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Random-Eff ects Models for Longitudinal Data 

Nan M .  ~ a i r d l , ~and James H. Ware1 
'Department of Biostatistics, Harvard School of Public Health, 677 Huntington Avenue, 
Boston, Massachusetts 02115, U.S.A. and 2~epa r tmen t  of Statistics, Harvard University, 

Science Center 603, 1Oxford Street, Cambridge, Massachusetts 02138, U.S.A. 

Models for the analysis of longitudinal data must recognize the relationship between serial 
observations on the same unit. Multivariate models with general covariance structure are often 
difficult to apply to highly unbalanced data, whereas two-stage random-effects models can be used 
easily. In two-stage models, the probability distributions for the response vectors of different 
individuals belong to a single family, but some random-effects parameters vary across individuals, 
with a distribution specified at the second stage. A general family of models is discussed, which 
includes both growth models and repeated-measures models as special cases. A unified approach to 
fitting these models, based on a combination of empirical Bayes and maximum likelihood estimation 
of model parameters and using the E M  algorithm, is discussed. Two examples are taken from a 
current epidemiological study of the health effects of air pollution. 

Many longitudinal studies are designed to investigate changes over time in a characteristic 
which is measured repeatedly for each study participant. In medical studies, the measure- 
ment might be blood pressure, cholesterol level, lung volume, or serum glucose. 
Multiple measurements are obtained from each individual, at different times and possibly 
under changing experimental conditions. Often, we cannot fully control the circumstances 
under which the measurements are taken, and there may be considerable variation among 
individuals in the number and timing of observations. The resulting unbalanced data sets 
are typically not amenable to analysis using a general multivariate model with unrestricted 
covariance structure. 

Statisticians have often analyzed data of this form using some variant of a two-stage 
model. In this formulation, the probability distribution for the multiple measurements has 
the same form for each individual, but the parameters of that distribution vary over 
individuals. The distribution of these parameters, or 'random effects', in the population 
constitutes the second stage of the model. In a study of changes in lung volume during 
childhood, for instance, it may be reasonable to assume that the relationship between lung 
volume and the cube of height is linear for each child, but with linear regression 
parameters that vary among children. If we assume that the usual linear regression model 
applies for each child, conditional on the child's individual parameters, and that the 
regression parameters have a bivariate normal distribution in the population, the marginal 
distribution of the serial measurements is multivariate normal with a special covariance 
structure. 

Key words: Two-stage models; Variance components; Growth models; Repeated measures; Empir- 
ical Bayes; E M  algorithm; Restricted maximum likelihood; Air pollution; Pulmonary function. 
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Such two-stage models have several desirable features. There is no requirement for 
balance in the data. They allow explicit modelling and analysis of between- and within- 
individual variation. Often, the individual parameters have a natural interpretation which 
is relevant to the goals of the study, arid their estimates can be used for exploratory 
analysis. These models also facilitate the study of the effects of background variables on 
the response. The major limitation of these models relative to the general multivariate 
model is the special form assumed for the covariance structure. 

Despite wide recognition of the value of two-stage models, many statisticians are 
unaware of recent methodologic developments that allow a unified approach to the 
formulation and fitting of these models. This paper describes that unified methodology 
and illustrates its value in two problems of data analysis arising in an epidemiologic study 
of air pollution. 

In $2, we introduce a family of two-stage models for repeated measurements, based on 
the work of Harville (1977). This family includes growth models and repeated-measures 
models as special cases. In $3, $4 and $5, we describe a unified approach to inference 
using these models. Both maximum likelihood and empirical Bayes estimation are 
discussed. The relationships, both conceptual and algorithmic, between these two ap- 
proaches to inference are stressed. The EM algorithm is shown to offer a conceptually 
straightforward method for parameter estimation in this setting. Section 6 describes two 
applications of the method. 

2. Models 

Most stochastic models for serial measurements can be classified either as full multivariate 
models or multi-stage random-effects models. In the full multivariate model, we assume 
that each vector of responses, y,, is multivariate normal with mean pi(niX 1) and an 
arbitrary nix ni dispersion matrix Z. Here ni is the number of observations for the ith 
individual, i = 1 , 2 , .  . . ,m. The mean vector may depend upon the pattern of observations 
and also upon covariates. 

When the design is balanced, but observations are missing at random, the full multi- 
variate model can be applied by use of multivariate methods for missing observations 
(Orchard and Woodbury, 1972; Beale and Little, 1975; Dempster, Laird and Rubin, 
1977). However, when individuals are measured at arbitrary or unique times, or when the 
dimension of 2 is large, this approach becomes unattractive, since a full multivariate 
model with an unrestricted dispersion matrix requires a proliferation of variance parame- 
ters, many of which will be poorly estimated. In addition, the full multivariate model does 
not permit the definition and estimation of (random) individual characteristics. 

Two-stage random-effects models are based on explicit identification of individual and 
population characteristics, and their form extends naturally to the unbalanced situation. 
Most of the two-stage models in the literature can be described either as growth models or 
as repeated-measures models. 

As the name implies, growth-curve analyses emphasize the explanation of within-
person variation by the natural developmental or aging process (Rao, 1965; Fearn, 1975; 
Ware, 1983). These analyses often compare growth characteristics for different popula- 
tions, emphasizing the contribution of experimental conditions to between-individual varia- 
bility. 

In constrast, repeated-measures models, as described in the design literature, typically 
assume that individual effects remain constant over the time period of interest (Hayes, 
1973). Experimental conditions are changed during the course of observation, either by 
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design or circumstance, so that the experimental effects contribute to the within-person 
variation. 

In this section, we utilize ideas introduced by Harville (1977) to define a family of 
models for serial measurements that includes both growth models and repeated-measures 
models as special cases. Population parameters, individual effects, and within-person 
variation are introduced at Stage 1, and between-person variation at Stage 2. In $6, we 
illustrate how growth and repeated measures can be represented in this family, and 
demonstrate some of the advantages of the more general formulation. 

Let a denote a p x 1 vector of unknown population parameters and Xi be a known 
ni x p  design matrix linking a to y,. Let bi denote a k X 1 vector of unknown individual 
effects and Zi  a known ni x k design matrix linking bi to y,. For measured, multivariate 
normal data, we propose the following model: 

Stage 1. For each individual unit, i, 

where ei is distributed as N(0, R,) (normal with mean 0 and covariance matrix R,).  Here 
Ri  is an ni x ni positive-definite covariance matrix; it depends on i through its dimension 
ni, but the set of unknown parameters in R i  will not depend upon i. At this stage, a and bi 
are considered fixed, and the ei are assumed to be independent. 

Stage 2. The bi are distributed as N(O,D), independently of each other and of the ei. 
Here D is a k X k positive-definite covariance matrix. The population parameters, a ,  are 
treated as fixed effects. 

Marginally, the yi are independent normals with mean X i a  and covariance matrix 
Ri  +ZiDZ'. Further simplification of this model arises when R i  =a21,where I denotes an 
identity matrix. In that case we call the model the 'conditional-independence model', since 
it implies that the ni responses on Individual i are independent, conditional on bi and a .  

Inference for this general linear model can be based either on least squares and 
maximum likelihood methods, or on empirical Bayes methodology. If 0 is a q-vector of 
variance and covariance parameters found in Ri ,  i = 1 , .  . . , m, and D, the classical 
approach is based on maximum likelihood estimation of cu and 0 from the marginal 
distribution of yT = (y:, . . . ,y:). An estimate for bT = (b:, . . . ,b:) can be obtained by use 
of an extended version of the Gauss-Markov theorem for random effects (Harville, 1976). 
This approach is reviewed by Harville (1977). We apply it to the model (2.1) in 03, 
discussing some of the limitations of the maximum likelihood approach, and possible 
alternatives. 

One alternative can be derived using a Bayesian formulation of the model. Here we 
introduce a flat prior for the location parameters, a ,  and estimate 0 from the marginal 
likelihood of y after integrating out a and b,, i = 1 , 2 , .  . . ,m. This approach was consi- 
dered by Harville (1974, 1976) and Dempster, Rubin and Tsutakawa (1981). This 
modification yields restricted maximum likelihood (REML) estimates for 0. The empirical 
Bayes estimates of a and the bi are the estimated means of the posterior distributions. 

In $5, we show that this Bayesian approach leads to estimates of parameters and their 
variances which are identical to those proposed in a sampling-theory context as alterna- 
tives to maximum likelihood estimates. The Bayesian formulation is emphasized in this 
paper because it provides both a conceptual and computational unity to the estimation 
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methods which we discuss. For either formulation, the EM algorithm provides a conve- 
nient approach to computation for random-effects models, since the individual charac- 
teristics can be viewed as missing data. Implementation of the EM algorithm for 
parameter estimation is described in 04. 

3. Estimation and Inference with Measured Response Data 

3.1 Known Variance 

When all covariance parameters are known, and a is treated as a fixed effect, expressions 
for the estimates of the population and individual effects and their standard errors are 
well-known. Writing var(yi) =Vi  = R i  +ZiDZ', and Wi =V;', we have 

and 

bi =D z ~ W i(yi -Xi &). 

We assume throughout that, whenever this is implied, the necessary matrix inverses exist. 
The equivalent formulas using generalized inverses can be worked out for cases of less 
than full rank. 

The estimate of a maximizes the likelihood based on the marginal distribution of the 
data and is also the minimum variance unbiased estimate. The expression for bi is of 
course not maximum likelihood but can be derived by an extension of the Gauss-Markov 
theorem to cover random effects (Harville, 1976). 

The estimate for bi is also empirical Bayes, since it has the form bi =I3(bi / yi, 4 0 ) .  
Because the prior mean of bi is zero, bi is a weighted combination of 0 and bi, where 6, is 
the ordinary weighted least squares estimate obtained by treating bi as a fixed effect. As 
such, 6, is related to Stein-type estimates obtained by 'shrink~ng towards the origin'. 
Similar empirical Bayes estimates of individual parameters are discussed by Rosenberg 
(1973) and Rao (1975) in the context of growth curves. 

Since both & and bi are linear functions of y, expressions for their standard errors are 
easily derived as rn 

var(h) = (xXFW,xi 
1 

and 

If (3.4) is used to assess the error of estimation, the variation in bi -bi will be 
understated, because this expression ignores the variation of b,. We use instead 

These expressions for the variances, and related ones for covariances, are special cases of 
the general formulas given by Harville (1976). 

3.2 Unknown Variance 

When the covariance matrices are unknown, but an estimate of 0, and thus of R i  and D ,  is 
available, it is natural to set vi= a i  +z~~~z:=w;' ,  and estimate a and bi by using the 
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weighted least squares equations (3.1) and (3.2), replacing each W, by w ~ .We denote 
these estimates by &(0)and bi(0). 

This approach arises naturally when we consider the estimation of a and 0 simultane-
ously by maximizing their joint likelihood based on the marginal distribution of y .  It is 
easily shown that the ML estimates (&,,0,) satisfy &,=&(0,). Further, let b T =  
(b:, b:, . . . , bz). Setting b, = E(b I
 &,, y,  0,) gives b, = b(0,), which is the empirical 
Bayes estimate for b when 0 is estimated by maximum likelihood. Thus, the intuitive 
approach is maximum likelihood for a and empirical Bayes for b. 

Estimates of the standard errors of 640) and b(0) can be obtained by substituting 0 in 
(3.3), (3.4) and (3.5). As noted by Dempster et al. (19811, methods of adjusting 
the resulting expressions to  reflect the uncertainty arising from the use of 0 rather 
than 0 would be useful, but such methods are not available at present. 

Except for this problem of adjusting the standard errors of &(0) and b(0), inference 
about a and b is relatively straightforward. There seems to be general agreement in the 
literature on the use of &(0)and b(0) for some choice of 0. In addition, once 0 is available, 
&(0)and b(0) and expressions for their standard errors are obtained noniteratively. The 
more difficult problem is to obtain a good and easily computed estimate of 0. 

3.3 Estimating the Covariance Matrix 

The literature on the estimation of variance components is extensive, most of it in the 
context of ANOVA models. Harville (1977) reviews the state of the art, treating both the 
optimality of various estimates and their computation. We focus here on two competitive 
estimates, the ML estimate, 0,, and a relative, the restricted ML estimate (REML), 0,. 
We do  so not only because they are leading candidates (0, especially), but also because 
(i) the use of either of these estimates leads to a unified approach to estimation for a,b and 
0, and (ii) the use of the EM algorithm unifies the computation of &(0), b(0) and 0, 
whenever either 0, or 0, is used. 

First consider the ML estimate, 0,. As pointed out previously, &(0,) and 0, jointly 
maximize the marginal likelihood of (a ,  O), and b(0,) is the empirical Bayes estimate of b, 
appropriate when we use &(0,) and 0, to estimate a and 0. Thus, using ML for 0 leads to 
a unified approach for estimating a and b as well. In $4 we discuss the use of the EM 
algorithm to calculate &(0,), b(0,) and 0,. 

In balanced ANOVA models, ML estimates of variance components fail to take into 
account the degrees of freedom lost in estimating a ,  and are thus biased downwards. The 
REML estimates are not biased. The REML estimate is obtained by maximizing the 
likelihood of 0 based, not on y as in maximum likelihood, but on any full-rank set of error 
contrasts, uTy, chosen so that 

In balanced ANOVA models, the REML likelihood equations have the standard 
ANOVA (unbiased) estimates as their solution. Patterson and Thompson (1971) justify 
their use by giving sufficiency arguments of the type subsequently forn~alized by Sprott 
(1971). 

It is not so straightforward to see that the use of 0, leads to a unified approach to both 
estimation and computation of estimates of a and b. The REML estimate can be derived 
in at least two completely unrelated ways, one relying on the sampling theoretic argu- 
ments given above, and the other on a Bayesian approach. The sampling theoretic 
approach gives the much more well-known justification for REML, but the Bayesian 
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approach leads to the unified treatment of estimation and computation. Strictly speaking, 
it is unnecessary to understand the Bayesian approach to REML, but this approach is 
attractive because it clarifies the theoretical justification for &(OR), b(8,) and 0,, and, 
more importantly, it leads to a simplified derivation of the likelihood equations and shows 
how to handle their computation. For this reason, we discuss the Bayesian approach to 
REML in 0 5 ,  after a discussion of the use of the EM algorithm for ML estimation. 

4. Using the EM Algorithm for ML Estimates 

In their paper on maximum likelihood estimation with incomplete data, Dempster et al. 
(1977) noted that many iterative algorithms for computing maximum likelihood estimates 
are merely special cases of a very general computing algorithm called EM, applicable in a 
broadly defined incomplete-data setting. Both variance-component models and empirical 
Bayes models were discussed as incomplete-data problems in which the algorithm can be 
applied. Dempster et al. (1981) consider its application to covariance-component models 
as well. We outline here its use in the calculation of o,, and also of &(@,) and b(0,). 

Laird (1981) shows that, when 8 is a vector of variance components (R,= a21n,,,and D 
is diagonal), the E M  algorithm is equivalent to Henderson's algorithm for maximum 
likelihood, as described in Harville (1977). As Dempster et al. (1981) point out, the 
reasons for viewing the particular algorithm (Henderson's) in the more general form (EM) 
include the following: (i) special derivations are not required for other cases, such as 
covariance-components models; (ii) the general EM theory, which shows that each 
iteration increases the likelihood, can be applied; and (iii) the general expressions for 
defining the iterative steps of the algorithm have meaningful statistical interpretations 
which, as we show in 0 5 ,  help to elucidate the distinction between REML and maximum 
likelihood estimates of 0. 

To put the longitudinal-data problem in the context of incomplete-data, note that if we 
were to observe b, and e,, in addition to yi, we could easily find simple closed-form 
maximum likelihood estimates of the components of 8, based on quadratic forms in bi and 
e,, i = 1, . . . , m. For example, if Ri = c21,,, and D is an arbitrary k x k nonnegative-
definite matrix, we would use 

and 

the 'sufficient statistics' for 8 being t1 and the i k ( k + 1) nonredundant components of t2. 
If an estimate of 8 is available, we can use it to calculate 'estimates' of the missing 

'sufficient statistics', by setting them equal to their expectations, conditional on the 
observed data vector y. Letting 0 denote the estimate of 8,  &(o) and bi (8) the correspond- 
ing estimates of CY and b,, and {, and 2, the 'estimated sufficient statistics', we have 
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and 

where bi(0) =E(e, I y,,&(@), 0) =yi - ~ , d ( ~ ) - Z , b , ( 8 ) .  
To obtain the ML estimate, 0,, we start with any suitable initial value for 0, and thus 

for I%(@), then iterate between (4.3) and (4.4), which define the E-step, and (4.1) and (4.2), 
which define the M-step. At convergence we have not only o,, but &(0,) and b(0,), from 
calculation of the last E-step. 

For other models applied to longitudinal data, CT-eTei and XI; bib: are replaced by the 
appropriate 'sufficient statistics', which, depending on 0, are generally quadratic forms in 
bi and e,. Denoting these sufficient statistics by t, (4.1) and (4.2) (defining the M-step of 
the EM algorithm) become 

M-step: 0 =M(t), (4.5) 

where M is the appropriately defined mapping which gives maximum likelihood estimates 
of 0 when t is observed. The general form of the E-step [(4.3) and (4.4)] becomes 

A different application of the EM algorithm arises in multivariate normal missing-data 
problems (Dempster et al., 1977). Here one proceeds by 'filling in' the missing observa- 
tions. This technique is sometimes employed to create artificially a balanced design even 
when no data are missing (Healy and Westmacott, 1956; Kleinbaum, 1973). Our 
approach here both to modelling and computation is fundamentally different. We regard 
no data as missing; we use the EM algorithm to 'estimate' unobservable (i.e. random) 
parameters, not missing observations. 

In the discussion of Dempster et al. (1977), concerns were raised about the slow 
convergence of the EM algorithm, its sensitivity to starting values, and its convergence to 
a local, rather than a global, maximum. Examples involving its application to missing-data 
problems, mixture problems and factor analysis were given. In applications of the 
two-stage model, we have often experienced slow convergence of the estimates of 
variance components. The problem of slow convergence will be especially severe if the 
maximum likelihood occurs on or near a boundary of the parameter space. Further work 
on the convergence properties of the algorithm is desirable before it can be universally 
endorsed. 

5. REML Estimation and Computation 

For reasons noted earlier, REML estimates of variance components are generally prefera- 
ble to ML estimates. In this section, we discuss the Bayesian interpretation of REML, 
showing how it leads to a unified approach to estimation of a ,  b and 0, and to 
computation of their estimates. 

Consider the following 'Bayesian' formulation of the general two-stage model presented 
in 62. Stage 1remains unchanged so that, conditional on a and b,, y, is normal with mean 
X,ol+Z,b, and variance R,.At Stage 2, we let a and each bi be independent and normally 
distributed with mean vectors equal to 0 and var(a) =r,var(bi)=D and cov(a, b,) =0, for 
i = 1 , .  . . ,m. Marginally, we now have 

We continue to let 0 denote the unknown parameters in D and R,, i = 1 , .  . . ,m. 
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If 0 and r were known, 'Bayesian' estimates for a and b could be obtained as their 
posterior expectations, given y, 0 and r .  With r and 0 unknown, an empirical Bayes 
approach would replace r and 0 with estimates obtained by maximizing their marginal 
normal likelihood based on y, integrating over a and b. 

We have information in the data about 0, which models both between- and within- 
individual variation, and thus we can obtain an estimate of 0. Typically, however, we have 
no information about I?, which models variation in the population characteristics. Thus, 
we cannot estimate I?. A reasonable strategy is to let r-'=0,  indicating vague prior 
information about a,and use an estimate of 0 obtained by maximizing the limiting (as 
rpl+0) marginal likelihood of 0 given y. Harville (1976) demonstrates that this limiting 
likelihood is precisely equivalent to the REML likelihood. Thus, the estimates of 0 
obtained in this setting are the REML estimates. 

The expressions for the posterior means of a and b, given that r-' =0 and 0 =0,, are 
simply &(0,) and b ( 0 ~ ) .  That is, 

E(& y, r-I=0,0,) = &(oR) 
and 

These equations follow from the equivalence of ML estimates and posterior means for 
parameters with flat priors. The estimators of a and b have the algebraic form previously 
derived, but the estimates may differ slightly because of the use of 8, rather than 8, in 
the matrix of weights. 

Using this empirical Bayes approach to REML, it is straightforward to show how to use 
EM to calculate 0,, &(0,) and b(0,). For estimating 0, the 'complete data' still consist of 
y, b and e ;  thus, the M-step [(4.1) and (4.2), or ( 4 3 1  remains the same. The difference 
between ML and REML comes in the E-step [(4.3) and (4.4), or (4.6)]. Here, expecta- 
tions for ML were taken conditional on y and a .  With REML, these expectations are 
conditional on y only, because a has been integrated out of the likelihood. Thus, (4.3) and 
(4.4) become rn vn 

i, = E ( X  eTei I y,,0) = {~,(8)'eL(9)+trvar(ei 1 yi,8)) (5.1) 
and 1 1 

m m 

6=E(Z b i b i 1 y,, 8) = {b,(~)b,(6)' +var(bi 1 yi, 8)). (5.2) 
1 1 

Here ei (0) still equals yi -x1a(8)-zibi (8). In general, the E-step becomes 

Note that the expectations computed at the E-step involve the conditional means and 
variances of bi and e,. As noted earlier, the conditional means of bi and ei are the same, 
regardless of whether we take a fixed, or random with infinite variance. The conditional 
variances are different, and this fact illustrates why ML estimates of variance components 
are biased downwards. Because we are dealing with normal expectations, neither 
var(b, / yi, a ,  0) nor var(ei / y,, a,0) depends upon a. This implies that 

and likewise for the el. Thus the expectations computed at the E-step for ML, (4.3) and 
(4.4), are smaller than the corresponding quantities for REML, (5.1) and (5.2), which will 
lead to smaller estimated variance components. 

There is one additional feature of this Bayesian approach which enhances its attractive- 
ness, and also that of using the EM algorithm. Harville (1976) has shown that, if we use 
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var(ol / y, 0,) and var(b / y, 8,) to assign estimated variances to &(&) and b(oR), then 
these quantities are the same as the sampling-theory variances, var(&) and var(b-b), 
given in (3.3) and (3 .9 ,  with 0, substituted for 8. Since var(b / y, 0) must be computed at 
the E-step, it is available at the final iteration, as is b(8,). The estimate of a, &(0,), and 
its variance, var(a / y, 0,) need not be explicitly computed at the E-step, but are readily 
available from the other quantities computed at this step. Thus 8,, a%(&),b(&), var,,,(&) 
and var,,,(b-b) are calculable, either directly or indirectly, using the EM algorithm. 

6. Examples 

In this section, we illustrate the application of the general model to two data-analysis 
problems arising in the study of effects of atmospheric pollutants on pulmonary function. 
The first problem has features of a repeated-measures design, and the second is closely 
related to growth-curve analysis. We show how each of these models is represented in the 
general linear model and demonstrate the advantages of a more general formulation. A 
detailed comparison of several approaches to the analysis of Example 1 is the subject of a 
forthcoming report. 

Example 1: Analysis of the effect of air pollution episodes on pulmonary function. 
Approximately 200 school children were examined under normal conditions, then during 
an air pollution alert and on three successive weeks following the alert. The objective was 
to determine whether FEV,, the volume of air exhaled in the first second of a forced 
exhalation, was depressed during the alert. A secondary objective was the identification of 
sensitive subgroups or individuals most severely affected by the pollution episode. 

The simplest model for these data is a two-stage mixed model, corresponding to the 
repeated-measures design. If y, is the 5 x 1 vector of FEV, values for the ith child, 

where I is the 5 x 5 identity matrix and 1 is a 5 x 1 vector of '1's. The vector a contains the 
population mean FEV, values on the five days, and bi is the random deviation in average 
FEV, value for the ith child. We assume ei  -N(Q, a21) and bi -N(O, .i2). When some 
measurements are missed, the model for yi (nix 1) is the natural modification of (6.1). 

The data were analyzed using the methods described in 65 and by standard multivariate 
methods, with the following findings: (i) a decline in mean FEV, was observed on and 
after the alert day; (ii) the variances and covariances for the last four measurements were 
larger than those involving the baseline day. 

The increased variability on and after the alert day is consistent with the hypothesis that 
individuals respond differently to the exposure. The notion of sensitive individuals is an 
important idea in the air pollution literature. We can introduce a second random effect to 
quantify the average decline in FEV, for each child. Let 

where Xi, a and ei  are defined as before, but bT= (bli ,  b2,) and 
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The second stage of the model is a-N(0,  I'), bi -N(O, D) with r-'+0. Then bl i  is the 
individual effect for the ith child at the baseline examination, and bzi measures the 
average deviation from that value for the alert and post-alert examinations. A negative 
value for 6,, implies a larger decline in FEV, for the ith child than for the sample as a 
whole. The estimates of bzi were used to identify children who showed greatest declines, 
and 20 children were identified for further study and review of previous examinations. 
Many of these children had developed a cold during the follow-up period. The ability to 
summarize individual responses in a way that is useful for exploratory analysis is an 
important feature of random-effects models. 

To study the influence of sex, race, location of residence and other individual charac- 
teristics on response, we defined a model including these factors. If vi is the vector of 
individual characteristics for the ith individual, let bl i  and bzi have linear regressions on 
these factors, bIi =vFyl +bii and b2, =vTyz+ bii, where b;, and b i i  are the individual 
deviations from the regression model. Then 

=Viy+b; ,  
and the general model for yi is 

y, = X i a + Z i b i  +e i  

=Xia+Zi (Viy  +b;)+ei  

= [x i ,  ~ ~ ~ , ] [ a ] + ~ , b : + e ~ ,  
Y 

a new model in the general family. This development illustrates how we can begin with a 
repeated-measures analysis and continue naturally to models that require the more 
general family. 

Example 2: Analyzing the effect of air pollutants on pulmonary function development. In a 
study related to that of Example 1, about 2000 children are examined annually in each of 
six cities to determine the influence of tobacco smoke and fossil-fuel combustion products 
on the level and rate of development of pulmonary function. For specificity, we continue 
with FEV, as the response. 

The principal factor influencing FEV, is body size, which we represent here by height. 
If the ith child has a vector, yi, of responses, the growth-curve model assumes that each 
child also has a vector of growth-curve parameters, b> and a growth model yi 1 bF= 
xib>ei  at Stage 1, and b: -N(P,D) at Stage 2. If a polynomial growth curve is assumed, 
the matrix Xi will contain a column of '1's and various powers of the heights at different 
examinations. Since the pattern of growth, and the number and timing of visits, vary 
among children, the design will be unbalanced. 

If bi =b " ~  centers the individual effects at 0, the model can be expressed as 

Relating this to the model (2.1), growth models implicitly require that the column space of 
Xi, the matrix linking population parameters to yi, is contained in the column space of Zi, 
the matrix linking individual effects to y,. This is not always desirable. For instance, we 
may want to fit a saturated model to the population growth curve and a very simple model 
to the individual deviations. 
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We may assume further, following Grizzle and Allen (19691, that the values of the 
growth parameters depend linearly on a vector of individual characteristics v,, through the 
relationship b"viy +b,, where 

Then the model can be expressed as 

and still belongs to the family of growth curves. However, if changes in some of the 
individual characteristics, such as air pollution concentration, stove type, or smoking in 
the home, can alter the expected rate of growth, the general linear model is required for 
representation of this relationship. 

7. Discussion 

The principal advantage of the general linear model (2.1) is the ability to treat a variety of 
important special problems in a unified way. Although readers may disagree about the 
relative appeal of the Bayes and non-Bayes approaches to parameter estimation, practi- 
cally speaking this choice is often of secondary importance and either approach can be 
accommodated in the general theory. 

We do see room for further technical development in methods of implementation. 
Methods are needed for adjusting the estimates of var(&) and var(b) to account for the 
uncertainty in 6. The EM algorithm is a powerful concept for simplifying the computation 
of parameter estimates and likelihoods, but more information on its speed of convergence, 
sensitivity to initial estimates, and convergence to boundary points or nonglobal maxima is 
necessary before it can be universally endorsed. Since the main computational burden is 
the iterative computation of 0, investigation of the properties of noniterative alternatives 
could be useful. 

Les modkles d'analyse de  donnCes longitudinales doivent prendre en compte la relation entre les 
observations faites en sCrie sur une m&me unit6 expCrimentale. Les modkles multivariates avec une 
structure de  covariance gCnCrale soilt souvent difficiles B appliquer B des donnCes fortement 
dCsCquilibrCes, alors que les modkles B deux niveaux d'effets alCatoires sont d'un emploi aisC. Dans 
ces modkles, les distributions de probabilitk des vecteurs rCponse d'individus diffCrents appartien- 
nent B une seule famille, mais quelques paramktres des effets alCatoires varient entre les individus, 
avec une distribution qui est spCcifiCe pour le second niveau. Une  famille gCnCrale de modkles est 
discutCe, comprenant les modkles de  croissance aussi que les modkles des mesures rCpCtCes comme 
des cas particuliers. On  discute une approche unifiCe B l'adjustement de  ces modkles, fondCe sur une 
combinaison de  I'estimation bayesienne empirique et  la mCthode du maximum de vraisemblance, 
utilisant I'algorithme EM. Deux exemples sont pris B un travail CpidCmiologique en cours, concer- 
nant les effets sur la santC de  la pollution atmosphCrique. 

Beale, E. M. L. and Little, R. J. A. (1975). Missing values in multivariate analysis. Jounzal of the 
Royal Statistical Society, Series B 37, 129-145. 



974 Biometrics, December 1982 

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood with incomplete data 
via the E-M algorithm. Journal of  the Royal Statistical Society, Series B 39, 1-38. 

Dempster, A. P., Rubin, D. B. and Tsutakawa, R. K. (1981). Estimation in covariance component 
models. Journal of the American Statistical Association 76, 341-353. 

Fearn, T. (1975). A Bayesian approach to growth curves. Biometrika 62, 89-100. 
Grizzle, J .  E. and Allen, D. M. (1969). Analysis of growth and dose response curves. Biometncs 25, 

357-382. 
Harville, D. A. (1974). Bayesian inference for variance components using only error contrasts. 

Biometrika 41, 383-385. 
Harville, D. A. (1976). Extension of the Gauss-Markov theorem to include the estimation of 

random effects. Annals of Statistics 4, 384-395. 
Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to 

related problems. Journal of the American Statistical Association 72, 320-340. 
Hayes, W. L. (1973). Statistics for the Social Sciences. New York: Holt, Rinehart and Winston. 
Healy, M. and Westmacott, M. (1956). Missing values in experiments analyzed on automatic 

computers. Applied Statistics 5, 203-206. 
Kleinbaum, D. (1973). A generalization of the growth curve model which allows missing data. 

Journal of Multivariate Analysis 3, 117-124. 
Laird, N. M. (1982). Computation of variance components using the E-M algorithm. Journal of 

Statistical Computation and Simulation 14, 295-303. 
Orchard, 7'.and Woodbury, M. A. (1972). A missing information principle: theory and applications. 

In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, 
L. M. LeCam, J. Neyman and E. L. Scott (eds), 697-715. Berkeley: University of California 
Press. 

Patterson, H. D. and Thompson, R. (1971). Recovery of interblock information when block sizes 
are unequal. Biometrika 58, 545-554. 

Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its 
applicatioil to the analysis of growth curves. Biometnka 52, 447-458. 

Rao, C. R. (1967). Least squares theory using an estimated dispersion matrix and its application to 
measurement of signals. In Proceedings of the Fifth Berkeley Symposium on Mathematical 
Statistics and Probability, Vol. I, L. M. LeCam and J. Neyman (eds), 355-72. Berkeley: 
University of California Press. 

Rao, C. R. (1975). Simultaneous estimation of parameters in different linear models and applica- 
tions to biometric problems. Biornetrics 31, 545-554. 

Rosenberg, B. (1973). Linear regression with randomly dispersed parameters. Biometrika 60, 
65-72. 

Sprott, D. A. (1971). Marginal conditional sufficiency. Biometrika 62, 599-605. 
Ware, J .  H. (1983). Growth curves. In Encyclopedia of Statistical Sciences., S. Kotz, N .  L. Johnson 

and C. B. Read (eds). New York: Wiley. To appear. 

Received April 1981; revised October 1981 


