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SUMMARY

Hierarchical linear models are useful for understanding relationships in hierarchical data structures, such as
patients within hospitals or physicians within hospitals. In this tutorial we provide an introduction to the
technique in general terms, and then specify model notation and assumptions in detail. We describe
estimation techniques and hypothesis testing procedures for the three types of parameters involved in
hierarchical linear models: fixed effects, covariance components, and random effects. We illustrate the
application using an example from the Type II Diabetes Patient Outcomes Research Team (PORT) study
and use two popular PC-based statistical computing packages, HLM/2L and SAS Proc Mixed, to perform
two-level hierarchical analysis. We compare output from the two packages applied to our example data as
well as to simulated data. We elaborate on model interpretation and provide guidelines for model checking.
Copyright ( 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

Medical research applications often involve hierarchical data structures such as patients within
hospitals or physicians within hospitals; for example, assessing differences in mortality rates
across hospitals relative to a specific condition or procedure. Data are collected on random
samples of patients nested within each hospital. In this application, it might be appropriate to
adjust for covariates at both the patient-level (such as patient age, patient gender and the severity
of the index diagnosis) and at the hospital-level (such as hospital size and hospital teaching
status).

Hierarchical linear models, sometimes called multi-level linear models, nested models, mixed
linear models or covariance components models, handle these hierarchical data structures. These
models have historically been used in educational research where hierarchies occur naturally;
students nested within classrooms, classrooms nested within schools and schools nested within



districts. Recent advances in statistical computing capabilities have made these models more
available to researchers across a variety of disciplines.

In this tutorial we provide an introduction to the technique relative to two-level hierarchical
data structures. We provide references for readers interested in three-level structures. In Section
2 we motivate the application with an example and we illustrate the application using two
popular statistical computing packages, HLM/2L1 and SAS Proc Mixed.2 In Section 3 we
present notation, specify models in detail and discuss assumptions. In Section 4 we describe
estimation techniques and hypothesis testing procedures. In Section 5 we provide data handling
and programming statements to develop and test hierarchical linear models using HLM/2L and
SAS Proc Mixed. In Section 6 we present results of analyses based on data from our example and
based on simulated data. In Section 7 we provide a brief summary.

2. MOTIVATION

To illustrate the technique we have selected an example from the Type II Diabetes Patient
Outcomes Research Team (PORT) study.3 The PORT study was a 5-year longitudinal observa-
tional study of medical effectiveness in Type II diabetes. Three sites, representing diverse systems
of care, were involved in this study. Stratified random samples of primary care physicians were
selected at each site. Stratification criteria included age ((45 versus *45 years), gender and
medical speciality (Internal Medicine, Family Practice, Endocrinology). Samples of Type II
diabetic patients were selected from each of 224 enrolled physician’s practices. A total of 3660
patients were enrolled.

Upon enrollment, each physician completed a self-administered physician background ques-
tionnaire. Physicians provided data related to their management styles, interpersonal care, job
and practice satisfaction, personal background and training characteristics in the self-adminis-
tered questionnaire. Patients completed self-administered questionnaires at 6-month intervals
over the course of the study. Patients provided extensive data at baseline related to general health
status and quality of life, diabetes history, medical complications and comorbidities, health habits
and personal characteristics, compliance and regimen adherence, diabetes-specific health status,
satisfaction with medical care, assessments of their physician’s interpersonal style, health
care utilization data and beliefs about health care. As part of the PORT study, utilization
(for example, hospitalizations, primary care visits), laboratory (for example, glycated haemoglo-
bin, total cholesterol) and pharmacy (prescriptions and over-the-counter medications) data were
also collected on each patient from automated management information systems at each site. In
our example we restrict our attention to physician and patient data collected at baseline from one
site.

The objective of this analysis is to assess whether there is a significant difference in mean patient
outcome scores across physicians adjusted for appropriate covariates. The specific outcome
variable in the analysis is described in detail in Section 6. At this point, we simply wish to describe
the structure of the data. Potentially important covariates include both patient characteristics (for
example, patient’s age, patient’s gender) and physician characteristics (for example, physician’s
years in medical practice, physician’s medical speciality). To appropriately model patient-level
and physician-level covariates simultaneously, we develop a two-level hierarchical model. We
describe the model development strategy, estimation techniques and hypothesis testing proced-
ures in the following sections.
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Figure 1. Data structure for the two-level hierarchical model

3. NOTATION

We consider two-level hierarchical data structures and follow the notation of Bryk and Rauden-
bush4 who developed HLM/2L. For details of three-level models see Bryk and Raudenbush,4
Gatsonis et al.5 and Skene and Wakefield.6

Similar to our example (the PORT study, restricting attention to one site) consider an
application involving a two-stage sampling strategy. In the simplest two-stage sampling strategy
a simple random sample of primary sampling units (PSUs) is selected and then, within each PSU,
a simple random sample of secondary sampling units (SSUs) is selected. The PSUs could reflect
hospitals, physicians, clinics or some other entity and the SSUs could reflect physicians (within
hospitals) patients (within physician practices or within clinics) or some other entity. In the PORT
study, the PSU was the physician and the SSU was the patient at each site. In two-level
hierarchical analyses, observations are classified as level 1 (within) or level 2 (between) units. In
the PORT study, patients represent the level 1 units and physicians represent the level 2 units.

We use J to denote the number of level 2 units (in the PORT study, physicians) and within each
of the j"1,2 ,J level 2 units (physician practices) there are n

j
level 1 units (in the PORT study,

there are n
j
patients in the jth physician practice). The data do not have to be balanced (that is, it

is not necessary that n
j
"n

k
for jOk). Figure 1 displays the data structure for the two-level

hierarchical model.

3.1. Model Specifications

In two-level hierarchical models, separate level 1 models are developed for each of the J level
2 units. Consider the case of a continuous outcome or dependent variable, ½ (for example, patient
satisfaction), and a single, continuous level 1 predictor or covariate X (for example, patient’s age).
The level 1 models are of the form:

½
ij
"b

0j
#b

1j
(X

ij
!XM . . )#e

ij
(1)

where ½
ij

is the dependent variable measured on the ith level 1 unit (for example, patient) nested
within the jth level 2 unit (for example, physician), b

0j
is the intercept for the jth level 2 unit

(physician), X
ij

is the level 1 predictor or covariate (for example, patient age), XM . . is the grand
mean of X

ij
(for example, the mean age of all patients in the sample), b

1j
is the regression

coefficient associated with level 1 predictor X for the jth level 2 unit (physician) and e
ij

is the
random error associated with the ith level 1 unit nested within the jth level 2 unit.

The interpretation of estimated model parameters (particularly the intercept terms, bª
0j

) depends
upon the way in which the level 1 covariates or predictors are modelled. If the level 1 predictor, X

ij
,
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is considered in its original metric, then the intercept, b
0j

, is the expected value of the dependent
variable when X

ij
is equal to zero. If the level 1 predictor, X

ij
, is centred about its overall (or

grand) mean (XM . .), then the intercept, b
0j

, is interpreted as the mean of the jth level 2 unit
adjusted for X (for example, the mean outcome score for physician j adjusted for patient age). If
the level 1 predictor is centred at the respective level 2 unit mean, XM .

j
, called centring at the group

mean, then the intercept, b
0j

, is interpreted as the unadjusted mean of the dependent variable.
Finally, if the level 1 predictor is centred at some other meaningful value, then the intercept, b

0j
, is

interpreted as the expected value of the dependent variable when the predictor is equal to that
value.

In the case of a dichotomous dependent or outcome variable, ½, and a single, continuous level
1 predictor or covariate, X, the level 1 models are of the form:

p
ij
"1/M1#exp(b

0j
#b

1j
(X

ij
!XM . .)#e

ij
)~1N

where p
ij
"E (½

ij
).

Details of hierarchical models concerning dichotomous dependent variables can be found in
Wong and Mason7 and details of hierarchical models concerning count or rate data can be found
in Christiansen and Morris.8

Here we focus on applications concerning continuous dependent variables, ½, which are
assumed to be approximately normally distributed at each value of a single, continuous covariate,
X, as described in (1). In these applications we have J models of the form shown in (1), each model
potentially having different intercept and slope coefficients (b

0j
, b

1j
). In the level 2 models, we

consider these regression coefficients (b
0j

and b
1j

) as dependent variables and relate each to
appropriate level 2 covariates. In the case of a single, continuous level 2 predictor or covariate,
¼ (for example, physician’s years in medical practice), the level 2 models are of the form:

b
0j
"c

00
#c

01
¼

j
#t

0j (2)
b
1j
"c

10
#c

11
¼

j
#t

1j

where b
0j

and b
1j

are the intercept and slope for the jth level 2 unit (physician), c
00

and c
10

are the
overall mean intercept and slope adjusted for ¼, respectively, ¼

j
is the level 2 predictor or

covariate (for example, physician’s years in medical practice), c
01

and c
11

are the regression
coefficients associated with the level 2 predictor ¼ relative to the level 2 intercepts and slopes,
respectively and t

0j
and t

1j
are the random effects of the jth level 2 unit (physician) on the

intercept and slope, respectively, adjusted for ¼.
The level 2 predictor ¼ can be modelled in its original metric (as in (2)) or centred about its

grand mean (similar to the way in which the level 1 predictor is modelled in (1)).
Substituting (2) into (1) yields the combined model:

½
ij
"c

00
#c

01
¼

j
#c

10
(X

ij
!XM . .)#c

11
¼

j
(X

ij
!XM . .)#t

0j
#t

1j
(X

ij
!XM . .)#e

ij
. (3)

Notice that the combined model involves level 1 and level 2 covariates (X
ij

and ¼
j
, respective-

ly), a cross-level term (¼
j
(X

ij
!XM . . )) and a complicated error term, t

0j
#t

1j
((X

ij
!XM . .)#e

ij
.

Model (3) is not of a form in which ordinary least squares (OLS) can be used to estimate
parameters, since OLS assumes errors are independent with mean zero and common variance p2.
In model (3), the errors are not independent across level 1 units (patients), instead there is
dependency among level 1 units nested within each level 2 unit (physician practice) in the terms
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t
0j

and t
1j

. In addition, the variances of the errors may no longer be homogeneous if t
0j

and
t
1j

take on different values within each level 2 unit (for example, physician practice). We describe
estimation and hypothesis testing techniques which handle these dependencies in Section 4.

In Table I we present six distinct models, essentially special cases of the models (1)—(3). These
models are presented in Bryk and Raudenbush4 and we employ their notation and labelling
conventions as they are also employed in HLM/2L. For each model we provide the level 1 model,
the level 2 model, the combined model, and indicate which effects are fixed and which effects are
random. The models are ordered from least to most complex. Models 1—4 are called random
intercepts models, while models 5 and 6 are called random intercepts and slopes models. In Table
II we present the same set of models using the notation employed in SAS Proc Mixed. SAS Proc
Mixed uses a single model (analogous to the HLM/2L combined model).

3.2. Assumptions

For models concerning continuous dependent variables (½
ij

of (1)), we assume that the errors in
the level 1 (for example patient-level) models are normal random variables with mean zero and
common variance p2:

E(e
ij
)"0 var(e

ij
)"p2. (4)

In the level 2 (for example, physician-level) models we assume that the parameters b
0j

and
b
1j

are distributed as multivariate normal with means c
00

and c
10

, respectively, and variances
q
00

and q
11

, respectively. The covariance of b
0j

and b
1j

is denoted q
01

. For simplicity, we consider
the situation in which the errors are homogeneous at both levels 1 and 2, although more
complicated error structures are allowed (see reference 9 pp. 583—586 for a variety of covariance
structures with examples). Finally, level 1 and level 2 errors are uncorrelated. These assumptions
are summarized below:

E (t
0j

)"0 E (t
1j

)"0

E (b
0j

)"c
00

E (b
1j

)"c
10

var(b
0j

)"var(t
0j

)"q
00

var(b
1j

)"var(t
1j

)"q
11

(5)

cov (b
0j

, b
1j

)"cov (t
0j

, t
1j

)"q
01

cov(t
0j

, e
ij
)"cov(t

1j
, e

ij
)"0.

4. ESTIMATION AND HYPOTHESIS TESTING IN HLM/2L AND IN SAS PROC MIXED

We now describe the estimation techniques and hypothesis testing procedures for two-level
hierarchical models (3) used in HLM/2L and SAS Proc Mixed. We illustrate the estimation and
testing procedures using matrix notation. Because HLM/2L and SAS Proc Mixed use somewhat
different parameterizations (see Tables I and II), we first present notation which we use through-
out this section.

Consider the level 1, level 2 and combined models (using HLM/2L notation) shown in (1), (2)
and (3), respectively. Using matrix notation these models are represented as follows:

HLM/2L level 1 model (1): ½
j
"X

j
b
j
#e

j
, j"1, 2,2 , J (6)
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Table I. Hierarchical linear model specifications in HLM/2L

Model Level 1 model Level 2 model Combined model Fixed Random
effects effects

Random intercepts models
1. One-way analysis of ½

ij
"b

0j
#e

ij
b
0j
#c

00
#t

0j
½

ij
"c

00
#t

0j
#e

ij
c
00

t
0j

variance (ANOVA) with
random effects

2. Means as outcomes
regression model

½
ij
"b

0j
#e

ij
b
0j
"c

00
#c

01
¼

j
#t

0j
½

ij
"c

00
#c

01
¼

j
#t

0j
#e

ij
c
00

, c
01

t
0j

3. One-way analysis of covariance
(ANCOVA) with random
effects

½
ij
"b

0j
#b

1j
(X

ij
!XM . .)

#e
ij

b
0j
"c

00
#c

01
¼

j
#t

0j

½
ij
"c

00
#c

01
¼

j
#c

10
(X

ij
!XM . .)

#t
0j
#e

ij

c
00

, c
01

,
c
10

t
0j

b
1j
"c

10
4. Non-randomly varying slopes

model
½

ij
"b

0j
#b

1j
(X

ij
!XM . .)

#e
ij

b
0j
"c

00
#c

01
¼

j
#t

0j

½
j
"c

00
#c

01
¼

j
#c

10
(X

ij
!XM . .)

#c
11

¼
j
(X

ij
!XM . .)

#t
0j
#e

ij

c
00

, c
01c

10
,c

11

t
0j

b
1j
"c

10
#c

11
¼

ij

Random intercepts and slopes models
5. Random coefficients regression

model
½

ij
"b

0j
#b

1j
(X

ij
!XM . .)

#e
ij

b
0j
"c

00
#t

0j
½

ij
"c

00
#c

10
(X

ij
!XM . .)

#t
0j
#t

1j
(X

ij
!XM . .)

#e
ij

c
00

, c
10

t
0j

,t
1j

b
1j
"c

10
#t

1j
6. Intercepts and slopes as

outcomes model
½

ij
"b

0j
#b

1j
(X

ij
!XM . .)

#e
ij

b
0j
"c

00
#c

01
¼

j
#t

0j

½
ij
"c

00
#c

01
¼

j
#c

10
(X

ij
!XM . .)

#c
11

¼
j
(X

ij
!XM . .)

#t
0j
#t

1j
(X

ij
!XM . .)

#e
ij

c
00

, c
01c

10
, c

11

t
0j

,t
1j

b
1j
"c

10
#c

11
¼

j
#t

1j
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Table II. Hierarchical linear model specifications in HLM/2L and SAS Proc MIXED*

Model Combined model SAS Proc MIXED
(HLM/2L from Table I)

Model specification Fixed Random
effects effects

Random intercepts models
1. One-way analysis of ½

ij
"c

00
#t

0j
#e

ij
½

1j
"k#a

j
#e

ij
k a

j
variance (ANOVA) with
random effects

2. Means as outcomes regression model ½
ij
"c

00
#c

01
¼

j
#t

0j
#e

ij
½

ij
"k#a

j
#b¼

j
#e

ij
k,b a

j

3. One-way analysis of covariance
(ANCOVA) with random effects

½
ij
"c

00
#c

01
¼

j
#c

10
(X

ij
!X . .)

#t
0j
#e

ij

½
ij
"k#a

j
#b¼

j
#d (X

ij
!XM . .)

#e
ij

k,b,
d

a
j

4. Non-randomly varying slopes model ½
ij
"c

00
#c

01
¼

j
#c

10
(X

ij
!XM . .)

#c
11

¼
j
(X

ij
!XM . .)

#t
0j
#e

ij

½
ij
"k#a

j
#b¼

j
#d (X

ij
!XM . .)

#bd¼
j
(X

ij
!XM . .)

#e
ij

k,b,
d

a
j

Random intercepts and slopes models
5. Random coefficients regression model ½

ij
"c

00
#c

10
(X

ij
!XM . .)

#t
0j
#t

1j
(X

ij
!XM . .)#e

ij

½
ij
"k#a

j
#(d#d

j
)

(X
ij
!XM . .)#e

ij

k, d a
j
, d

j

6. Intercepts and slopes as outcomes model ½
ij
"c

00
#c

01
¼

j
#c

10
(X

ij
!XM . .)

#c
11

¼
j
(X

ij
!XM . .)

#t
0j
#t

1j
(X

ij
!XM . .)

#e
ij

½
ij
"k#a

j
#b¼

j
#(d#d

j
) (X

ij
!XM . .)

#bd¼
j
(X

ij
!XM . .)

#e
ij

k,b,
d

a
j
,d

j

*SAS Proc Mixed source code for each model is provided in the Appendix
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where

½
j
"C

½
ij

½
2j
.

.

½
nj j
D , X

j
"C

1

1

.

.

1

X
ij

X
2j

X
njj
D , b

j
"C

b
0j

b
1j
D , e

j
"C

e
ij

e
2j
.

.

e
nj j
D .

HLM/2L level 2 model (2): b
j
"¼

j
c#t

j
, j"1, 2,2 ,J (7)

where

b
j
"C

b
0j

b
1j
D , ¼

j
"C

1

0

¼
j

0

0

1

0

¼
j
D , c"C

c
00

c
01

c
10

c
11

D , t
j
"C

t
0j

t
1j
D .

HLM/2L combined model (3): ½
j
"X

j
(¼

j
c#t

j
)#e

j

which is equivalent to

½
j
"X

j
¼

j
c#X

j
t
j
#e

j
j"1, 2,2 ,J. (8)

Note that the level 1 and level 2 covariates, X and ¼, respectively, can be considered in their
original metric (as in (6), (7) and (8)) or centred (as in (1)).

The equivalent SAS Model is

½
j
"A

j
c#X

j
t
j
#e

j
, j"1, 2,2 ,J (9)

where A
j
"X

j
¼

j
, as follows:

A
j
"C

1

1

.

.

1

¼
j

¼
j

¼
j

X
1j

X
2j

X
nj j

¼
j
X

1j
¼

j
X

2j

¼
j
X

nj j
D .

A
j
and X

j
are known design matrices, c is a vector of fixed effects, t

j
is a vector of random effects,

and e
j
is a vector of random errors. The assumptions of hierarchical linear models (outlined in (4)

and (5)) are as follows:

e
j
&N(0, R), R

j
"p2I

nj (10)

t
j
&N(0, G), G"C

q
00

q
01

q
01

q
11
D .

4.1. Estimation

Several estimation techniques are used in hierarchical linear modelling since the model comprises
different types of parameters. Specifically, the level 1 coefficients, b

j
, can be fixed (that is, equal to
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a constant: b
1j

of model 3 in Table I), non-randomly varying (that is, vary across level 2 units, for
example, physicians, but solely as a function of a level 2 predictor ¼

j
: b

1j
of model 4 in Table I) or

random (that is, vary across level 2 units, for example, physicians: b
0j

of models 1—6, b
1j

of models
5 and 6 in Table I). The level 2 coefficients, c, are considered fixed effects and the level 1 and
2 variances and covariances (p2, q

00
, q

01
and q

11
) are called the covariance components. The

estimation techniques for each type of paramter are outlined below. More theoretical details are
available in Littell et al.2 and in Searle et al.10

4.1.1. Estimating Fixed Effects (c)

Weighted least squares (WLS) or generalized least squares (GLS) is used to estimate c as shown
below:

cL"(AT»K ~1A)~1AT»K ~1½ (11)

where

»"var(½ )"XGXT#R (12)

A is the N]4 design matrix with N"+ J
j/1

n
j
(see (9)), and »K is » with G and R replaced by their

maximum likelihood estimates. The elements of G and R (that is, q
00

, q
01

, q
11

and p2) are called
the variance-covariance components and are estimated by maximum likelihood (ML) or re-
stricted maximum likelihood (REML) as described in Section 4.1.2.

The variance of the estimator cL (11) is estimated by

vâr(cL )"(AT»K ~1A)~1. (13)

Liang and Zeger11 recommended the following as an alternative to (13), particularly in the case
when the variances of ½ are not homogeneous across level 2 units (for example, physicians):

vâr(cL )"(AT»K ~1A)~1AT»K ~1 (½!AcL ) (½!AcL )T»K ~1A(AT»K ~1A)~1. (14)

4.1.2. Estimating Covariance Components (R and G)

If the design is perfectly balanced (that is, n
j
all equal and the distribution of level 1 predictors

within each level 2 unit, (for example, within each physician practice, is the same) there are
closed-form formulae for estimating the variance-covariance parameters.10 When the design is
unbalanced, iterative numerical procedures are used to obtain the estimates. Usually these
procedures are based on maximum likelihood estimation techniques.

Maximum likelihood (ML) estimates of G and R are found by maximizing the following
log-likelihood function (see also Littell et al.2 and Searle et al.10):

l
ML

(G,R)"!

1

2
log D» D!

N

2
log rT»~1r!

N

2 C1#log
2n
N D (15)

where

r"½!A(AT»~1A)TAT»~1½.

If the number of level 2 units, J is large then the estimates generated through maximum
likelihood are approximately equal to estimates generated through restricted maximum
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likelihood (REML). REML estimates of the covariance components are based on residuals which
are computed after estimating the fixed effects (11) by WLS or by GLS and are estimates based on
maximizing a marginal likelihood. REML estimates take into account the degrees of freedom
used in estimating the fixed effects when estimating the covariance components. REML estimates
of G and R are found by maximizing the following log-likelihood function (see also Littell et al.2
and Searle et al.10):

I
REML

(G,R)"!

1

2
log D» D!

1

2
log DAT»~1A D!

(N!p)

2
log rT»~1r!

(N!p)

2 C1#log
2n

(N!p)D
(16)

where r"½!A(AT»~1A)TAT»~1½ and p"rank(A).
HLM/2L generates REML estimates by default and uses the EM algorithm to maximize (16).

SAS Proc Mixed also produces REML estimates by default and uses a ridge-stabilized Newton—
Raphson algorithm to maximize the likelihood.2 Maximum likelihood estimates can be requested
in both HLM/2L and SAS Proc Mixed.

4.1.3. Estimating Random Effects (t)

Random effects are estimated using shrinkage estimators. SAS Proc Mixed generates estimates of
random effects according to the following:

t̂"GK XT»K ~1(½!AcL ). (17)

It is generally of interest to estimate individual (for example, physician-level) random coefficients
(for example, bª *

0j
and bª *

1j
). These can be obtained by substitution. For example, considering the

model described in (2), bK *
0j
"ĉ

00
#ĉ

01
¼

j
#t̂

0j
, where t̂

0j
is from (17). A shrinkage estimate (also

referred to as an empirical Bayes (EB) estimate in HLM/2L or a best linear unbiased prediction
(BLUP) in SAS Proc Mixed2) for the jth random coefficient (for example, b

0j
of model 1 in Table

I) is essentially an optimally weighted, linear combination of the estimated overall mean (for
example, ĉ

00
) and the jth level 2 mean (½M

j
). The degree of shrinkage depends on the magnitude of

the variation in level 2 means (which is related to the number of level 1 units within the specific
level 2 unit used to generate the estimate). Thus, when n

j
, the number of level 1 units within the jth

level 2 unit, is small, the estimate of the jth random coefficient is close to the overall mean ĉ
00

, but,
as an n

j
increases, the estimate of the jth random coefficient moves closer to the level 2 mean ½M

j
.

BLUPs are seen as estimates subject to regression toward the overall mean (cL ) based on the
covariance components of model effects (for example, GK , »K ). For more details, see also Littell et
al.2 and Zeger et al.12 Empirical Bayes estimates are computationally efficient and results are
asymptotically equivalent to Bayes solutions.13

4.2. Hypothesis Testing

Several hypothesis tests are generally of interest in hierarchical models. The tests are implemented
in slightly different ways in HLM/2L and in SAS Proc Mixed. In Section 6 we illustrate the
specific tests produced by HLM/2L and SAS Proc Mixed using data from the PORT study and
simulated data. Here we outline general testing procedures for fixed effects, covariance compo-
nents and random effects. In general, t-statistics are produced for the fixed and random effects

864 L. SULLIVAN, K. DUKES AND E. LOSINA

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 855—888 (1999)



while Wald Z and chi-square statistics are produced for the covariance components. These tests,
particularly the tests for covariance components, are valid only asymptotically and therefore
must be interpreted with caution, especially when the number of level 2 units (for example,
physicians), J, is small.

4.2.1. Hypothesis Tests for Fixed Effects (c)

The hypothesis of interest is of the form H
0
:c

k
"0. The test statistic is computed by taking the

ratio of the ML (or REML) estimate to its estimated standard error as follows:

t"
cL
k

JMvâr(cL
k
)N

. (18)

The above follows a t-distribution for balanced data and for some unbalanced data situations. In
most cases, (18) only approximations a t-distribution and its degrees of freedom are estimated.9

4.2.2. Hypothesis Tests for Covariance Components (R and G)

The hypothesis of interest is of the form H
0
:q

kl
"0, where q

kl
is an element of G. The test statistic

is computed by taking the ratio of the ML (or REML) estimate to its asymptotic standard error as
follows:

Z"

qL
kl

JMvâr(qL
kl
)N

. (19)

The asymptotic standard errors are computed from the second derivative of the likelihood with
respect to covariance components.2 SAS produces the Wald statistic (19) which is valid for large
samples, while HLM/2L produces a chi-square statistic:

s2
J~1

"

J
+
j/1

(bK
0j
!cL

00
)2

»K
j

(20)

where

»K
j
"

pL 2
n
j

.

4.2.3. Hypothesis Tests for Random Effects (t )

The hypothesis of interest is of the form H
0
:t

k
"0. The test statistic is computed by taking the

ratio of the estimated random effect t̂
k

to its estimated standard errors as follows:

t"
t̂
k

JMvarY (t̂
k
)N

. (21)

The above follows a t-distribution for balanced data and for some unbalanced data situations.
In most cases, (21) only approximates at t-distribution and its degrees of freedom are estimated.9

The estimated standard error JMvarY (t̂
k
)N, is larger under REML than ML especially if the

number of level 2 units (for example, physicians), J, is small. Nevertheless, the test may be liberal
(that is, reject more often than it should producing a higher type I error rate than the nominal
rate) if J is small even using the REML estimates.

AN INTRODUCTION TO HIERARCHICAL LINEAR MODELLING 865

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 855—888 (1999)



5. STATISTICAL SOFTWARE

There are several statistical computing packages currently available which handle hierarchical
data structures. Kreft et al.14 reviewed five popular packages — BMDP-5V; GENMOD; HLM;
ML3, and VARCL — with respect to design, implementation, data set-up and handling, output
and user frindliness. They also provide several examples in which they apply each package and
compare results.

We focus on two popular packages, HLM/2L and SAS Proc Mixed, which were not as widely
used in 1994. We review each package with respect to data handling, model specification and
output. In Section 6 we apply each package to data from the PORT study and then to simulated
data.

5.1. HLM/2L

HLM/2L is a PC-based program written by Bryk et al.1 and is designed for two-level hierarchical
linear modelling. The program is distributed with a companion program HLM/3L for three-level
hierarchical linear modelling. An updated version of HLM/2L (and HLM/3L) for Windows,
available since May 1996, significantly improved earlier versions.

5.1.1. Inputting Data

HLM/2L can be operated either interactively or in batch mode. In both modes, the input data
must be summarized into a sufficient statistics matrices (SSM) file. The SSM file can be
constructed by inputting ASCII data or by importing data in other database formats (for example
SAS, SYSTAT). To illustrate the proper file formats, we proceed via ASCII files.

HLM/2L requires the user to prepare two separate data files, one containing level 1 data and
a second containing level 2 data. Suppose that level 1 data consist of patient-level data and level
2 data consists of physician-level data. The level 1 file contains one record for each patient and the
level 2 file contains one record for each physician. The level 1 (patient) file must contain, as its first
column, the level 2 identifier (for example, the physician identifier). The following illustrates the
format of the level 1 and level 2 files. In the level 1 (for example, patient) sample file, there are two
level 1 variables not including the level 2 identifier (for example, the patient outcome or
dependent variable, ½ (for example satisfaction), and a patient covariate, X, such as age). In the
level 2 sample file, there is one level 2 variable not including the level 2 identifier(for example
physician’s number of years in medical practice, ¼ ). The level 2 identifier appears in both files
and is indicated in bold face below.

Level 1 file (total number of records"+ n
j
):

01 12 34

01 33 45

01 21 55

01 31 56

02 34 33

02 33 43

F F F
J 21 43
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Level 2 file (total number of records"J ).

01 10

02 12

. .

. .

J 6
The user is prompted to specify the formats of the level 1 and level 2 data files. The only
requirement is that the level 2 identifier (appearing in the first columns of both the level 2 and level
2 data files) must be input as a character variable. The format statements for the level 1 and level
2 sample files shown above are (a2, 2x, f2.0, 2x, f2.0) and (a2, 2x, f1.0), respectively (where ‘a2’
indicates a 2-digit character variable, ‘2x’ denotes 2 blank spaces between columns and ‘f2.0’
denotes a numeric variable occupying at most two columns with no digits following the decimal
place). The user is also prompted for variable names and file locations.

Once the format of the data, variable names and the location of the ASCII data files are input
into HLM/2L, an SSM file is constructed. The SSM file contains J matrices (one for each level
2 unit). Each matrix contains the number of level 1 units (n

j
), the means of the level 1 variables, the

sums of cross products of level 1 variables as well as the level 2 observations. Once the SSM file is
constructed, subsequent run starts with the SSM file and proceed quickly. HLM/2L can handle
up to 300 level 2 units (J)300), 25 level 2 (for example, physician) variables, and 25 level 1 (for
example, patient) variables.

5.1.2. Program Specifications

We describe the use of HLM/2L in interactive mode, as the logic of the modelling process is
apparent to the user in this mode. (In batch mode, commands are stacked in a file and input.
Batch mode can be more efficient for the more advanced user.) Once the program is initiated,
the user is prompted to specify the name of the SSM file. The user is then prompted to choose the
dependent or outcome variable, from the list of level 1 variables displayed on the screen. Next,
the user is prompted to choose level 1 predictors or covariates from the list of level 1 variables
displayed on the screen. Once the level 1 predictors are selected, the user is prompted to specify
variables to be centred. HLM/2L offers three options: (i) centring about the grand mean (XM . .); (ii)
centring about the group (level 2) means (XM .

j
); or (iii) no centring. The user is then prompted to

select level 2 predictors or covariates and offered two options for centring: (i) centring at the grand
mean of the level 2 variable (¼M ); or (ii) no centring. The user is also offered options related to
specific tests of hypothesis. These include, for example a test for homogeneity of level 1 variances
and multivariate tests of covariance components. There are a number of other options available
in the HLM/2L execution (see Bryk et al.1).

5.1.3. Output

HLM/2L generates extensive output, including the specifications of the level 1 and level 2 models
using the notation in Section 3 which is extremely useful for model checking. HLM/2L outputs
the starting values for parameter estimates, estimates of fixed effects along with t-statistics and
significance levels for hypothesis testing, estimates of the covariance components along with
chi-square statistics and significance levels. The user can request that empirical Bayes estimates of
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the individual random effects be output into an ASCII file, a SAS file or a SYSTAT file for further
analysis.

5.2. SAS Proc Mixed

Proc Mixed is a SAS procedure designed to handle mixed effects linear models. Detailed
documentation is available in SAS/S¹A¹

' Software: Changes and Enhancements through Release
6.119 and in Littell et al.2

5.2.1. Inputting Data

Data can be input into SAS from ASCII files or from SAS data sets. Data for SAS Proc Mixed
must reside in a single file containing one record for each level 1 unit. Both level 1 variables (for
example, the patient-level outcome, ½, for example, satisfaction, and patient covariate age, X )
and level 2 variables (for example, physician’s years in medical practice, ¼ ) are contained in the
same file. The following illustrates the proper format of the data file, using the sample files shown
in Section 5.1.1. The level 2 identifier appears in the first column and is indicated in bold face. The
level 2 variable, ¼, appears in the rightmost column.

Data file (total number of records"+n
j
):

01 12 34 10

01 33 45 10

01 21 55 10

01 31 56 10

02 34 33 12

02 33 43 12

F F F F
J 21 43 6

5.2.2. Program Specifications

The SAS Proc Mixed syntax is similar to the SAS Proc GLM syntax. The user specifies
classification variables in the ‘class’ statement and the outcome or dependent variable for the
analysis along with the fixed effects in the ‘model’ statement. The user specifies random effects in
a ‘random’ statement and may include statements to perform repeated measures or time series
analysis. SAS allows the user to specify a stratification variable in the ‘by’ statement. Specific tests
of hypothesis for fixed or random effects can be requested using ‘contrast’ and ‘estimate’
statements. The user can specify initial or starting estimates for model parameters in the ‘parms’
statement. The user can also request that any part of the output be saved in a SAS data set using
the ‘make’ option. (We provide the SAS code used in our analyses in the tables of results and in
the Appendix.)

5.2.3. Output

SAS prints the output and also allows the user to save all or part of the output in a file for
presentation. The output includes a description of the classification variables (for example,
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number of levels and labels), estimates of the covariance components and significance tests (based
on large sample theory), several statistics to assess model fit (including Akaike’s information
criterion and Schwarz’s Bayesian criterion), estimates of the fixed effects along with t-statistics,
and estimates of the individual random effects along with t-statistics and significance levels for
hypothesis testing.

6. RESULTS

We now apply both HLM/2L and SAS Proc Mixed to data from the PORT study described in
Section 2 and to simulated data, which allows for greater control over sources of variation. In
Section 6.1 we present the results of hierarchical linear modelling analyses applied to data from
the PORT study. In Section 6.2 we present our simulation models, strategy, analytic approach
and results of hierarchical linear modelling on simulated data.

6.1. Analysis of PORT Study Data

In the PORT study, data were collected from physicians and patients at three sites. For this
example, we restrict our attention to data collected at one site. Table III displays summary
statistics on the physician (J"70) and patient samples (n"1492) involved in this analysis. The
numbers of patients enrolled per physician ranged from 5 to 45, with a mean of 21)3 patients per
physician. About one-quarter (27)1 per cent) of the physicians were female, their mean age was
43)9 years, most (92)6 per cent) were White, most were married (83)8 per cent), and they had been
practising medicine for a mean of 20)5 years. About half (49)9 per cent) of the Type II diabetic
patients were female, their mean age was 62)7 years, most (89)3 per cent) were White, a majority
were married (70)9 per cent), almost half (47 per cent) had completed at least some college
education, and about half (45)5 per cent) had an annual income of $30,000 or more.

The outcome or dependent variable in this analysis is a 14 item measure of patient satisfaction
developed for the American Board of Internal Medicine’s (ABIM) Patient Satisfaction Question-
naire. Sample items from the questionnaire include the following. How is your doctor at: telling
you everything; letting you tell your story; listening carefully; treating you like an adult. Each item
was rated on a five point Likert scale with the following response options: excellent; very good;
good; fair, and poor. Item scores were aggregated into a single, composite measure and scaled to
the range of 0—100 with higher scores indicative of better satisfaction. In a principal components
analysis of the 14 items, a single component was produced which explained 75 per cent of the
variance in the individual items. The Cronbach’s alpha internal consistency reliability coefficient
for the 14 items was 0)97. The mean satisfaction score (taken over all patients) was 67)7 with
a standard deviation of 23)5 (see Table III). The distribution of satisfaction scores in the pooled
sample (n"1492) is negatively skewed as shown in Figure 2.

The objective of this analysis is to assess whether there is a significant difference in mean patient
outcome scores across physicians adjusted for appropriate covariates. In this analysis we will
consider one patient-level covariate and one physical-level covariate. The patient-level covariate
is patient’s age, since it has been shown that older patients generally report better satisfaction
with medical care15,16 and the physician-level covariate is the physician’s number of years since
graduation from medical school (a proxy for physician’s experience in clinical practice). To
appropriately model these patient-level and physician-level covariates simultaneously, we de-
veloped a two-level hierarchical model.
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Table III. Description of physician and patient samples

Physician characteristics Mean (SD)/per cent
(J"70)

Gender: % female 27)1
Mean age in years (SD) 43)9 (6)4)
Race: % African American 1)5

% Asian 4)4
% White 92)6

Marital status: % married 83)8
Mean years in practice (SD) 20)5 (7)1)

Mean satisfaction A
70
+
j/1

½M .
j
/70B 68)5* A

70
+
j/1

s
j
/70"22)8sB

Patient characteristics Mean (SD)/per cent
(n"1492)

Gender: % female 49)9
Mean age in years (SD) 62)7 (11)9)
Race: % African American 4)5

% Other 6)2
% White 89)3

Marital status: % married 70)9
Education: % )High school graduate 53)0

% )College graduate 32)8
% Post-College graduate 14)2

Annual household income:
%($15,000 18)1
%$15,000—29,999 36)3
%$30,000# 45)5

Mean satisfaction (½M . .) 67)7 (23)5)

*The range in physician-level means (½M .
j
) is 53)4 to 87)1

sThe range in physician-level standard deviations (s
j
) is 13)4 to 32)4

There are 70 primary care physicians in the analysis (J"70). Physician-level mean satisfaction
scores, ½M .

j
, range from 53)4 to 87)1 (see Table III), and the mean of the physician-level means is

68)5. Physician-level standard deviations in satisfaction scores, which are assumed to be homo-
geneous, range from 13)4 to 32)4 and have a mean of 22)7.

Before fitting a two-level hierarchical model, we performed a fully stratified analysis, in which
we developed separate regression equations relating patient satisfaction to patient age in each
physician’s practice, considered separately. The ordinary least squares (OLS) estimates of the
intercepts and slopes for each physician practice are displayed in Table IV. The numbers of
patients in each physician practice, n

j
are also shown. Since the level 1 covariate X"patient age,

was centred about its grand mean (XM . .), the estimated intercepts (bK
0j

) are interpreted as the mean
satisfaction scores for each physician adjusted for patient age. There is substantial variation in the
adjusted mean satisfaction scores among physicians which range from 54)0 to 87)9. Figure 3
displays the relationship between the OLS estimates of the intercepts and slopes. There is a very
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Figure 2. Distribution of patient satisfaction scores in pooled sample (n"1492). Minimum"0, Q
1
"50, median"71)4,

Q
3
"87)5, maximum"100. Mean satisfaction ½M . ."67)7, s"23)5

Table IV. Ordinary least squares (OLS) estimates of intercepts and slopes: results
of fully stratified analysis

Physician Number of OLS OLS
identification patients (n

j
) intercept (bK

0j
) slope (bK

1j
)

number

001 21 69)6 0)07
003 25 54)0 0)21
005 28 71)4 0)32
006 45 67)9 0)05
007 16 65)1 0)10
008 11 66)6 !0)37
009 13 65)7 !0)42
010 34 77)1 !0)28
011 14 73)2 !0)22
012 17 60)1 1)13
013 27 87)2 !0)11
015 7 70)9 !0)55
016 25 81)8 0)06
017 5 50)8 1)52
018 30 71)4 0)01
019 15 72)8 !0)37
021 36 60)9 1)07
022 14 62)6 !0)43
023 25 61)8 1)88
024 16 58)7 !1)16
026 16 70)5 0)72
028 14 81)2 0)18
029 8 87)9 0)96
030 30 64)5 !0)24
031 28 69)1 !0)15
032 20 58)1 !0)24
033 19 72)6 !0)25
034 27 58)1 !0)34
035 11 66)0 1)00
) ) ) )
) ) ) )
) ) ) )

074 29 63)3 0)05
075 31 54)0 0)67
078 22 77)3 !0)32
080 9 66)1 !0)63
081 23 56)8 0)84
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Figure 3. Relationship between OLS intercepts (bK
0j

) and slopes (bK
1j

)

slight negative orientation to the scatter (r"!0)14, p"0)2517) indicating that higher adjusted
mean satisfaction scores (bK

0j
) are associated with smaller slope coefficients (bª

1j
) (that is, the effect

of age on satisfaction is slightly more pronounced in the presence of lower adjusted means).
The objective of this analysis is to assess whether there is a significant difference in mean patient

outcome scores across physicians adjusted for appropriate covariates. A comparison of the
adjusted mean satisfaction scores (bK

0j
) from the fully stratified analysis is not optimal because in

some physician practices these estimates are based on very few patients (for example, n
015

"7,
n
017

"5, n
029

"8). We use two-level hierarchical modelling techniques to generate more precise
estimates of individual physician’s mean satisfaction scores, adjusted for patient’s age and the
physician’s years in medical practice. We begin with the most general model.

6.1.1. Intercept and Slopes as Outcomes Model

The first two-level hierarchical model we consider is the intercepts and slopes as outcomes model
(model 6 of Tables I and II). We consider the level 1 and level 2 covariates, patient’s age and
physician’s years in medical practice, respectively, and centre each about their respective grand
means (XM . ."62)7 and ¼M ."20)5). We model the intercepts (physician’s adjusted mean satisfac-
tion scores) and slopes (relating age to satisfaction for each physician) as random effects. The
HLM/2L and SAS Proc Mixed output for the intercepts and slopes as outcomes model are shown
in Tables V and VI, respectively. (The source code for the SAS Proc Mixed run is also provided in
Table VI.) Before we compare estimates and hypothesis tests of fixed effects, covariance compo-
nents and random effects from HLM/2L and SAS Proc Mixed, we outline portions of the outputs
which are distinct.

In the last section of Table V HLM/2L provides a test of homogeneity of level 1 variances. The
test is not significant (p"0)370) supporting our assumption of homogeneity of variances (that is
the variances in patient’s satisfaction scores across physicians are not significantly different).

SAS Proc Mixed produces several statistics which are useful for assessing model fit (middle
section of Table VI). The most widely used are Akaike’s information criterion (AIC) and
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Table V. Intercept and slopes as outcomes model: HLM/2L

Final estimation of fixed effects:

Fixed effect Coefficient Standard ¹-ratio P-value
error

For INTRCPT1 B0
INTRCPT2 G00 67)9796 0)8626 78)812 0)000

MD—YEARS G01 !0)0476 0)1186 !0)401 0)688
For PT—AGE slope B1

INTRCPT2 G10 0)1476 0)0592 2)492 0)013
MD—YEARS G11 0)0053 0)0084 0)633 0)527

Final estimation of variance components:

Random effect Standard Variance D.F. Chi-square P-value
deviation component

INTRCPT1, U0 5)0063 25)0631 68 143)4043 0)000
PT—AGE slope, U1 0)2363 0)0558 68 99)3944 0)008
Level-1, R 22)7633 518)1695

Statistics for current covariance components model: deviation"13636)795; number of estimated
parameters"4.
Test of homogeneity of level-1 variance: chi-square statistic"72)286; number of degrees of free-
dom"69; p-value"0)370

Schwarz’s Bayesian criterion (BIC). AIC can be used to compare models with the same fixed
effects but different covariance structures. Larger values of the AIC indicate better models.
Schwarz’s BIC is used for the same purpose and is interpreted in the same manner (that is, larger
values indicate better models). However, the two criteria are computed in slightly different ways
(for example, Schwarz’s BIC involves a larger penalty in models with more covariance para-
meters) and may lead to different conclusions. We can also use a likelihood ratio test to compare
models which are submodels of other models by taking!2 times the difference in log-likelihoods
which follows a s2 distribution with p degrees of freedom, where p reflects the difference in the
number of parameters estimated between the two models. SAS automatically generates!2 times
the log-likelihood for each model. We use these criteria to compare different models. We now
describe estimates and hypothesis tests for fixed effects, covariance components and random
effects from HLM/2L and SAS Proc Mixed.

Fixed Effects. Both HLM/2L and SAS Proc Mixed produce similar estimates of the fixed effects
and covariance components. For example, the overall adjusted mean satisfaction score is
estimated as cL

00
"67)9796 by HLM/2L and cL

00
"67)9852 by SAS. Physician’s years in medical

practice has little effect on this overall adjusted mean; the regression coefficient associated with
the level 2 covariate, physician’s years in medical practice, is estimated as ĉ

01
"!0)0476 by

HLM/2L and cL
01
"!0)0474 by SAS (p"0)688 and p"0)6896 respectively). There is a signifi-

cant positive association between patient’s age and satisfaction with care. The overall slope
coefficient relating the level 1 covariate, patient’s age, to satisfaction with care is estimated as
cL
10
"0)1476 by both HLM/2L and SAS (p"0)013 and p"0)0150, respectively). Patient’s age is
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Table VI. Intercept and slopes as outcomes model: SAS Proc Mixed

Covariance parameter estiomates (REML)

Cov Parm Subject Estimate Standard Z Pr'DZ D
error

UN(1, 1) phys 25)0099 8)4684 2)95 0)0031
UN(2, 1) phys !0)9025 0)4390 !2)06 0)0398
UN(2, 2) phys 0)0550 0)0437 1)26 0)2087
Residual 518)3230 19)9024 26)04 0)0001

Model fitting information for ½

Description Value

Res Log Likelihood !6814)79
Akaike’s Information Criterion !6818)79
Schwarz’s Bayesian Criterion !6829)40
!2 Res Log Likelihood 13629)58
Null Model LRT Chi-square 29)5605
Null Model LRT DF 3)0000
Null Model LRT P-value 0)0000

Solution for fixed effects

Effect Estimate Standard D.F. t Pr'Dt D
error

INTERCEPT 67)9852 0)8621 68 78)86 0)0001
PT—AGE 0)1476 0)0591 68 2)50 0)0150
MD—YEARS !0)0474 0)1185 1352 !0)40 0)6896
PT—AGE*MD—

YEARS 0)0053 0)0084 1352 0)64 0)5255

SAS Code: proc mixed covtest;
class phys;
model y"pt—age md—years pt—age*md—years/s;
random int pt—age/type"un subject"phys s;
run;

positively associated with satisfaction with care; with each additional year of age associated with
a 0)15 unit increase in satisfaction. Physician’s years in medical practice has little effect on this
relationship between patient’s age and satisfaction; the regression coefficient associated with the
level 2 covariate, physician’s years in medical practice, is estimated as cL

11
"0)0053 by both

HLM/2L and SAS (p"0)527 and p"0)5255, respectively). HLM/2L and SAS Proc Mixed
indicate that the physician’s years in medical practice is not significantly associated with either
their patients’ mean satisfaction scores nor the relationship between patient’s age and satisfaction.
In subsequent models, we will drop physician’s years in medical practice.
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Covariance Components. The estimates of the covariance components address the magnitude of
the variation in the intercepts (adjusted mean satisfaction scores), slopes (relating patient’s age to
satisfaction) and the patient-level random error. The estimates of the covariance components are
similar in HLM/2L and SAS Proc Mixed. HLM/2L estimates the variation in adjusted mean
satisfaction scores (intercepts) as q̂

00
"25)063, while SAS produces qL

00
"25)010. Both packages

indicate that this variation in adjusted mean satisfaction scores among physicians is significant
(p"0)000 and p"0)0031, respectively). HLM/2L estimates the variation in slopes relating
patient age to satisfaction among physicians as qL

11
"0)0558 and SAS produces qL

11
"0)0550.

HLM/2L indicates that this variation is significant (p"0)008), while SAS Proc Mixed does not
(p"0)2087). The apparent inconsistency in the significance levels of the tests may be due in part
to the fact that the data are highly unbalanced (the number of patients per physician ranges from
5 to 45). In addition, SAS produces a Wald statistic (19) which is valid for large samples while
HLM/2L produces a chi-square statistic (20).

Random Effects. The estimates of the individual random effects are not shown, as this is not our
final model. Estimates of individual random effects will be provided once a final model is
determined.

6.1.2. Random Coefficients Regression Model

Because the significance tests for the fixed effects indicate that the level 2 covariate, physician’s
years in medical practice, is not significantly (p'0)05) associated with either the adjusted mean
satisfaction scores (intercepts) or the effects of patient’s age on satisfaction (slopes), we remove
physician’s years in medical practice as a level 2 covariate and estimate the random coefficients
regression model (model 5 of Tables I and II). The HLM/2L and SAS Proc Mixed output for the
random coefficients regression model are shown in Tables VII and VIII, respectively. (The source
code for the SAS Proc Mixed run is also provided in Table VIII.)

Fixed Effects. Again both HLM/2L and SAS Proc Mixed produce similar estimates of the fixed
effects and covariance components. The overall adjusted mean satisfaction score is estimated as
67)9950 in HLM/2L and as 68)0013 in SAS. Both packages indicate that the adjusted mean
satisfaction score is significantly different from zero (p"0)000 and p"0.0001, respectively). The
regression coefficient associated with the level 1 covariate, patient’s age, is estimated as 0)1472 in
both packages and is also significantly different from zero (p"0)013 and p"0)0150, respectively).

Covariance Components. Similar to the previous model, there is significant variation in adjusted
mean satisfaction scores (qL

00
"24)5087 in HLM/2L and qL

00
"24)4360 in SAS, p"0)000 and

p"0.0032, respectively) and although the estimates of variation in the effects of age on satisfac-
tion (slopes) are similar (qL

11
"0)0538 in HLM/2L and qL

11
"0)0524), HLM/2L indicates that this

variation is significant (p"0)009), while SAS indicates that this variation is not significant
(p"0)2212). Again, the apparent inconsistency in the tests may be due to the unbalanced nature
of the data or the asymptotic nature of the Wald statistic.

Random Effects. The estimates of the individual random effects are not shown, as this is not our
final model. Estimates of individual random effects will be provided once a final model is
determined.
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Table VII. Random coefficients regression model: HLM/2L

Final estimation of fixed effects:

Fixed effect Coefficient Standard ¹-ratio P-value
error

For INTRCPT1 B0
INTRCPT2 G00 67)9950 0)8562 79)418 0)000

For PT—AGE slope B1
INTRCPT2 G10 0)1472 0)0589 2)499 0)013

Final estimation of variance components:

Random effect Standard Variance D.F. Chi-square P-value
deviation component

INTRCPT1, U0 4)9506 24)5087 69 144)0142 0)000
PT—AGEslope, U1 0)2320 0)0538 69 99)5919 0)009
Level-1, R 22)7618 518)1005

Statistics for current covariance components model: deviance"13623)295; number of estimated
parameters"4

6.1.3. One-Way Analysis of Covariance Model With Random Effects

Based on the small estimates of the variation in the effect of age on satisfaction among physicians
(slopes), we model the regression slopes as fixed (that is, model a constant effect of age on
satisfaction, or a constant slope, across physicians) and fit the one-way analysis of covariance
(ANCOVA) model with random effects (model 3 of Tables I and II without the level 2 covariate,
physician’s years in medical practice). The SAS Proc Mixed output (and source code) for the
one-way ANCOVA model with random effects is shown in Table IX (the output from HLM/2L
was comparable and is not shown). Using the model fitting information, AIC suggests that the
random coefficients regression model (Table VIII) is the best of the three models considered
(although there is not a substantial difference in values), while Schwarz’s BIC suggests that the
one-way ANCOVA model with random effects (Table IX) is the best of the three considered.

Fixed Effects. The estimate of the overall adjusted mean satisfaction score is 68)0081 which is
significantly different from zero (p"0)0001). The effect of age on satisfaction is estimated as
0)1533 and is also significantly different from zero (p"0)0027). Older patients report significantly
higher satisfaction, with each additional year of age associated with an increase of 0)15 units in
satisfaction.

Covariance Components. There is significant variation in adjusted mean satisfaction scores
(qL

00
"24)7819, p"0)0031). We will explore these individual estimates below.

Random Effects. The estimates of the random effects are shown in the last section of Table IX.
A sample of the estimates of the random effects, the physician identifier, estimates of standard
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Table VIII. Random coefficients regression model: SAS Proc Mixed

Covariance parameter estimates (REML)

Cov Parm Subject Estimate Standard Z Pr'DZ D
error

UN(1, 1) phys 24)4360 8)2939 2)95 0)0032
UN(2, 1) phys !0)9004 0)4288 !2)10 0)0358
UN(2, 2) phys 0)0524 0)0429 1)22 0)2212
Residual 518)3323 19)8978 26)05 0)0001

Model fitting information for ½

Description Value

Res Log Likelihood !6809)88
Akaike’s Information Criterion !6813)88
Schwarz’s Bayesian Criterion !6824)49
!2 Res Log Likelihood 13619)75
Null Model LRT Chi-square 29)5137
Null Model LRT DF 3)0000
Null Model LRT P-value 0)0000

Solution for fixed effects

Effect Estimate Standard D.F. t Pr'Dt D
error

INTERCEPT 68)0013 0)8555 69 79)49 0)0001
PT—AGE 0)1472 0)0587 69 2)51 00145

SAS Code: proc mixed covtest;
class phys;
model y"pt—age/s;
random int pt—age/type"un subject"phys s;

run;

errors, degrees of freedom, t-statistics and two-sided significance levels are also provided. SAS
Proc Mixed’s estimates of the random effects correspond to the t̂

0j
’s of Section 4.1.3. These

estimates of random effects vary from !7)67 (physician 003) to 10)57 (physician 013, not shown).

Estimates of Random Coefficients. The estimates of the random effects can be used to generate
shrinkage estimates of the random coefficients (bK *

0j
) or estimates of the individual physician

adjusted mean satisfaction scores using bK *
0j
"68)0081#0)1533* (XM .

j
!XM . .)#t̂

0j
, where XM .

j
is

the mean age of patients in physician j ’s practice and XM . . is the mean age of patients in the sample
(n"1492). For physicians 003 and 013, the estimates of their mean satisfaction scores adjusted
for patient age are bK *

0 003
"60)4 and bK *

013
"78)6 . The OLS estimates of the adjusted mean

satisfaction scores (intercepts) for these physicians (see Table IV) were 54)0 and 87)2, respectively.
The discrepancies between the OLS estimates and the BLUPs can be attributed, in part, to
shrinkage.
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Table IX. One-way analysis of covariance (ANCOVA) model with random effects:
SAS Proc Mixed

Covariance parameter estimates (REML)

Cov Parm Subject Estimate Standard error Z Pr'DZ D

UN(1, 1) phys 24)7819 8)3868 2)95 0)0031
Residual 524)9288 19)6453 26)72 0)0001

Model fitting information for ½

Description Value

Res Log Likelihood !6813)39
Akaike’s Information Criterion !6815)39
Schwarz’s Bayesian Criterion !6820)69
!2 Res Log Likelihood 13626)77
Null Model LRT Chi-Square 22)4948
Null Model LRT DF 1)0000
Null Model LRT P-value 0)0000

Solution for fixed effects

Effect Estimate Standard D.F. t Pr'Dt D
error

INTERCEPT 68)0081 0)8588 69 79)19 0)0001
PT—AGE 0)1533 0)0511 1421 3)00 0)0027

Solution for random effects

Effect Phys Estimate SE Pred D.F. t Pr'Dt D

INTERCEPT 001 0)914 3)554 1421 0)26 0)7970
INTERCEPT 003 !7)666 3)404 1421 !2)25 0)0245
INTERCEPT 005 2)462 3)307 1421 0)74 0)4567
INTERCEPT 006 !0)195 2)877 1421 !0)07 0)9460
INTERCEPT 007 !1)209 3)776 1421 !0)32 0)7488
INTERCEPT 008 !0)814 4)050 1421 !0)20 0)8408
. . . . . . .
INTERCEPT 081 !5)869 3)476 1421 !1)69 0)0915

SAS Code: proc mixed covtest;
class phys;
model y"pt—age/s;
random int pt—age/type"un subject"phys s;

run;
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Figure 4. Relationship between OLS intercepts (bK
0j

) and best linear unbiased predictions (bK *
0j

): shrinkage

Shrinkage. Ordinary least squares (OLS) can be used to estimate the regression equations within
each level 2 unit (that is, within each physician practice in our example). If the level 1 covariate is
centred about its grand mean, then the estimated intercepts are interpreted as the adjusted mean
outcome scores for each level 2 unit (physician). The estimated slopes represent the change in
outcome scores associated with a unit change in the level 1 covariate. OLS estimates have
desirable statistical properties such as unbiasedness, uniqueness, minimum variance, and so on.
However, the OLS estimates may be poor if, for example, the number of level 1 units (for example,
patients) within a particular level 2 unit (for example, physician practice) is small. Estimates of
individual level 2 effects (for example, the intercepts (bK *

0j
’s) derived from the t̂

oj
of Table IX)

produced by HLM/2L and SAS Proc Mixed take into account the precision (or lack thereof ) of
the estimates within each level 2 unit. Figure 4 displays the relationship between the OLS
estimates of the intercepts (from the fully stratified analysis in Table IV) and the BLUPs from the
one-way ANCOVA model with random effects in Table IX. Notice that the range of the OLS
estimates is from 50)8 to 89)1, while the range of the BLUPs is from 60)4 to 78)6. The BLUPs are
pulled toward the estimated overall mean ĉ

00
"68)008 (see Table IX). The degree of shrinkage

depends on the precision of the OLS estimate, which is related to the number of level 1 units used
to generate the estimate. For example, physician 017 has only 5 patients. The OLS estimate of the
intercept for physician 017 is 67)0 while the BLUP is 50)8. In contrast, physician 006 has 45
patients, and the OLS estimate and BLUP are closer in value (that is, less subject to shrinkage),
67)8 and 67)9, respectively. (For more details see Chapter 6 of Littell et al.2)
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6.2. Analysis of Simulated Data

We simulated data and estimated hierarchical linear models in HLM/2L and SAS Proc Mixed to:
(i) compare the parameter estimates and hypothesis tests from HLM/2L and SAS Proc Mixed to
one another; (ii) to compare the parameter estimates from each package to the true values; and
(iii) to assess the effect of small and unequal (that is, unbalanced designs) samples on parameter
estimates and hypothesis tests.

In our simulations, we generated data for a two-level hierarchical structure. We considered
a continuous outcome variable, ½, a single level 1 predictor X, and a single level 2 predictor ¼.
Using the PORT study example described in Section 2 as a framework for the simulation, we
considered an application with patients as the level 1 units and physicians as the level 2 units. We
simulated data in which the level 1 (patient-level) outcome, ½, might reflect self-reported
satisfaction scored from 0—100 with higher scores indicative of better satisfaction. We modelled
patient age, recorded in years, as the continuous, level 1 covariate. Based on other studies, we
considered a positive relationship between age and self-reported satisfaction. In our simulation,
we considered patient ages in the range of 30 to 70 years. We modelled physician’s years in
medical practice as the continuous level 2 covariate and hypothesized that more experienced
physicians would be associated with patients who report better satisfaction. In our simulation
model, we considered physician’s years in practice in the range of 0 to 20 years.

The structure of the level 1 and level 2 models for the simulation study are given below along
with the parameters and distribution functions we used to simulate data.

Models and parameters
Level 1 model:

½
ij
"b

0j
#b

1j
(X

ij
!XM . .)#e

ij
.

Simulation parameters and distribution functions:

e
ij
&N(0, 152 )

X&U(30, 70).

Level 2 models:

b
0j
"c

00
#c

01
(¼

j
!¼M . )#t

0j

b
1j
"c

10
#c

11
(¼

j
!¼M . )#t

1j
.

Simulation parameters and distribution functions:

c
00
"50)0, c

01
"1)5, c

10
"!4)0, c

11
"0)25

t
0j

, t
1j
&BVN(0, 0, 64)0, 9)0,!5)0)

¼&U(0, 20)

(that is, b
0j
"50.0#1)5 (¼

j
!¼M . )#t

0j
b
1j
"!4)0#0)25 (¼

j
!¼M . )#t

1j
).

The parameters we modelled reflect the following scenario. Adjusting for physician’s years in
medical practice, the overall physician-level mean satisfaction score is 50)0 (c

00
). For every

additional year in medical practice, this adjusted mean satisfaction score increases by 1)5 units
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(c
01

, physician’s experience is positively associated with patient’s satisfaction). Adjusting for
physician’s years in medical practice, the slope relating patient’s age to satisfaction is !4)0 (c

10
,

each additional year of age is associated with a decrement of 4)0 units in the slope relating
patient’s age to satisfaction). For every additional year in medical practice, this slope coefficient
increases by 0)25 units (c

11
).

Simulation Strategy. Data were simulated in SAS according to the models displayed above. Four
sample size configurations were considered:

(i) balanced design: large level 2 sample and large level 1 samples, J"100, n
j
"50;

(ii) balanced design: small level 2 sample and large level 1 samples, J"10, n
j
"50;

(iii) balanced design: large level 2 sample and small level 1 samples, J"10, n
j
"10;

(iv) unbalanced design: large level 2 sample and varying level 1 samples, J"100,
n
j
"10(10)50, where 10(10)50 indicates that n

j
ranges from 10 to 50 in increments of 10.

Data were simulated as follows. For each of the J physicians considered, we drew random
physician effects (t

0j
, t

1j
) from a bivariate normal distribution (BVN(0, 0, 64)0, 9)0,!5)0)). We

then drew a value for the physician-level covariate, ¼ (for example, physician’s years in medical
practice), from a uniform distribution over the range of 0—20 and centred this value by subtracting
¼M ."10. We then computed the intercepts and slopes for each physician (b

0j
, b

1j
). For each of

the n
ij

patients within each physician practice, we drew a random error (e
ij
) from a normal

distribution with mean 0 and standard deviation 15. We then drew a value for the patient-level
covariate, X (for example, patient’s age in years), from a uniform distribution over the range of
30—70 and centred this value by subtracting XM . ."50. We then computed the outcome or
dependent variable score for each patient (½

ij
).

Analysis. Using simulated data we estimated intercepts and slopes as outcomes hierarchical
linear models in HLM/2L and in SAS Proc Mixed and compared the estimates and tests of fixed
effects, covariance components and individual random effects. For comparison purposes, we also
fit two general linear models to the simulated data using SAS Proc GLM. In the first model we
pooled the patient-level data and performed an analysis relating the patient-level outcome, ½

ij
, to

the patient-level covariate, X
ij,

(centred at XM . .) and the physician-level covariate, ¼
j
(centred at

¼M .). In the second model, we included (J!1) dummy variables indicating individual physician
practices and related the patient-level outcome, ½

ij
, to the patient-level covariate, X

ij
, and the

J!1 dummy variables.

Results. In general, HLM/2L and SAS Proc Mixed produced similar estimates of fixed effects,
covariance components, and individual random effects (see Appendix), which were very close to
the parameters modelled in our simulation. In the pooled analysis, in which we combined all level 1
units (patients) and ignored the level 2 units (physicians), the estimates of the fixed effects were
very similar to those produced by HLM/2L and SAS Proc Mixed. However, the standard errors
of the fixed effects were much smaller, in some cases as much as 50 per cent smaller, compared to
the standard errors from HLM/2L and SAS Proc Mixed. This could lead to inflated type I error
rates. In the model in which we included (J!1) dummy variables to reflect the level 2 units
(physician practices), it was not possible to model the physician-level covariate, ¼. The unique
effect of the jth physician is captured in an estimate of the individual physician mean and it is not
possible to separate the effect due to ¼, the physician’s years in medical practice.
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We used simulation techniques to generate samples of data for analysis by various packages
and procedures. We did not perform a Monte Carlo simulation in which we varied parameters
and effects systematically, therefore we do not draw general conclusions from these analyses. We
simply conclude that HLM/2L and SAS Proc Mixed produce similar results based on the
configurations we considered. SAS Proc GLM, which is often used in similar applications, is
problematic in that standard errors of fixed effects are too small and these models do not allow for
adequate specification of effects (for example, the physician-level covariate ¼, in the model in
which we specified individual physician practices using dummy variables). The use of the
‘repeated’ option in SAS Proc GLM would remedy the problem with the standard errors, but
would still leave us with inadequate specification of effects.

7. CONCLUSION

Hierarchical modelling techniques are important to explicitly take into account the multi-level
structure of data. In hierarchical models, we can explore the nature and extent of relationships
within level 2 units and among level 2 units. Estimates based on data in which level 1 units (for
example, patients) are aggregated across level 2 units (for example, physicians) may not be
appropriate if there is substantial heterogeneity among the level 2 units. Further, ordinary
regression techniques produce estimates of standard errors which are too small, resulting in
inflated type I error rates and misleadingly tight confidence intervals.

As a final note, users should be cautious in interpreting results of significance tests (tests
for covariance components and individual random effects in particular) when the number of
level 2 units is small (J(30) or the data are extremely unbalanced. More research needs to be
done to determine the robustness of such tests in the presence of small samples and unbalanced
data.

APPENDIX

Comparison of estimates from HLM/2L, SAS Proc Mixed and GLM using simulated data
balanced design (number of level 1 units (n

j
) constant across level 2 units (J ) ): large level 1 and

level 2 samples, J"100, n
j
"50.

Package HLM/2L SAS Proc Mixed SAS Proc GLM SAS Proc GLM
(pooled analysis) (dummy variable

to indicate level
2 unit)

Fixed effects

Trues Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

c
00
"50)0 51)45 (0)795) 49)97 (0)774) 49)80 (0)417) 54)35 (4)253)

c
01
"1)5 1)45 (0.131) 1)49 (0)127) 1)55 (0)069)

c
10
"!4)0 !4)21 (0)288) !4)27 (0)289) !4)27 (0)048) !4)23 (0)050)

c
11
"0)25 0)18 (0)047) 0)18 (0)047) 0)18 (0)008)
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APPENDIX. (Continued)

Covariance components

Trues Estimate Estimate Estimate Estimate

p2"152"225 222)77 222)77
q
00
"82"64)0 58)70 55)18 MSE"865)42 MSE"903)19

q
11
"32"9)0 8)24 8)24

q
01
"!5)0 !8)37 !6)40

Random coefficients

First 5 level bK *
0j

bK *
0j

— bK
0j2 units ( j ) bK *

1j
bK *
1j

1 54)42 53)30 — 52)04
!4)71 !4)70

2 23)15 22)54 — 18)46
!2)53 !2)55

3 59)41 58)47 — 58)65
!3)95 !3)94

4 45)69 44)56 — 44)38
!4)73 !4)73

5 43)02 42)14 — 41)38
!3)68 !3)69

sSimulation models:

½
ij
"b

0j
#b

1j
(X

ij
!XM . .)#e

ij
e
ij
&N(0,p2)

b
0j
"c

00
#c

01
(¼

j
!¼M .)#t

0j
b
1j
"c

10
#c

11
(¼

j
!¼M .)#t

1j
t
0j

, t
1j
&BVN(0, 0, q

00
, q

11
, o)

where

o"
q
01

J(q
00

, q
11

)
.

Comparison of estimates from HLM/2L, SAS Proc Mixed and GLM using simulated data
balanced design (number of level 1 units (n

j
) constant across level 2 units (J ) ): small level 2 sample

and large level 1 samples, J"10, n
j
"50.

Package HLM/2L SAS Proc Mixed SAS Proc GLM SAS Proc GLM
(pooled analysis) (dummy variable

to indicate level
2 unit)

Fixed effects

Trues Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

c
00
"50)0 56)12 (3)634) 54)16 (4)313) 55)19 (1)531) 78)93 (6)012)

c
01
"1)5 0)83 (0.824) 0)76 (0)826) 0)76 (0)293)

c
10
"!4)0 !2)53 (0)891) !4)94 (1)051) !4)92 (0)170) !2)65 (0)214)

c
11
"0)25 0.86 (0.202) 0)85 (0)201) 0)82 (0)033)
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APPENDIX. (Continued)

Covariance components

Trues Estimate Estimate Estimate Estimate

p2"152"225 212)07 212)07
q
00
"82"64)0 126)31 128)19 MSE"828)75 MSE"1806)30

q
11
"32"9)0 7)83 7)82

q
01
"!5)0 !11)91 !12)44

Random coefficients

First 5 level bK *
0j

bK *
0j

— bK
0j2 units ( j ) bK *

1j
bK *
1j

1 40)67 41)77 — 55)31
!13)60 !13)61

2 59)93 60)13 — 60)36
!2)52 !2)52

3 59)29 59)24 — 61)28
0)71 0)71

4 55)84 55)87 — 55)98
!0)34 !0)34

5 68)44 68)76 — 69)82
!3)96 !3)96

sSimulation models:

½
ij
"b

0j
#b

1j
(X

ij
!XM . .)#e

ij
e
ij
&N(0,p2)

b
0j
"c

00
#c

01
(¼

j
!¼M .)#t

0j
b
1j
"c

10
#c

11
(¼

j
!¼M .)#t

1j
t
0j

, t
1j
&BVN(0, 0, q

00
, q

11
, o)

where

o"
q
01

J(q
00

, q
11

)
.

Comparison of estimates from HLM/2L, SAS Proc Mixed and GLM using simulated data
balanced design (number of level 1 units (n

j
) constant across level 2 units (J ) ): large level 2 sample

and small level 1 samples, J"100, n
j
"10.

Package HLM/2L SAS Proc Mixed SAS Proc GLM SAS Proc GLM
(pooled analysis) (dummy variable

to indicate level
2 unit)

Fixed effects

Trues Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

c
00
"50)0 47)06 (0)926) 49)41 (0)944) 49)84 (0)905) 66)97 (9)532)

c
01
"1)5 1)73 (0.164) 1)60 (0)168) 1)54 (0)162)

c
10
"!4)0 !4)11 (0)276) !4)06 (0)276) !4)01 (0)105) !4)08 (0)118)

c
11
"0)25 0.28 (0.049) 0)28 (0)049) 0)28 (0)019)
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APPENDIX. (Continued)

Covariance components

Trues Estimate Estimate Estimate Estimate

p2"152"225 220)92 220)92
q
00
"82"64)0 60)39 63)57 MSE"814)59 MSE"906)11

q
11
"32"9)0 7)26 7)26

q
01
"!5)0 !1)34 !4)99

Random coefficients

First 5 level bK *
0j

bK *
0j

— bK
0j2 units ( j ) bK *

1j
bK *
1j

1 29)82 32)49 — 24)69
!5)32 !5)32

2 31)81 34)57 — 32)72
!5)49 !5)49

3 30)98 34)05 — 26)73
!6)10 !6)10

4 52)69 52)85 — 70)12
!0)33 !0)33

5 32)43 36)11 — 32)40
!7)33 !7)33

sSimulation models:

½
ij
"b

0j
#b

1j
(X

ij
!XM . .)#e

ij
e
ij
&N(0,p2)

b
0j
"c

00
#c

01
(¼

j
!¼M .)#t

0j
b
1j
"c

10
#c

11
(¼

j
!¼M .)#t

1j
t
0j

,t
1j
&BVN(0, 0, q

00
, q

11
,o)

where

o"
q
01

J(q
00

, q
11

)
.

Comparison of estimates from HLM/2L, SAS Proc Mixed and GLM using simulated data
unbalanced design (number of level 1 units (n

j
) range from 10 to 50 in increments of 10) large level

2 sample and various level 1 samples, J"100, n
j
"10 (10) 50.

Package HLM/2L SAS Proc Mixed SAS Proc GLM SAS Proc GLM
(pooled analysis) (dummy variable

to indicate level
2 unit)

Fixed effects

Trues Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

c
00
"50)0 48)40 (0)940) 49)42 (0)946) 49)34 (0)582) 37)13 (4)490)

c
01
"1)5 1)66 (0.171) 1)66 (0)171) 1)59 (0)105)

c
10
"!4)0 !4)25 (0)299) !4)13 (0)301) !4)03 (0)067) !4)13 (0)068)

c
11
"0)25 0.20 (0.054) 0)20 (0)054) 0)17 (0)012)
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APPENDIX. (Continued)

Covariance components

Trues Estimate Estimate Estimate Estimate

p2"152"225 221)73 221)73
q
00
"82"64)0 78)12 78)13 MSE"1001)22 MSE"1007)45

q
11
"32"9)0 8)79 8)78

q
01
"!5)0 !6)65 !6)64

Random coefficients

First 5 level bK *
0j

bK *
0j

— bK
0j2 units ( j ) bK *

1j
bK *
1j

1 (n
1
"10) 60)07 60)07 — 63)04

!2)06 !2)05

2 (n
2
"20) 54)91 54)91 — 55)38

!5)51 !5)51

3 (n
2
"30) 66)55 66)55 — 65)18

!2)24 !2)24

4 (n
2
"40) 27)01 27)01 — 25)64

!4)95 !4)95

5 (n
2
"50) 47)15 47)15 — 59)49

!9)08 !9)08

sSimulation models:

½
ij
"b

0j
#b

1j
(X

ij
!XM . .)#e

ij
e
ij
&N(0,p2)

b
0j
"c

00
#c

01
(¼

j
!¼M .)#t

0j
b
1j
"c

10
#c

11
(¼

j
!¼M .)#t

1j
t
0j

,t
1j
&BVN(0, 0, q

00
, q

11
,o)

where

o"
q
01

J(q
00

, q
11

)
.

SAS Proc Mixed code for two-level hierarchical models.

Variable Description
name

½ The dependent variable measured on the ith level 1 unit (for
example, patient) nested within the jth level 2 unit (for example,
physician)

X The level 1 (patient) covariate or predictor
¼ The level 2 (physician) covariate or predictor
phys Level 2 identifier (for example physician identification number)

X and ¼ variables can be modelled in their original, untransformed metric or centred (about
respective grand means, or X about respective group means).
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Model. One-way ANOVA with random effects:

proc mixed covtest;
class phys;
model y"/s;
random int/s;

run;

Model 2. Means as outcomes regression model:

proc mixed covtest;
class phys;
model y"w/s;
random int/s;

run;

Model 3. One-way ANCOVA with random effects:

proc mixed covtest;
class phys;
model y"x/s;
random int/type"un subject"phys s;

run;

Model 4. Non-randomly varying slopes model:

proc mixed covtest;
class phys;
model y"x w x*w/s;
random int/type"un subject"phys s;

run;

Model 5. Random coefficients regression model:

proc mixed covtest;
class phys;
model y"x/s;
random int x/type"un subject"phys s;

run;

Model 6. Intercepts and slopes as outcomes model:

proc mixed covtest;
class phys;
model y"x w x*w/s;
random int x/type"un subject"phys s;

run;
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