor(site)5

setting

Diff between Tx vs Ctrl 

In unmatched data.

Diff between Tx vs Ctrl 

In matched data.

(The  matching() and  balance() functions are from library(arm).)



Is             in the Matched Data Set?
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> display(glm(formula = watched ~ encouraged + pretest + 

+ factor(site) + setting, family = binomial, data =

+ matched))

coef.est coef.se

(Intercept)    0.63     0.96  

encouraged     1.14     0.48  

pretest       -0.02     0.04  

factor(site)2 -0.03     0.78  

factor(site)3 -0.66     0.62  

factor(site)4 -1.32     0.58  

factor(site)5 -0.93     0.81  

setting        0.00     0.47  

---

n = 108, k = 8

residual deviance = 138.5, null deviance = 149.7 

(difference = 11.2)

We did pretty well except for these

Two predictors.  

More effort chosing variables and 

interactions from among the 32

available in the data set would 

probably generate  propensity

scores that drive         to zero.

How do we do estimating effect of 

watching Sesame Street?
> coef(lm(y ~ watched + encouraged + pretest + factor(site) +

+            setting,data=big.sesame))

(Intercept)       watched    encouraged       pretest 

factor(site)2 

4.52          9.04          1.71          0.73          

8.55 

factor(site)3 factor(site)4 factor(site)5       setting 

-4.52         -0.78          1.29          1.33 

> coef(lm(y ~ watched + encouraged + pretest + factor(site) +

+            setting,data=matched))

(Intercept)       watched    encouraged       pretest 

factor(site)2 

3.06         10.47          0.25          1.04          

9.02 

factor(site)3 factor(site)4 factor(site)5       setting 

-5.43         -3.71         -1.20          0.68 
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Unmatched 

Tx Effect Est.

Matched 

Tx Effect Est.



Propensity Scores: How did we do?

� The estimate of the effect of watching Sesame 

Street is a bit bigger for the matched data than 

for the non-matched data.

� It is not as big as the IV estimate, in part because 

the matching isn’t very good yet.  More effort 

needed to build a good logistic regression for the 

propensity scores!

� SE’s are again problematic (we are using the data 

twice).  See Gelman & Hill for details & solutions.
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Regression Discontinuity Designs

� In the case of IV and Propensity Scores, we were 

looking for ways to break the relationship 

between X (covariates) and T (treatment)

� What if X is intimately tied up with T?

� Example: Kids with low test scores (X low) get 

remedial math (T=1); Kids with high test scores (X 

high) get regular math (T=0).

� Can we still assess whether T causes a change in the 

end of year test scores (Y)?
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Regression Discontinuity Designs

� Is the treatment effect the 

size of the jump?

� For most of the data we 

can’t make causal claim, 

because X is a confounder 

of T and Y.

� IF we can argue that people 

just either side of the cutoff 

are similar to each other, 

THEN the jump can 

represent a causal effect.
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� What does the RD design look like in terms of our 

regression diagram?

� All of the data can be used to get a really good estimate 

of β.  This also improves SE’s  for β.

� For subjects near the jump,               , so β represents 

a causal effect for them.

� How far can we generalize β away from the jump?

Regression Discontinuity Designs
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X = pretest

T = remedial math

Y = posttest



Regression Discontinuity Designs

� Estimation is very straightforward:

> display(fit <- lm(posttest ~ pretest + lowkids))

lm(formula = posttest ~ pretest + lowkids)

coef.est coef.se

(Intercept)  3.84     7.06  

pretest      0.83     0.12  

lowkidsTRUE 10.17     2.52  

---

n = 200, k = 3

residual sd = 10.97, R-Squared = 0.21
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Our estimate, 

.
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Summary

� Causal Inference [G&H Ch 9]

� The Fundamental Problem 

� Confounders, and how Controlled Randomized Trials control 

them

� Adjusting an analysis for pre-treatment covariates (but not post-

treatment ones!) 

� Observational Studies

� More sophisticated tools for causal inference [G&H 

Ch 10]

� Instrumental Variables

� Matching and propensity scores

� Regression discontinuity designs


