36-463/663: Multilevel & Hierarchical Models

(P)review: in-class midterm Brian Junker 132E Baker Hall brian@stat.cmu.edu

10/17/2016

In-class midterm

- Closed book, closed notes, closed electronics (otherwise I have to make it harder!)
- Mainly conceptual/theoretical material
 No proofs, but maybe "calculation with greek letters"
- Some computer output to interpret
- Sketch some graphs
- Produce a couple of fitted values, residuals, confidence intervals, variances, by hand
 - Bring a calculator!
 - Don't use calculator on your phone/tablet

Generalities

- Sampling model vs measurement error model in statistics
- Regression models typically combine both sampling and measurement error (how?)
- Distributions as models
 - can represent the population from which the sample comes (sampling model)
 - can represent messy or unknown parts of data generation (meas error or generative model)

10/17/2016

Basic Statistics

- Confidence intervals
 - Traditional: (Pt. Estimate) +/- 2 SE's
 - <u>Simulation</u>: Simulate values of estimated parameter (or simulate data and recalculate parameter estimate), cut off lower 2.5% and upper 97.5%
- Hypothesis testing
 - □ <u>*Traditional*</u>: H_0 induces a distribution on test statistic T. If T(real data) in the tail of this distribution, reject H_0
 - <u>Simulation</u>: simulate data from the fitted model under H₀ to get a distribution for T. If T(real data) in the tail of this distribution, reject H₀.

Regression I

- Interpreting slope
 - predictive or summary interpretation
 - causal or counterfactual interpretation
 - multiple predictors
- Interpreting intercept
 - transforming X's to make better interpretation
- Fit, diagnostics
 - does it make sense?
 - linearity, additivity of errors
 - "normal", iid residuals
 - □ R², F-test, AIC

10/17/2016

Regression II

- Different ways of writing the model
 - \square lazy way $y=eta_0+eta_1X_1+eta_2X_2+arepsilon$
 - long way $y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i, \ i = 1, \dots, n$ matrix way $Y = X\beta + \varepsilon$
- normal distribution, variances, covariances, means
- estimating E[y_{new}] vs predicting y_{new}
- Using simulation to display uncertainty
 - simulating new data
 - simulating new regression coefficients

Regression III

- Transformations
 - transforming y can help normality/symmetry
 - □ transforming x can help with influential data
- Model building (for predictive modeling)
 - include a term if it has the 'right' sign
 - exclude a term if it has 'wrong' sign and not significant
 - think hard if term has 'wrong' sign and is significant
- Assessing fit
 - resid plots
 - □ R²
 - F-tests
 - □ AIC/BIC (difference of 2 interesting, difference of 3 a big deal)

10/17/2016

Generalized Linear Models (GLMs)

- Generalized linear model
 - $\ \ \, \square \ \, \mathbf{y_i} \ \sim \mathbf{f(y\,|\,} \mu_{i}\text{, ...), } \mu_i = \mathbf{E[y_i]}$
 - \square g(μ_i) = θ_i = X_i β
- Examples:
 - Normal linear regression
 - Logistic regression
 - Poisson regression
 - probit regression
 - multinomial logit regression

Logistic Regression

- Shape of g⁻¹(Xβ)
- log(p/1-p) = X\beta; Interpreting coefficients
 - □ divide by 4 rule
 - logits (log odds)
 - log odds-ratio (difference in log odds)
- Assessing fit
 - resid plots (binned, not raw!)
 - deviance (chi-squared) tests
 - AIC/BIC (difference of 2 interesting, difference of 3 a big deal)
- Overfitting if fitted prob's close to 0 or 1

10/17/2016

Other GLMs have similar (but different) interpretations...

- E.g. Poisson regression:
 - Shape of $g^{-1}(X\beta)$
 - $\Box \log(\lambda) = X\beta...$
 - Interpreting coefficients
 - Assessing fit
 - resid plots (binned, not raw!)
 - deviance (chi-squared) tests
 - AIC/BIC (diff. of 2 interesting, difference of 3 a big deal)
 - AIC Deviations from the "standard" model
 - Overdispersion
 - Zero inflation, etc.

Causal Inference I

- Fundamental problem of causal inference
- ACE
- Unbiased estimate of β_1 = effect of T:
 - \Box y = β_0 + β_1 T + ϵ : confounders independent of T
 - □ $y = \beta_0 + \beta_1 T + \beta_2 X_2 + ... + \beta_k X_k + \epsilon$: all possible confounders
- Include pre-treatment covariates (why?)
- Exclude post-treatment covariates (why?)
- Interpret obs study by analogy/comparison with randomized trail

10/17/2016

Causal Inference II

- Causal inferences from observational studies:
 - Instrumental variables substitute for the coin flip in randomized trials, to eliminate selection effects
 - <u>Propensity score matching</u> rearrange the data to eliminate selection effects
 - <u>Regression discontinuity designs</u> exploit random errors in selection effects
 - <u>Bounding the influence of confounders</u> sometimes the effect (ACE) of T_i is so big, that we can calculate that no reasonable set of confounders could be responsible for it. (This is basically how the link between smoking and lung cancer was made.)

<u>Require strong assumptions about data generation!</u>

Multi-Level Models (MLMs) Compromise between full pooling and no pooling (partial pooling) replace two linear models "on top of each other" with a single model with two equations shrinkage in mlm estimates fixed effects, random effects, residuals 10/17/2016 **MLMs Hierarchical Model** Level 2: $\alpha_j \sim N(\beta_0, \tau^2)$ Level 1: $y_i \sim N(\alpha_{j[i]}, \sigma^2)$ Multi-Level Model $y_i = \alpha_{j[i]} + \epsilon_i, \ \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ $\alpha_j = \beta_0 + \eta_j, \ \eta_j \stackrel{iid}{\sim} N(0, \tau^2)$ Variance-Components Model $y_i = \beta_0 + \eta_{j[i]} + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ $\eta_i \stackrel{iid}{\sim} N(0,\tau^2)$ Imer() notation $y \sim 1 + (1 | group)$

MLM Residual Analysis

• $Y = X\beta + Z\eta + \varepsilon$ (Laird-Ware Form) Marginal residuals: Should be mean 0, but may show grouping structure $\,\,\,$ May not be homoskedastic! $\,\, Y - X eta \,\,\, (= Z \eta + arepsilon)$ Good for checking fixed effects, just like linear regr. Conditional residuals: $Y - X\beta - Z\eta \ (=\varepsilon)$ Should be mean zero with no grouping structure Should be homoskedastic! • Good for checking normality of ϵ , outliers $Y - X\beta - \varepsilon \quad (= Z\eta)$ • *Random effects:* Should be mean zero, but may show grouping structure May not be be homoskedastic! \square Good for checking normality of ${\mathcal E}$, outliers 10/17/2016

15

All models

- Interpreting R output
- Calculating E[y_i] or a predicted value from a fitted model
- Understanding residual variance, overdispersion
- Understanding variance components, correlation between units in same group/cluster
- Interpreting plots, e.g.
 - residuals and residual plots
 - fitted regression plotted on top of raw data
 - □ histograms, boxplots, qqplots, etc.

Summary

- Closed book, closed notes, closed electronics (otherwise I have to make it harder!)
- Mainly conceptual/theoretical material
 No proofs, but maybe "calculation with greek letters"
- Some computer output to interpret
- Sketch some graphs
- Produce a couple of fitted values, residuals, confidence intervals, variances, by hand
 - Bring a calculator!
 - Don't use calculator on your phone/tablet

10/17/2016