36-463-663: Hierarchical Linear Models

Intro to Multi-level Models, II Brian Junker 132E Baker Hall brian@stat.cmu.edu

10/11/2016

Outline

- Regression to the Mean & "Shrinkage"
- Imer() notation, variance components models, and multi-level models
- Fixed effects, random effects, varying effects
- Multiple random effects
- Read: Ch 13
 - Skip material on inverse-Wishart distribution (pp 286-287) for now premature for us!
- Note on library(ggplot2) vs library(lattice):
 - The plots in the slides are made with an older version of ggplot2. The current version seems fussier in some ways.
 - In the R handout (online) I have also included commands for xyplot (from library "lattice") which produce similar plots to the plots in the slides.

Regression to the Mean

10/11/2016

Shrinkage in MLM's

The fitted multilevel model underpredicts high obs's and overpredicts low ones.

The distribution assumptions underlying lmer() "smooth out" extreme observations! Multi-level models provide more

Multi-level models provide more smoothing/shrinkage to groups with smaller sample sizes (since there is less evidence that their values should be different from "grand mean".)

Imer() notation...

Fixed Effects, Random Effects

- Fixed effects are considered to be "fixed but unknown" and we try to estimate them, e.g. with lm(), or the non-parenthesis terms in lmer()
- Random effects are considered to be draws from a distribution (not fixed)

$$y_i = \begin{pmatrix} \beta_0 + \beta_1 u_{j[i]} + \alpha_1 x_i + \eta_j[i] + \epsilon_i \\ \text{lmer}(y \sim u + x + (1 + \text{count})) \end{pmatrix}$$

This is less obvious in Bayesian modeling so G&H avoid the terms, or just say "varying effects"

There are lots of different models we could fit... Here are some examples.

- Intercept-only random-intercept* model $y_i = \alpha_{j[i]} + \epsilon_i, \ \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ $\alpha_j = \beta_0 + \eta_j, \ \eta_j \stackrel{iid}{\sim} N(0, \tau^2)$ Random-intercept* model w / individual-level predictors $y_i = \alpha_{0j[i]} + \alpha_1 x_i + \epsilon_i, \ \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ $\alpha_{0j} = \beta_0 + \eta_j, \qquad \eta_j \stackrel{iid}{\sim} N(0, \tau^2)$ Random-intercept* model w / individual & group level predictors $y_i = \alpha_{0j[i]} + \alpha_1 x_i + \epsilon_i, \ \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ $\alpha_{0j} = \beta_0 + \beta_1 u_j + \eta_j, \qquad \eta_j \stackrel{iid}{\sim} N(0, \tau^2)$
 - *G&H say "varying intercept" rather than "random intercept"

10/11/2016

10/11/2016

Random-intercept* model w / individual & group level predictors $y_i = \alpha_{0j[i]} + \alpha_1 x_i + \epsilon_i$

> y <- log.radon $\alpha_{0i} = \beta_0 + \beta_1 u_i + \eta_i$ > x <- floor > u.full <- log.uranium > M2 <- lmer($y \sim x + u$.full + (1 | county)) > display(M2) coef.est coef.se (Intercept) 1.47 0.04 -0.67 0.07 х u.full 0.72 0.09 Error terms: Std.Dev. Groups Name county (Intercept) 0.16 0.76 Residual number of obs: 919, groups: county, 85 AIC = 2144.2, DIC = 2111.5deviance = 2122.9

One last Radon Model: Random Intercept^{*}, Random Slope^{*}, Gp Predictor

$u_i = \alpha_{0,i} [i] + \alpha_{1,i} [i] x_i + \epsilon_i$				> display(M3)				
31	,			coef.est coef				
α_{0j}	=	$\beta_{00} + \beta_{01} u_j + \eta_{0j}$		(Intercep	t) 1.46	0.	04	
01.		$\beta_{10} \pm n_{1}$		x -0.64		0.	0.09	
α_{1j}	_	$\beta_{10} + \eta_{1j}$		u.full	0.77 0.03		09	
		$\epsilon_i \stackrel{iid}{\sim} N(0,\sigma^2)$		Error terms:				
		m_0 : $\stackrel{iid}{\sim} N(0, \tau^2)$		Groups	Name	SD	Corr	
		$\eta_{0j} \to 0 \to 10 (0, \tau_0)$		county	(Intcpt)	0.13		
		$n_1 : \stackrel{iid}{\sim} N(0, \tau_1^2)$			x	0.36	0.21	
$\eta_{1j} \neq \eta_{1}(0, \eta_{1})$				Residual		0.75		
> у	<- 1	og.radon						
> x	<- f	loor		number of	obs: 919	, grou	ps:	
> u.full <- log.uranium				county,	, 85			
				AIC = 214	2.6, DIC :	= 2106	.7	
> M3 <- lmer(y ~				deviance = 2117.7				
x	+ u.	full + (1 + x count)					

10/11/2016

11

One last Radon Model: Random Intercept^{*}, Random Slope^{*}, Gp Predictor

10/11/2016

10/11/2016

Multiple Random Effects

Thus we often do (and lmer() does) model the correlation between random effects, e.g.:

$$y_{i} = \alpha_{0j[i]} + \alpha_{1j[i]}x_{i} + \epsilon_{i} \quad \epsilon_{i} \stackrel{iid}{\sim} N(0, \sigma^{2})$$

$$\alpha_{0j} = \beta_{00} + \beta_{01}u_{j} + \eta_{0j}$$

$$\alpha_{1j} = \beta_{10} + \eta_{1j}$$

$$\begin{pmatrix} \eta_{0j} \\ \eta_{1j} \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \tau_{0}^{2} & \rho_{01}\tau_{0}\tau_{1} \\ \rho_{01}\tau_{1}\tau_{0} & \tau_{1}^{2} \end{pmatrix}\right)$$

Multiple Random Effects

y_i	=	$\alpha_{0j[i]} + \alpha_{1j[i]}x_i + \epsilon_i$						
$ \alpha_{0j} $	=	$\beta_{00} + \beta_{01} u_j + \eta_{0j}$		> display	(M3)			
α_{1i}	=	$\beta_{10} + \eta_{1i}$			coef.est	coef.se		
				(Intercep	t) 1.46	0.	04	
		$\epsilon_i \stackrel{iia}{\sim} N(0,\sigma^2)$		x	-0.64	0.	09	
		$\eta_{0j} \stackrel{iid}{\sim} N(0, \tau_0^2)$	u.full	0.77	0.	09		
		iid an (a. 2)		Error ter	ms:			
		$\eta_{1j} \sim N(0, \tau_1^2)$		Groups	Name	SD	Corr	
		$\operatorname{Cor}(n_{0}; n_{1};) = 0$		county	(Intcpt)	0.13		
					x	0.36	0.21	
			~	Residual		0.75	-	
> y <- log.radon								
> x <- floor				number of obs: 919, groups:				
> u.full <- log.uranium				county, 85				
				AIC = 2142.6, $DIC = 2106.7$				
> M3 <- lmer(y ~				deviance	= 2117.7			
x	+ u.:	full + (1 + x court	nty))				

10/11/2016

We can also force ρ =0... $y_i = \alpha_{0j[i]} + \alpha_{1j[i]}x_i + \epsilon_i$ $\alpha_{0j} = \beta_{00} + \beta_{01} u_j + \eta_{0j}$ > display(M3) $\alpha_{1j} = \beta_{10} + \eta_{1j}$ coef.est coef.se (Intercept) 1.46 0.04 $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ -0.64 0.09 х 0.77 u.full 0.09 $\eta_{0j} \stackrel{iid}{\sim} N(0,\tau_0^2)$ Error terms: $\eta_{1j} \stackrel{iid}{\sim} N(0, \tau_1^2)$ Groups Name SD Corr county $\mathsf{Cor}(\eta_{0j},\eta_{1j}) \ = \ 0$ (Intcpt) 0.14 х 0.37 0.00 0.75 Residual > y <- log.radon number of obs: 919, groups: > x <- floor county, 85 > u.full <- log.uranium AIC = 2140.8, DIC = 2106.8deviance = 2117.8> M3i <- $lmer(y \sim x + u.full +$ (1 | county) + (0 + x | county))

Summary

- Regression to the Mean & "Shrinkage"
- Imer() notation, variance components models, and multi-level models
- Fixed effects, random effects, varying effects
- Multiple random effects
- Read: Ch 13
 - Skip material on inverse-Wishart distribution (pp 286-287) for now – premature for us!

10/11/2016