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‘ Ohio, 2016 Pre-Election Poll

= Donald Trump (R) running for election to the presidency
against Hillary Clinton (D)

= In a Suffolk University Poll (Sept 12-14, 2016):
o 401 of 500 voters expressed a preference for Trump or Clinton.
o Of those 401: 208 prefer Donald Trump.

= In most polling, weights are attached to each response,
to adjust the “representativeness” of the response for
things like
o whois likely to be home when survey worker calls
o who refuses to answer
o etc

= We will ignore weights etc and treat the 401 as a simple
random sample.
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‘ Possible models for the data

= 401 individual Bernoulli coin flips, x, = 1 for

Trump, x,= 0 for Clinton
401

1=1
= 401 trials, 208 “successes” (Trump voters)

401
Liin() = (g0 )P0~ 9™

= What matters for MLE and SE is shape, not size!
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Binomial and Bernoulli Likelihoods
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Proportionality and log-proportionality...

m f(0) oc g(0) [“f(0) is proportional to g(0)”] if
f(6) = cg(0) 01
m Clearly L,,,(p) o< L.,(p), with c = (208)

= For log-likelihoods we also write “o<”:

LLbin(p) X LLber(p) PPN

because LL,,(p) = LL,.(p) + |08(208
(weird, huh?)
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‘ Finding the MLE...

= |f we use the Bernoulli likelihood,

LLber(p) — log Lber (p)
= 1ogpk(1 —p)”_k = klogp+ (n—k)log(l—p)
m If we use the Binomial likelihood
LLyin(p) = logLiin(p)
— tog ()1 p"* x Klogp + (0 k) log(1 -

= Either way we want to maximize
klogp + (n — k) log(1 — p)
with k =208, n=401
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MLE: Point Estimate

m Differentiating and setting to zero...

d
0 = LL'(p) = d—p[klogp+(n—k)10g(1—p)]
k- n—k  k—pn

p 1l—-p  p(l-p)

m so, clearly,

~ k208 __
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‘ MLE: Standard Error & Cl

= First we calculate the expected Information

I(p) = E[—j—;LL(p)} = E[—%LU(M]
= 2l (G-15)) = Bl
_ np n(l-p) n
- p2 (1-p?  p(1—p)

= and then
SE(p) = 1/VI(p) = V(1 —p)/n
= 1/0.52(1 —0.52)/401 = 0.025
m A Clfor pisthen(0.47,0.57), uncertain who wins!
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‘ Bayes’ Rule (a.k.a. Bayes’ Theorem)

m Avery simple idea with very powerful
consequences
m We often start with information like P[A|B] and

what we really want is P[B|A]. Bayes’ Theorem
lets us “turn the conditioning around”:

P[A&B] B P[A|B|P[B]
P[A]  P[A]

m See http://yudkowsky.net/rational/bayes for a
ton of examples and geeky proselytizing.

P[B|A] =
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‘ Finding Terrorists

m According to

http://wiki.answers.com/Q/How many people fly in a year, US

airlines carry 561.2 milliocn passengers per year
m According to http://www.rand.org/pubs/occasional papers/2010/

RAND OP292.pdf, 42 people were indicted in the US for jihadists
activities in 2009. About 2000 people are under surveillance in the UK
(http://www.videojug.com/interview/the-structure-of-al-qaeda) so

let’s generously assume that about 10,000 are under surveillance in

the US.

m Let’s assume (again generously) that all 10,000 will try to fly once in
the US in a year, carrying a detectable weapon.

= Now suppose TSA methods are 99.99% accurate:

o P[red light | terrorist] = 0.9999 = P[green light | not terrorist]
m  What is P[terrorist | red light]? P[not terrorist | green]?
=  How many travellers will be red-lighted?
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‘ Terrorists and Bayes

m B =terrorist;

B¢ = not terrorist
o P(B)=10,000/(561.9%106)

e
= A=redlight; A= green light

o P[A|B]=0.9999
o P[A|B] = 0.9999
= P[A] = P[A&B] + P[A&B¢]
= P[A|B]P[B] + P[A|B]P[B¢]
= (0.9999)(1.78*10°%5)
+(1-0.9999)(1-1.78*1015)
= 0.00012

= P[BJA] = P[A|B]P[B]/P[A]
=(0.9999)(1.78*10°%5) /

0.00012 =1.5*10*
’/

m P[BS|A] =
P[A°|B]P[B]/P[A]
= (0.9999)(1-1.78*1015)) /
(1-0.00012) ~ 1

s E[#A] = P[A] * (561*106)
= (0.00012) (561*106) =
66,188

m There better be other ways!
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Conditional probability & conditional

density
= P[A & B] =P[B|A]P[A] = f(x,y) = fly|x) f(x)
= P[B] = P[B|AIP[A] + 1) = [ fus @
P[B|A‘]P[A]]
= P[A|B] = P[A&B]/P[B] = f(x]y) = f(x,y)/f(y)
= Bayes’ Theorem: m Bayes’ Theorem:
_ fly) o fEly)fy)
I [ 1)
B P[A|B]|P|B] _ f(zly)f(y)
~  P[A[B|P[B] + P[A|B|P[B] J f(@ly*) fy*)dy*
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‘ Bayes’ Theorem for Data

= Bayes’ Theorem

_ Sy fzly)f(y)
W= T =
f(zly) [ (y)
J f(ly*) f(y*)dy*
m Let x = data, y = 6 (parameter!); then
_ [(data,0) _ f(datalf)f(6)
f(f]data) - = f(data) ~ f(data)
f(data|0)f(0)
[ f(data|6*) f(6)d6"
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‘ Bayes’ Theorem for Data

= We call
o (@) the prior distribution
o f(data|8) = L(0) the likelihood
o f(0|data) the posterior distribution

= So Bayes’ Theorem says

 (datal6) £(6)
f(data)

m Slogan: (posterior) o (likelihood) x (prior)

f(0|data)

oc f(data|d) f(0)
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‘ Back to 2016 Ohio pre-election poll

m The likelihood is the same as before:

L(p) o< p* (1-p)™
= We need a prior distribution. One good choice is
a beta distribution, with

o Density f(pla, 5) = %pa—l(l —p)p-!

o Mean Elp| = %=

o Variance Var(p) = (a+5)206§+5+1)

= Some graphs of beta densities appear on the next
slide
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‘ Choosing prior parameters...

m The likelihood is the same as before:
L(p) o< p* (1-p)™* = p?%(1-p)**
m The prior distribution is a beta distribution

f(ple, B) = protdgspe =t (1 —p)P~!

o a=1, =1 gives a uniform distribution — no
preference for one p over another!

0 Suppose that in a previous poll, 942 prefer Trump and
1008 prefer Clinton. Could set «=942, $3=1008
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‘ If =1 and 3=1...
m (posterior) o< (likelihood) x (prior):

f(pldata) o L(p) x1 = p*®(1 —p)??

= Since f(p|data)=L(p),
posterior mode = MLE
m Since f(p|data) is a beta

with a=209, 3=194
E[p|data] =(209/403
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| If =942, 3=1008...

posterior between

= (posterior) o (likelihood) x (prior): prior & likelihood
f(p!data) X L(p) % p941(1 _p)1oo7
— pll49(1 — p)t20

= Since f(p|data) =
beta(p,1150,1202),
E[p|data] = 1150/2352

=(0.489)vs MLE @

10/27/2016
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 Standard Errors (a=942, 3=1008)

= Since af
(1150)(1202) »
(2352)2(2353) 00 x 10

then SE(p) = v/1.06 x 10~4 = 0.0103
(compare to SE=0.018 from MLE...)

= Approx 95% interval from p = 25 EF:
(0.47, 0.51) ... still can’t decide...
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‘ Alternative interval for p...

= Since we know the posterior distribution of p, we
can calculate the 2.5%-ile and 97.5%-ile and get

another 95% interval:

> nsim <= 10000

> p <- rbeta(nsim,1150,1202)

> quantile(p,c(0.025,.5,.975))
2.5% 50% 97.5%

0.4688515 0.4889114 0.5086120

m Gives almost the same 95% interval:
(0.47, 0.51) ... still can’t decide...
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‘Summary

m For MLE

o Need a function proportional to L(6)

o Calculate MLE by setting 0 = LL'(6)

a Calculate SE = 1/4/1(0) where I(0) = E[-LL”(6)]
= For Bayes

o Need a function proportional to L(6)

0 Need a prior distribution

o Calculate (posterior) o (likelihood) x (prior)

o Calculate posterior mean, SE
m Use formula if you have one
m Use simulation if you don’t!
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| What we did...

m 2016 Pre-election poll in Ohio
m Binomial and Bernoulli MLLE

= Bayes’ Rule

= Bayes for densities

m Bayesian inference

2016 Pre-election poll in Ohio
= Summary!
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