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Preview

= Discussion/example of multilevel glm (generalized mixed-
effects models, Hierarchical gim...)

= We will start moving into Bayesian interpretations of
multilevel models
o The recommended text by Lynch will be useful.
o You can buy it online

o | will make selected chapter available for reading
= Chapters 2 and 3 online now.
0 Review of probability theory and MLE, and intro to Bayes
=  Chapters 4 and 9 a little later on.
0 MCMC and Bayesian multi-level modeling
o Gelman & Hill, Chapter 18, give a more brisk introduction,
oriented toward hierarchical / multilevel modeling
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‘ Discussion/Example of Multilevel
GLMs

= Blackboard (the one in the classroom!)

m Hosp.r / hosp.txt
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Review of Estimation...

m Parameter, Statistic, Point Estimator, Point
Estimate

= How Good is the Estimator?

= Uncertainty & Standard Error

= Methods of Estimation

= Maximum Likelihood Estimators (MLE’s)
m Standard Error for MLE’s
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Parameter, Statistic, Point Estimator,
Point Estimate

= Let X, ..., X, be a sample (usually iid) from f,(x).

m A parameter is a free variable that characterizes f,(x),
e.g:
o The mean p or variance o2 of a Normal r.v.
o The mean X of a Poisson r.v.

o The lower and upper interval endpoints, A and B, of a Unif(A,B)
r.Vv.

m A statistic is any quantity that can be calculated from a
sample, e.g.:
o The sample average X or the sample variance S2
o The minimum or maximum of all the X’s

m Often we devise (and calculate) a statistic to estimate a
parameter.
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m A point estimate for @ is a single number that can be regarded as a
reasonable value for 6

m A point estimator for 0 is a statistic that gives the formula for
computing the point estimate for 6

= Example: Randomly sample 5 people on CMU campus and ask:
married? Let X = # of yes’s. Now do the survey n times and let X;,
..., X, be the number who say they are married, in each sample of 5.

a Xy, .., X, are an iid sample from a Binomial(5,p) distribution
o A parameter of interest is p = P[person on campus is married]
o A reasonable point estimator for p is 5(X1/5 + X2/5 + Xa/5) = § 37, Xi/5

o If we do this survey n=3 times and we get X,=2, x,=4, x;=0, then
the point estimate is

LS9 @/5 = 1(2/5+4/5+0/5) = 0.40
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‘ How Good is the Estimator?

= Let 6 be a parameter of f,(x), and let T be an estimator of
0, from a sample of size n. Some criteria for a “good”
estimator are:

a Consistency: T is consistent for 6 if

18 Dl N~ 1 _— N v 511 -~ N
lluln_>oof“i —(7| ~ CJ — Vv, 10l all € ~ U

o Unbiasedness: T is unbiased for 0 if
E[T] =0
0 Efficiency: We prefer estimators with low variance
o Asymptotic normality: We prefer estimators for which
T — E[T]
Var(T)
= Usually not all criteria can be met at once!

~ N(0,1), asT — o0
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Uncertainty & Standard Error

= Whenever we report a point estimate T for a
parameter 6, we should also report a measure of
uncertainty about our estimate

= Measures of uncertainty:

o Standard error (SE) = SD(T") = /Var(T)

o "Usual” confidence interval:
[T —2-SE(T), T+2-SE(T)]

o Other intervals or sets such as [T{. 025, 10.975]
from a simulation based on the data
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Methods of Estimation — How can we

systematically construct “good” estimators?

= Several methods have proven useful:

o Method of Moments (MoM): The kth moment of X is E[XX]. MoM
estimators combine unbiased estimates of moments of X.

o Least Squares (LS): Obtained by minimizing squared error
 \n /X7 MY -1\ 2

2 i—1 Y — £/ Y5])". Ordinary linear regression!
o Maximum likelihood (ML): The likelihood is the probability of the

data we observed. ML estimators (MLE’s) choose parameter
values that maximize the likelihood.

0 Bayesian Estimation (Bayes): Treat the parameters as random
variables, and use Bayes’ rule to pick the parameter value most
likely, given the data (the reverse of ML!)

m Notation: Usually we write 8 rather than T, for an
estimate/estimator.
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Maximum Likelihood Estimators (MLE’s)

m Let X, ..., X, be aniid sample from f,(x;0), x, ..., x,, are the
observed values

m The likelihood of the sample is the joint density
L) = flz1,....20; 0) = f(21; 0)f(22; 0)- - f(zn; 0)
=[] f(=i; 0)
=1
s The maximum likelihood estimate 0 ;1. maximizes L(6):
LOymre) > L(O) VO

m Strategy: It’s usually (but not always) easier to work with
the log likelihood

LL(#) =log L(0) = Zlog flz 0) .
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‘ Example: MLE of Exponential Distrib.

= Prof Smedley noticed that different students take
different amounts of time to learn to make a
boxplot. He taught boxplots at the beginning of
the semester and then gave a short “boxplot
quiz” each day after that, and noted how many
days it was before each student got 100% on the
daily quiz. For three randomly-chosen students,
the number of days before their first 100% was

X;=3,%,=10,and x; =8
m If the waiting time ‘till 100% is an exponential
r.v., what is the MLE for the success rate \?
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= The pdf of an exponential rvis f (x;A) = A e} ®
= The likelihood for an iid sample of size n is
L0y = [[ e — ane D0
1=1
m The log-likelihood is then
LL(XA) =nlog A — )\in
= to find the MLE, we differentizﬁé and set to zero

set d d = =
0 = S LL(OY) = d}\[nlog/\)\in] = n/A=>
=1

=1

= Solving for A, we get
AMLE = H/Zizlfvi =1/X = Amom
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= In our example, n=3 and x; =3, x, =10, x; = 8, so

LL()\) :nlog)\—)\in =3log A — A(3+ 10+ 8) =3log A — 21\

=1

Exponential log-likelihood, for x1=3,x2=10,x3=8

m Here is the log-likelihood:

m The MLE is

aaaaa

1/X =1/((3+10+8/3) =1/7
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‘ Standard Error for MLE’s

= Let § be the MLE for 6, using an iid sample from
fy(x;0).
m The observed information for estimating 0 is

d2 !/
1(6) = —WLL(H) = —LL"(0)
m If fy(x;0) is @a smooth function of 6, then
LQA ~ N(0,1)
Var(0)

where Var(0) ~ 1/1(6), so SE(0) ~ /(1/1(6)
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‘ Exponential Example, Continued...
m For the exponential distribution we saw

LL(A) = nlogA—A) X,
1=1

A= 1/X

m The information function is

I(\) = —LL"(\) = —% /A — Y] = n/\2

m and so the standard error is

SE\) =\/1/I(\) = \/X2/n=\vn

10/25/2016 15

In our example...

m The MLE and SE are:
A 1/7
I(\) 3/\2
SEW®) = MV3=(1/7)/V3
= and so a rough 95% confidence interval for A
would be

[1/7 = 2(1/7)/sart(3), 1/7 + 2(1/7)/sart(3)],
or [-0.022, 0.308]
(notice that the left endpoint is not great here!)
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‘Summary

m Discussion/example of multilevel gim

= Review of Estimation
o Parameter, Statistic, Point Estimator, Point Estimate
o How Good is the Estimator?
o Uncertainty & Standard Error
o Methods of Estimation
o Maximum Likelihood Estimators (MLE’s)
o Standard Error for MLLE’s
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