36-463/663: Multilevel & Hierarchical Models

From Maximum Likelihood to Bayes Brian Junker 132E Baker Hall brian@stat.cmu.edu

10/27/2016

Outline

- 2016 Pre-election poll in Ohio
- Binomial and Bernoulli MLE
- Bayes' Rule
- Bayes for densities
- Bayesian inference
- 2016 Pre-election poll in Ohio

Ohio, 2016 Pre-Election Poll

- Donald Trump (R) running for election to the presidency against Hillary Clinton (D)
- In a Suffolk University Poll (Sept 12-14, 2016):
 - □ 401 of 500 voters expressed a preference for Trump or Clinton.
 - Of those 401: 208 prefer Donald Trump.
- In most polling, weights are attached to each response, to adjust the "representativeness" of the response for things like
 - who is likely to be home when survey worker calls
 - who refuses to answer
 - 🛛 etc
- We will ignore weights etc and treat the 401 as a simple random sample.

10/27/2016

Possible models for the data

 401 individual Bernoulli coin flips, x_i = 1 for Trump, x_i = 0 for Clinton

$$L_{ber}(p) = \prod_{i=1}^{401} p^{x_i} (1-p)^{1-x_i} = p^{208} (1-p)^{193}$$

401 trials, 208 "successes" (Trump voters)

$$L_{bin}(p) = \binom{401}{208} p^{208} (1-p)^{193}$$

What matters for MLE and SE is <u>shape</u>, not <u>size</u>!

Binomial and Bernoulli Likelihoods

- Proportionality and log-proportionality...
 - $f(\theta) \propto g(\theta)$ [" $f(\theta)$ is proportional to $g(\theta)$ "] if $f(\theta) = cg(\theta)$ (401)
 - Clearly L_{bin}(p) \propto L_{ber}(p), with c = $\binom{401}{208}$
 - For log-likelihoods we also write " \propto ":

 $\label{eq:LL_bin} \begin{array}{l} \mathsf{LL}_{bin}(\mathsf{p}) \propto \mathsf{LL}_{ber}(\mathsf{p}) \\ \text{because } \mathsf{LL}_{bin}(\mathsf{p}) = \mathsf{LL}_{ber}(\mathsf{p}) + \mathsf{log}\binom{401}{208} \\ (weird, \, huh?) \end{array}$

10/27/2016

Finding the MLE...

• If we use the Bernoulli likelihood, $LL_{ber}(p) = \log L_{ber}(p)$ $= \log p^{k}(1-p)^{n-k} = k \log p + (n-k) \log(1-p)$ • If we use the Binomial likelihood $LL_{bin}(p) = \log L_{bin}(p)$ $= \log {n \choose k} p^{k}(1-p)^{n-k} \propto k \log p + (n-k) \log(1-p)$ • Either way we want to maximize $k \log p + (n-k) \log(1-p)$ with k = 208, n=401

10/27/2016

MLE: Point Estimate

Differentiating and setting to zero...

$$0 = LL'(p) = \frac{d}{dp} \left[k \log p + (n-k) \log(1-p) \right]$$
$$= \frac{k}{p} - \frac{n-k}{1-p} = \frac{k-pn}{p(1-p)}$$

so, clearly,

$$\hat{p} = \frac{k}{n} = \frac{208}{401} = 0.52$$

MLE: Standard Error & CI

First we calculate the expected Information

$$I(p) = E\left[-\frac{d^2}{dp^2}LL(p)\right] = E\left[-\frac{d}{dp}LL'(p)\right]$$

= $E\left[-\frac{d}{dp}\left(\frac{k}{p} - \frac{n-k}{1-p}\right)\right] = E\left[\frac{k}{p^2} + \frac{n-k}{(1-p)^2}\right]$
= $\frac{np}{p^2} + \frac{n(1-p)}{(1-p)^2} = \frac{n}{p(1-p)}$

and then

$$SE(p) = \frac{1}{\sqrt{I(\hat{p})}} = \frac{\sqrt{\hat{p}(1-\hat{p})/n}}{\sqrt{0.52(1-0.52)/401}} = 0.025$$

• A CI for p is then (0.47,0.57), uncertain who wins!

10/27/2016

Bayes' Rule (a.k.a. Bayes' Theorem)

- A very simple idea with very powerful consequences
- We often start with information like P[A|B] and what we really want is P[B|A]. Bayes' Theorem lets us "turn the conditioning around":

$$P[B|A] = \frac{P[A\&B]}{P[A]} = \frac{P[A|B]P[B]}{P[A]}$$

 See <u>http://yudkowsky.net/rational/bayes</u> for a ton of examples and geeky proselytizing.

Finding Terrorists

- According to <u>http://wiki.answers.com/Q/How many people fly in a year</u>, US airlines carry 561.9 million passengers per year
- According to http://www.rand.org/pubs/occasional_papers/2010/RAND_OP292.pdf, 42 people were indicted in the US for jihadists activities in 2009. About 2000 people are under surveillance in the UK (http://www.videojug.com/interview/the-structure-of-al-qaeda) so let's generously assume that about 10,000 are under surveillance in the US.
- Let's assume (again generously) that all 10,000 will try to fly once in the US in a year, carrying a detectable weapon.
- Now suppose TSA methods are <u>99.99%</u> accurate:
 - P[red light | terrorist] = 0.9999 = P[green light | not terrorist]
- What is P[terrorist | red light]? P[not terrorist | green]?
- How many travellers will be red-lighted?

10/27/2016

11

Terrorists and Bayes

-	B = terrorist; B ^c = not terrorist P(B) = 10,000/(561.9*10 ⁶)	•	$\frac{P[B A]}{=} P[A B]P[B]/P[A]$ = (0.9999)(1.78*10 ⁻¹⁵) / 0.00012 = $1.5*10^{-11}$
•	 = 1.78*10⁻¹⁵ A = red light; A^c = green light P[A B]=0.9999 P[A^c B^c] = 0.9999 		$\frac{P[B^{c} A^{c}]}{P[A^{c} B^{c}]P[B^{c}]/P[A^{c}]} = (0.9999)(1-1.78*10^{-15}) / (1-0.00012) \approx 1$
	$P[A] = P[A\&B] + P[A\&B^{c}]$ = P[A B]P[B] + P[A B^{c}]P[B^{c}] = (0.9999)(1.78*10^{-15}) + (1-0.9999)(1-1.78*10^{-15})	•	E[#A] = P[A] * (561*10 ⁶) = (0.00012) (561*10 ⁶) = 66,188
	= 0.00012		There better be other ways!

Conditional probability & conditional density

- $\blacksquare P[A \& B] = P[B|A]P[A]$
- P[B] = P[B|A]P[A] + P[B|A^c]P[A^c]
- P[A|B] = P[A&B]/P[B] f(x|y) = f(x,y)/f(y)

$$\begin{split} P[B|A] &= \frac{P[A\&B]}{P[A]} = \frac{P[A|B]P[B]}{P[A]} \\ &= \frac{P[A|B]P[B]}{P[A|B]P[B] + P[A|B^c]P[B^c]} \end{split}$$

Bayes' Theorem:

•
$$f(x,y) = f(y | x) f(x)$$

•
$$f(y) = \int f(y|x)f(x)dx$$

Bayes' Theorem:

$$f(y|x) = \frac{f(x,y)}{f(x)} = \frac{f(x|y)f(y)}{f(x)}$$

$$= \frac{f(x|y)f(y)}{\int f(x|y^*)f(y^*)dy^*}$$

10/27/2016

13

Bayes' Theorem for Data

Bayes' Theorem $f(y|x) = \frac{f(x,y)}{f(x)} = \frac{f(x|y)f(y)}{f(x)}$ $= \frac{f(x|y)f(y)}{\int f(x|y^*)f(y^*)dy^*}$ • Let x = data, $y = \theta$ (parameter!); then $f(\theta | \mathsf{data}) \ = \ \frac{f(\mathsf{data}, \theta)}{f(\mathsf{data})} \ = \ \frac{f(\mathsf{data} | \theta) f(\theta)}{f(\mathsf{data})}$ $= \frac{f(\mathsf{data}|\theta)f(\theta)}{\int f(\mathsf{data}|\theta^*)f(\theta^*)d\theta^*}$

Bayes' Theorem for Data

Slogan: (posterior) \propto (likelihood) \times (prior)

10/27/2016

Back to 2016 Ohio pre-election poll

- The <u>likelihood</u> is the same as before: $L(p) \propto p^k (1-p)^{n-k}$
- We need a <u>prior distribution</u>. One good choice is a beta distribution, with

• Density
$$f(p|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}p^{\alpha-1}(1-p)^{\beta-1}$$

• Mean $E[p] = \frac{\alpha}{\alpha + \beta}$

• Variance $Var(p) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Some graphs of beta densities appear on the next slide

10/27/2016

Choosing prior parameters...

The <u>likelihood</u> is the same as before:

$$L(p) \propto p^k (1-p)^{n-k} = p^{208} (1-p)^{193}$$

The <u>prior distribution</u> is a beta distribution

$$f(p|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

- □ α = 1, β = 1 gives a uniform distribution no preference for one p over another!
- □ Suppose that in a previous poll, 942 prefer Trump and 1008 prefer Clinton. Could set α =942, β =1008

10/27/2016

If α =1 and β =1...

• (posterior) \propto (likelihood) \times (prior):

 $f(p|\text{data}) \quad \propto \quad L(p) \times 1 \; = \; p^{208}(1-p)^{193}$

- Since f(p|data)=L(p),
 posterior mode = MLE
 = 208/401 = 0.52
- Since f(p|data) is a beta with α=209, β=194,
 E[p|data] = 209/403

21

Standard Errors (α =942, β =1008)

- Since $\mathbf{\hat{V}}ar(p) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ $= \frac{(1150)(1202)}{(2352)^2(2353)} = 1.06 \times 10^{-4}$ then $SE(\hat{p}) = \sqrt{1.06 \times 10^{-4}} = 0.0103$ (compare to SE=0.018 from MLE...)
- Approx 95% interval from $\,\hat{p}\pm 2SE$: (0.47, 0.51) ... still can't decide...

10/27/2016

Alternative interval for p...

 Since we know the posterior distribution of p, we can calculate the 2.5%-ile and 97.5%-ile and get another 95% interval:

• Gives almost the same 95% interval:

(0.47, 0.51) ... <u>still</u> can't decide...

10/27/2016

Summary

- For MLE
 - □ Need a function proportional to $L(\theta)$
 - Calculate MLE by setting $0 = LL'(\theta)$
 - Calculate $SE = 1/\sqrt{I(\theta)}$ where $I(\theta) = E[-LL''(\theta)]$
- For Bayes
 - Need a function proportional to $L(\theta)$
 - □ Need a prior distribution
 - \square Calculate (posterior) \propto (likelihood)imes(prior)
 - Calculate posterior mean, SE
 - Use formula if you have one
 - Use simulation if you don't!

What we did...

- 2016 Pre-election poll in Ohio
- Binomial and Bernoulli MLE
- Bayes' Rule
- Bayes for densities
- Bayesian inference
- 2016 Pre-election poll in Ohio
- Summary!

10/27/2016