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This paper presents a general mixed model for the analysis of serial dichotomous responses provided 
by a panel of study participants. Each subject's serial responses are assumed to arise from a logistic 
model, but with regression coefficients that vary between subjects. The logistic regression parameters 
are assumed to be normally distributed in the population. Inference is based upon maximum 
likelihood estimation of fixed effects and variance components, and empirical Bayes estimation of 
random effects. Exact solutions are analytically and computationally infeasible, but an approximation 
based on the mode of the posterior distribution of the random parameters is proposed, and is 
implemented by means of the EM algorithm. This approximate method is compared with a simpler 
two-step method proposed by Korn and Whittemore (1979, Biornetrics 35, 795-804), using data 
from a panel study of asthmatics originally described in that paper. One advantage of the estimation 
strategy described here is the ability to use all of the data, including that from subjects with insufficient 
data to permit fitting of a separate logistic regression model, as required by the Korn and Whittemore 
method. However, the new method is computationally intensive. 

1. Introduction 

Longitudinal (or panel) studies which require repeated observations on participants are an 
integral part of medical and biological science. They have been fundamental to the study 
of physical and cognitive development (Goldstein, 1979; Nesselroade and Baltes, 1979) and 
normative aging. They are important in the study of chronic diseases such as arthritis, 
nephritis, diabetes and chronic obstructive pulmonary diseases. Panel studies are also used 
increasingly in assessing the health effects of air pollution (Stebbings and Hayes, 1976). 

Statistical methodology for these studies has been developed primarily for the analysis of 
repeated measurements. Multivariate and repeated-measures analysis of variance (Bock, 
1975; Grizzle and Allen, 1969) and growth-curve analysis (Rao, 1975; Ware and Wu, 198 1) 
have been used successfully with balanced designs. Laird and Ware (1982) and Strenio, 
Weisberg and Bryk (1983) recommend empirical Bayes analysis based on random-effects 
models. The latter methods are easily implemented with unbalanced designs or incomplete 
data. 

Methods for the analysis of longitudinal data with binary, or more generally, poly- 
chotomous response, are far less well developed. Methods which have been proposed 
perform poorly in settings with many covariates, unbalanced data, missing observations 

Key words: Empirical Bayes; Binary response; EM algorithm; Longitudinal data; Random logistic 
model. 
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and/or large numbers of observations per subject (Markus, 1979; Koch et al., 1977; 
Hasselblad, 1978). For serial dichotomous response, Korn and Whittemore (1 979) proposed 
a logistic growth-curve model with normally distributed random coefficients which has 
many of the strengths of the corresponding random-effects models for measured response. 
A drawback of the logistic-normal model is its analytic intractability. Korn and Whittemore 
proposed an approximate analysis based on a separate logistic regression for each subject. 
Their method requires the exclusion of individuals with low response rates, missing data, 
or small numbers of repeated observations. 

This paper generalizes the logistic-normal model for dichotomous response and develops 
an empirical Bayes approach to inference. The benefits of this approach are described, as 
well as difficulties in its implementation. After presenting the model and method of analysis, 
we apply it to a set of panel data arising from a study of the impact of air pollution on 
asthma attack rates. These data were also analyzed by Korn and Whittemore (1979) and 
we compare the results for the two methods of analysis. The two methods lead to somewhat 
different results regarding the effect of air pollution on asthma attack rates, apparently 
because the model simplification and subject selection required by the Korn-Whittemore 
method lead to residual confounding and selection bias. 

2. The Model 

The data in a general longitudinal study can be characterized as follows. Let y; denote an 
ni x 1 vector of responses for the ith individual, i = 1, . . . ,N. Each element, yu, is assumed 
to be a binary response; extension to categorical responses is straightforward. Let po = 
pr(yu= I), Xij = logit pi,, and let Xi denote the ni x 1 vector of logits. Each individual also 
has a set of covariates, some of which vary over occasions of measurement (e.g. air 
pollution, weather variables, day of week, etc.) and others which are fixed (sex, initial 
conditions, etc.). Korn and Whittemore (1979) proposed a version of the following two- 
stage model based on logistic regression. Let Zi denote an ni X k matrix of the occasion- 
varying (or within-person) covariates plus an intercept. Assume Xi = Z,vi, where vi is an 
unknown parameter vector for the ith individual. Conditional on vi, assume that the 
likelihood for the ith individual is 

At Stage 2 of the model, each vi is taken to be MVN(Wia, D), where Wi is a k x p matrix 
of between-subject covariates, that is, covariates that vary over subjects but remain constant 
over occasions for a given subject. 

Several features of this model deserve special attention. Stage 1 allows modeling of the 
within-subject variation (or occasion-to-occasion variation) separately for each subject, as 
a function of the within-person covariates. Thus each individual has a unique response 
function whose parameters are specified by vi. At Stage 2 we model the between-subject 
variation by postulating a distribution for the individual growth-curve parameters. The 
mean values of the distribution of random effects can depend upon the between-subject 
covariates. 

Observations on different subjects are assumed to be independent. Serial correlation 
between successive measurements on the same subject can arise in one of two ways. First, 
serial correlation which arises as the result of true state dependence can be modeled at 
Stage 1, by allowing Z, to include a covariate which is the value of the response on the 
previous occasion. For example, a modulated two-state Markov chain is specified for each 
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individual at Stage 1 by taking 

Here pi,is the conditional probability of response on Occasion j, given the covariates Z,, 
parameter vector v;, and previous responses, y;,,-~, yi,j-2, etc. The Markov assumption 
implies that the probability of response depends on past history only through the response 
on the previous occasion. The response probability is modulated by the effects of other 
occasion-varying covariates, Z3ji, Zq;,etc. 

Serial correlation which is the result of heterogeneity in the population parameters (as 
opposed to state dependence) is introduced at Stage 2. Even if we assume independence 
for successive observations on an individual at Stage 1, correlations between observations 
on the same individual will still be induced at Stage 2 because parameters vary over 
individuals. Such 'conditional independence' models have certain advantages over the 
Markov ones. Technically, missing data, nonequispaced intervals and specification of initial 
conditions can cause problems with Markov models. More importantly, the interpretation 
of covariate effects becomes more difficult in Markov models. The exponentiated param- 
eters for covariate effects still may be interpreted as relative odds (in the right scale) but 
they are conditional on previous responses. If there is considerable true state dependence, 
the conditional effects of other covariates may be small even though they may have 
considerable impact on the marginal response rates. By using a conditional-independence 
model, we can study the effects of covariates on the marginal response rates (conditional 
only on Z,). In many settings this may be more desirable. It is also analogous to growth- 
curve analysis in the measured-response setting. 

We refer to the preceding model as a growth-curve model, since a different regression 
model is fitted for each individual at Stage 1. This paper considers a larger and more 
flexible family of models referred to as the general logistic-linear mixed model. At Stage 1 
let 

and at Stage 2 assume that b; is MVN(0, D). These assumptions define the general 
mixed linear model for the logits of the response probabilities. Taking Xi = ZiWi and 
b, = v, - W i ayields the original growth-curve model as a special case. To implement the 
empirical Bayes approach to inference for Model (2.2), we will further assume that a has a 
diffuse prior distribution. This is accomplished by assuming at Stage 2 that a is also 
MVN(0, r),  and subsequently letting r-' +0. 

3. Parameter Estimation for the General Logistic-Linear Mixed Model 

In principle, one could estimate a and D by maximizing the marginal likelihood of the 
data, 

1; exp(-ibTD-'b,)l~~-l/~ db,, 

where I, is given in (2.1) and pi is the vector of logits given in (2.2). Estimates of the random 
individual parameters would be obtained by using an empirical Bayes strategy: 

6; = ~ ( b ,1 y;, &, D). (3.2) 

This approach has two drawbacks. First, maximum likelihood estimates of variance 
components are biased in small samples, the bias increasing as the dimension of a increases 
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relative to N. [See Harville (1977, p. 325) and references therein.] A standard fix-up for 
this problem in the measured-response case is the use of restricted maximum likelihood 
(REML) estimates of the variance components. In the balanced ANOVA setting, the REML 
analysis is equivalent to maximizing the likelihood obtained by integrating out the fixed 
effects using a diffuse prior (Laird and Ware, 1982). 

We will adopt that strategy here, estimating D by maximizing 

LR(D, r-' = 0) = lim {LDL(a, D) exp(-+aTr-la)[ r I-"' d a1. (3.3) 
r-'-0 1 

The associated estimate of a is 

ai = ~ ( ~ l y ,  (3.4)D, r-I = o), 

where yT = (y?, . . . , y;), and expectation is over the joint posterior distribution of a and 
bT= (b:, . . . , bi). Variances for ai and 6 can be estimated by 

5, = var (a1 y, D, r-I = 0) (3.5) 

2 ,  = var (bly, D, r-' = 0). (3.6) 

Because of the equivalence of flat prior Bayes and maximum likelihood estimation, this 
general strategy for estimating a and D could be regarded as maximum likelihood, with an 
REML adjustment for the variance components. The estimate of b, is also a generalization 
of the standard method for handling estimates of random effects in the general linear mixed 
model. Laird and Ware (1982) discuss this empirical Bayes approach to inference in the 
case of measured response with linear models and Gaussian error structure. In that setting, 
there is a direct connection between empirical Bayes and standard frequentist strategies for 
estimation and inference. Optimality of the empirical Bayes strategy can be demonstrated 
by applying standard sampling-theory optimality criteria. 

The second problem we encounter with either ML or empirical Bayes approaches is that 
closed-form expressions for the integrals in (3.1) and (3.3) [and those implicit in (3.2) and 
(3.4)-(3.6)] do not exist. Thus, standard analytical methods cannot be used to calculate D, 
and, given D, numerical integration in Nk dimensions is required to obtain & and 5,. The 
proposed solution for estimating a and b is to use posterior modes rather than means in 
(3.2) and (3.4). We approximate the posterior variances by the inverse of the information 
matrices based on the corresponding posterior distributions and evaluated at the mode. 
This is equivalent to approximating the posterior distribution of a and b by a multivariate 
normal distribution that has the same mode and curvature at the mode as the true posterior. 
Denoting the joint posterior distribution of a and b as p(a, bly, D, I?), define &, 6 and i , b  
by 

p(&, 6) = sup p(a, b I y, D, r-I = 0) 
u,b 

and 

where D maximizes (3.3). Since p(a, bly, D, r-' = 0) is proportional to the product of 
f(y la, b) and p(b I D), & and 6 can be calculated using standard optimization routines similar 
to those used for ordinary maximum likelihood. Further i;i is available in closed form. 

This approach to approximating posterior means and variances was used by Leonard 
( 1975) and Laird ( 1978) in work on contingency tables with random parameters. Laird and 
Louis (1982) consider this approximation in a more general setting. 

To estimate D, we must deal with the numerical intractability of the marginal likelihood 



965 Models for Serial Binary Data 

(3.3). Leonard and Laird used different approaches to the estimation of variance compo- 
nents, either of which could be applied here. Leonard suggests using a prior with known 
parameters for the components of D, then using joint posterior modes to estimate simul- 
taneously a ,  b and D. Dempster, Selwyn and Weeks (1983) use a similar approach. Laird 
(1978) takes the maximization of (3.3) as the objective, but approximates its derivatives in 
calculating D. This approximation, which relies on the special form of the derivatives, is 
discussed in $4. 

4. Computation via the EM Algorithm 

The EM algorithm is a general-purpose optimization routine for computing maximum 
likelihood estimates in an incomplete data setting. In their paper characterizing the 
algorithm, Dempster, Laird ~ n d  Rubin (1977) give empirical Bayes and variance-compo- 
nents problems as two examples of its application. In the longitudinal-data setting, we 
regard the individual parameters, b, as missing data, thereby invoking the incomplete-data 
setting. 

Suppose that b were observed. Then the MLE of D would be 

If D has a special form (diagonal, for example), (4.1) simplifies, but the components of D 
remain quadratic forms in b. Equation (4.1) follows from the fact that, if b were observed, 
its likelihood would have the exponential-family form with sufficient statistic C? b,bT. 
Equation (4.1) thus defines the M-step for each iteration of the EM algorithm. 

The E-step of each iteration is based on calculating the expected value of the syfficient 
statistic, conditional on the observed data vector, y, and the current value of D. Thus 
calculation of 

N 

i = 1 ~ ( b , b fI yi, D, r-I = 0) (4.2)
I 

defines the E-step of each iteration. 
Exact calculation of (4.2) requires N numerical integrations, each in k dimensions. 

However, if we use the normal approximation proposed in $3, calculation of (4.2) is 
straightforward. Here we assume that the conditional distribution of b, given y, is approx- 
imately normal with mean 6 and covariance matrix ib, as defined in (3.7) and (3.8). 

Computation of 6 as defined in (3.7) will generally require iteration, so the algorithm 
which we suggest requires an iterative procedure (Newton-Raphson) at each E-step of the 
EM algorithm. We have developed software in Fortran to implement this approach to 
calculating &, 6, i,, i b  and D. Our experience using the data set described in $6 suggests 
that the method may be prohibitively expensive for exploratory analyses when all the ni 
and k are large, even though N is relatively small. Savings could possibly be realized by 
using only one Newton step to approximate (4.2) at each E-step of the algorithm. Alterna- 
tively, if each ni is large and k is small, it may be more efficient to use numerical integration 
to approximate (4.2) at each E-step. 

5. A Two-Step Approach to Estimation 

To deal with the analytic intractability of the marginal likelihood, Korn and Whittemore 
(1979) proposed a method for estimating a and D which we call two-step (TS) since it 
involves two separate estimation problems. First, logistic regression parameters are esti- 
mated for each individual. Then asymptotic ML theory is used whereby the estimated 
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parameters are assumed to be approximately normal with means equal to the true individual 
parameters and covariance matrices equal to the inverse of the observed information 
matrices. These sampling variances are subsequently treated as known. Since the true 
parameters are assumed normally distributed at Stage 2, standard normal theory can now 
be used to estimate a and D (Korn and Whittemore, 1979). By definition of the procedure, 
it is applicable only when we assume that the growth-curve model holds (i.e. Xi = W,Zi). 

Formally, we define the TS estimators of a and D as follows. Let i, denote the MLE 
based on (2.1) and let S, denote its large-sample variance-covariance matrix. Assume that 
i, - MVN (v;, S;), and vi - MVN(W;a, D). Then marginally the i, are independently 
distributed as MVN (Wia, S;+ D), where the Siare known. Standard multivariate-normal 
theory can be used to derive estimates for a and D. An REML version using a flat prior on 
a is a straightforward extension. Korn and Whittemore also suggested a simplified two-step 
method (STS) whereby each component of vi is analyzed separately. This is equivalent to 
setting all the off-diagonal terms to zero in D and in each S,. 

The two-step approach has much to recommend it, since analytically it is far easier and 
cheaper to implement. However, if individual response rates are low, or if ni is small relative 
to k, then some of the Gi, may be kw.These individuals must be excluded from the analysis. 
This form of case exclusion is far from random and the resulting inferences must be 
interpreted carefully. Even if no cases are excluded, each ni should be sufficiently large to 
ensure that the asymptotic normality assumption for i,is valid. 

6. Example 

This section compares the results of several analyses by the empirical Bayes (EB) and two- 
step (TS and STS) methods of a panel study of asthmatics described by Korn and 
Whittemore (1979). The panel consisted of 64 asthmatics living in Garden Grove, Califor- 
nia. Daily observations of air pollution, weather conditions and the presence or absence of 
an asthma attack for each participant were recorded from 13 November 1974 to 29 June 
1975. The first 14 days of data were excluded from the analysis. Some data on asthma 
attacks are missing. Between-individual covariates include sex, age and history of hay fever. 

Parameter estimates were computed for all three methods by the EM algorithm. The 
procedure for the two-step methods was based on Laird and Ware (1982). Our results using 
the STS method were not identical to the results reported by Korn and Whittemore, 
apparently because of differences between the data set used in their original analysis and 
the data set provided to us. Because it proved difficult to resolve the issue of data 
comparability, we chose to apply the Korn and Whittemore method to our data set and 
restrict comparisons to results obtained in our reanalysis. In comparing the results for 
different methods, we focus on the coefficient of Total Suspended Particulates (TSP), a 
measure of the weight of suspended particles per unit volume of outdoor air. It is the 
parameter of greatest substantive interest and its estimate is sensitive to the method of 
analysis. 

Korn and Whittemore considered two sets of within-individual covariates in their 
analysis. The larger model included 11 time-varying covariates: A Markov covariate 
indicating an asthma attack on the previous day, daily average concentration of TSP (in 
pg/m3), minimum daily temperature (in degrees Fahrenheit), humidity (%), 'study period', 
and six indicator covariates for the days of the week (Monday through Saturday). The 
'study period' covariate was an indicator for the first 46 days of the study. Korn and 
Whittemore's analysis required the elimination of approximately one-third of the available 
subjects due to the absence of attacks on particular days of the week, or during the first 46 
days of the study, and the resulting inability to estimate logistic regression coefficients. To 
increase the effective sample size, they performed a second analysis utilizing only five 
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Table 1 
Estimated mean, standard error and random-effect standard deviation for five regression coeflcients 

in the 1 1 -covariate model (N= 40) 

Variable 

Method 


Markov TSP* Temp.* Humidity* Saturday 

Estimated mean 
STS 2.46 1.55 -3.37 -3.73 0.55 
TS 2.18 0.67 -1.72 -4.56 0.55 
EB 2.4 1 1.08 -2.75 -4.70 0.54 

Standard error 
STS 0.23 0.95 8.60 3.42 0.17 
TS 0.18 0.9 1 7.63 3.16 0.16 
EB 0.2 1 0.88 7.69 3.22 0.17 

Standard deviation of random effect 
STS 1.31 2.6 1 35.73 9.83 0.55 
TS 0.99 2.34 28.43 7.52 0.56 
EB 1.23 2.73 32.24 10.00 0.68 

within-individual covariates. This was accomplished by eliminating the 'study period' 
covariate and collapsing the six day-of-week covariates into a single indicator variable 
identifying the first half of the week (Sunday through Wednesday). 

In our data set, individual logistic-regression parameters of the 11-covariate model were 
successfully estimated for 40 subjects. We performed the TS, STS and EB analysis for this 
set of 40 individuals. Estimates of regression coefficients, standard errors and associated 
variance components for five variables by the three methods are displayed in Table 1. 
While the three methods gave somewhat different estimates of the TSP coefficient, the 
agreement was quite good for other regression parameters (relative to their standard errors). 
Neither the TS nor the EB method suggests much of an effect of TSP. The STS method 
suggests a marginally significant effect. 

When the STS and TS methods were implemented for the five-covariate model, logistic 
regression coefficients were obtained for 54 individuals. Hence, the five-covariate model 
was fitted for N = 54 by all three methods. The five-covariate model was also fitted for 
N = 40 by all three methods, and by the EB method for N = 64, to assess the impact of 

Table 2 
Estimated mean (with standard error) and standard deviation, d, of the random-effect distribution 

for the TSP regression coeflcient, for two models and three sample sizes (x lo3) 
-

N = 4 0  N =  54 N =  64 

Method 


Mean (SE) d Mean (SE) d Mean (SE) d 

1 1 -covariate model 
STS 1.55 (.95) 2.61 - -

-
-

-
-

TS 0.67 (.91) 2.34 - -
EB 1.08 (.88) 2.73 0.70 (31)  2.69 0.86 (.78) 2.68 

Five-covariate model 
STS 2.35 (36)  2.53 1.66 (31)  2.70 - -

TS 1.78 (34) 2.33 1.21 (.78) 2.51 - -
EB 1.83 (.83) 2.42 1.21 (.77) 2.67 1.35 (.75) 2.65 
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Table 3 
Crude asthma attack rates (per 1000) by period 

and pollution level 

Period 
Pollution level 

1 2 

Low 266 224 
Medium 272 237 
High 278 249 

model and sample-size reduction on parameter estimates. Resulting estimates for TSP 
parameters are shown in Table 2. 

The mean regression coefficient for TSP is larger for the five- than for the 1 1-covariate 
model for all sample sizes. We attribute this to residual confounding induced by dropping 
the period and day-of-week variables. The coefficients are consistently smaller for N = 54 
than for N = 40. This underscores the probable bias induced by dropping subjects for 
whom the logistic model cannot be fitted. The results obtained by the EB method were 
quite similar for N = 54 and N = 64, since the additional 10 subjects provided relatively 
little data. The estimated standard errors and random-effect standard deviations were 
insensitive to both model specification and sample size, except for the expected decrease in 
standard error with increasing sample size. 

To further investigate the possibility of residual confounding when day of the week and 
period were eliminated from the model, we computed the mean TSP level and crude 
asthma attack frequency by period and by day of the week. The comparison of the two 
periods showed that mean TSP levels were 118.5 pg/m3 for Period 1 and 73.7 pg/m3 for 
Period 2, a substantial difference. When days were classified as low (0-55 pg/m3), moderate 
(56-90 pg/m3), or high (>90 pg/m3) pollution, crude attack frequencies by period and 
pollution level showed a substantial period effect and trends consistent with a pollution 
effect within period (Table 3). These results indicate that the elimination of period from 
the regression model would produce positive confounding bias in the estimated coefficient 
of TSP. 

Similarly, the mean TSP levels by day of the week (beginning with Sunday) were 223, 
239, 231, 239, 266, 259 and 257 pg/m3, that is, a tendency toward higher readings on 
Thursday through Saturday. When asthma attack rates were computed by day of the week 
and pollution level, a corresponding pattern of higher asthma attack frequency on Thursday, 
Friday and Saturday was observed (Table 4). Thus, day of the week is also a potential 
confounding variable, but it would appear that most of this confounding would be 
controlled by the single indicator variable used in the reduced model. 

These results demonstrate that, in this setting, the two methods of approximation lead 
to very similar parameter estimates for a common model and a common data set. They 
also show that TS methods can be substantially affected by the model and sample-size 

Table 4 
Crude asthma attack rates (per 1000) by day of week and pollution level 

Day of week 
Pollution level 

Sun. Mon. Tue. Wed. Thu. Fri. Sat. 

Low 205 248 233 228 24 1 240 228 
Medium 231 229 228 2 19 257 247 260 
High 238 231 233 246 29 1 287 270 
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Table 5 
Estimated mean (with standard error) and standard 

deviation, d, of the random-effect distribution for the TSP 
regression coeflcient in the six-covariate model including 

history of hay fever 

N =  54 N = 6 4  
Method 

Mean (SE) d Mean (SE) d 

Main effect of TSP 
STS 1.06 (1.13) 2.69 - -
TS 0.56 (1.09) 2.28 - -
EB 0.74 (1.10) 2.66 0.78 (1.08) 2.64 

Interaction of TSP and hay fever 
STS 1.22 (1.62) -
TS 1.41 (1.55) -
EB 1.04 (1.54) 1.15 (1.50) 

reductions required to achieve estimability. The advantage of the EB approach is that all 
data and covariates can be used, if desired. 

Since Korn and Whittemore found that study participants with a history of hay fever 
had lower TSP coefficients than those without such a history, a second model including 
hay fever and its interactions with each time-varying covariate was investigated. To reduce 
computing costs, which can be substantial for these analyses, the model with five time- 
varying covariates was chosen for this comparison, even though it appears to introduce 
some confounding. 

The results for all three methods based on 54 subjects and for the EB analysis of 64 
subjects showed relatively good agreement for the estimated effect of TSP and its interaction 
with hay fever (Table 5). Since the interaction term was coded as 1 for participants with no 
history of hay fever and 0 for those with a positive history, these results indicate a larger 
regression coefficient for TSP among participants without hay fever. However, the inter- 
action term did not achieve statistical significance in any instance. The parameter estimates 
also vary appreciably among the three methods. 

7. Discussion 

These results show that the logistic-linear model can be implemented in a large data set 
using the approximate empirical Bayes estimation methods described in 93 and 94. When 
the analysis was restricted to the subjects for whom a given logistic regression model can 
be fitted by two-step methods, the EB methods gave results similar to those obtained by 
the TS and STS methods. However, the EB method requires neither model simplification 
nor elimination of subjects. Since model simplification can introduce confounding, and 
elimination of subjects with low event rates can also introduce bias, the ability to utilize all 
available data is of practical significance. These features are especially important when each 
individual's observation vector is short, since two-step methods fail in that setting. 

Estimates reported in Tables 1-3 were obtained with an algorithm that terminated when 
an iteration produced changes in parameter estimates uniformly less than When 
results for the STS method were compared with values reported by Korn and Whittemore, 
we noted a substantial difference in the estimated standard deviations of the distributions 
of the TSP coefficients. Whereas the estimated standard deviation was consistently close to 
2.5 in our analyses, Korn and Whittemore reported an estimated standard deviation of 
zero. To investigate this issue, we repeated the STS analysis for the five-covariate model, 
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N = 40, using both the EM and Newton-Raphson algorithms and a convergence criterion 
of The EM algorithm required several hundred iterations and produced an estimated 
variance component about one order of magnitude smaller than the value reported in 
Table 2, along with estimates of the mean regression coefficient and standard error within 
1% of the values in Table 2. The Newton-Raphson algorithm produced similar results. 
This experience conforms with the well-known difficulties encountered by most estimation 
schemes when the likelihood is maximized for variance estimates at or near zero. Since the 
estimates of the regression coefici&ts and their standard errors were insensitive to the 
convergence criterion, more extensive study of the likelihood surface near D = 0 was not 
undertaken for the present paper. 

The authors wish to thank the referees for a number of suggestions that led to significant 
improvement of this paper. Support for this research was provided by Grant GM29745 
from the National Institutes of Health. 

Cet article prtsente un modile mixte gtntral pour l'analyse de dries de rtponses dichotomiques 
propostes par un panel. On suppose que les dries de rtponses de chaque sujet sont issues d'un modile 
logistique dont les coefficients de rtgression dtpendent du sujet et que les paramitres de rtgression 
sont distributs normalement dans la population. L'inftrence est baste sur l'estimation du maximum 
de vraisemblance des effets fixis et des composantes de la variance, et l'estimation par la mtthode du 
Bayesien empirique des effets altatoires. Les solutions exactes sont inaccessibles analytiquement ou 
par le calcul, mais on propose une approximation utilisant le mode de la distribution a posteriori des 
effets altatoires, mise en aeuvre au moyen de l'algorithme EM. Cette mtthode approchte est comparie 
avec la mtthode plus simple a deux pas proposte par Korn et Whittemore (1 979, Biometries 35, 795-
804) sur des donntes d'un panel d'asthmatiques dtcrit dans cet article. Un avantage de la strattgie 
d'estimation proposte ici est la possibilitt d'utiliser toutes les donntes, y compris celles des sujets 
pour lesquels il n'existe pas sufisamment de rtsultats pour ajuster un modele de rtgression logistique, 
comme l'exige la mtthode de Korn et Whittemore. Cependant, la nouvelle mtthode ntcessite 
beaucoup de calculs. 
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