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Probability Theory and Classical Statistics

Statistical inference rests on probability theory, and so an in-depth under-
standing of the basics of probability theory is necessary for acquiring a con-
ceptual foundation for mathematical statistics. First courses in statistics for
social scientists, however, often divorce statistics and probability early with
the emphasis placed on basic statistical modeling (e.g., linear regression) in
the absence of a grounding of these models in probability theory and prob-
ability distributions. Thus, in the first part of this chapter, I review some
basic concepts and build statistical modeling from probability theory. In the
second part of the chapter, I review the classical approach to statistics as it
is commonly applied in social science research.

2.1 Rules of probability

Defining “probability” is a difficult challenge, and there are several approaches
for doing so. One approach to defining probability concerns itself with the
frequency of events in a long, perhaps infinite, series of trials. From that per-
spective, the reason that the probability of achieving a heads on a coin flip is
1/2 is that, in an infinite series of trials, we would see heads 50% of the time.
This perspective grounds the classical approach to statistical theory and mod-
eling. Another perspective on probability defines probability as a subjective
representation of uncertainty about events. When we say that the probability
of observing heads on a single coin flip is 1/2, we are really making a series
of assumptions, including that the coin is fair (i.e., heads and tails are in
fact equally likely), and that in prior experience or learning we recognize that
heads occurs 50% of the time. This latter understanding of probability grounds
Bayesian statistical thinking. From that view, the language and mathematics
of probability is the natural language for representing uncertainty, and there
are subjective elements that play a role in shaping probabilistic statements.

Although these two approaches to understanding probability lead to dif-
ferent approaches to statistics, some fundamental axioms of probability are
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important and agreed upon. We represent the probability that a particular
event, E, will occur as p(E). All possible events that can occur in a single trial
or experiment constitute a sample space (S), and the sum of the probabilities
of all possible events in the sample space is 11:

∑

∀E∈S

p(E) = 1. (2.1)

As an example that highlights this terminology, a single coin flip is a
trial/experiment with possible events “Heads” and “Tails,” and therefore has
a sample space of S = {Heads, Tails}. Assuming the coin is fair, the probabil-
ities of each event are 1/2, and—as used in social science—the record of the
outcome of the coin-flipping process can be considered a “random variable.”

We can extend the idea of the probability of observing one event in one trial
(e.g., one head in one coin toss) to multiple trials and events (e.g., two heads
in two coin tosses). The probability assigned to multiple events, say A and
B, is called a “joint” probability, and we denote joint probabilities using the
disjunction symbol from set notation (∩) or commas, so that the probability
of observing events A and B is simply p(A,B). When we are interested in the
occurrence of event A or event B, we use the union symbol (∪), or simply the
word “or”: p(A ∪B) ≡ p(A or B).

The “or” in probability is somewhat different than the “or” in common
usage. Typically, in English, when we use the word “or,” we are referring
to the occurrence of one or another event, but not both. In the language of
logic and probability, when we say “or” we are referring to the occurrence of
either event or both events. Using a Venn diagram clarifies this concept (see
Figure 2.1).

In the diagram, the large rectangle denotes the sample space. Circles A
and B denote events A and B, respectively. The overlap region denotes the
joint probability p(A,B). p(Aor B) is the region that is A only, B only, and
the disjunction region. A simple rule follows:

p(A or B) = p(A) + p(B)− p(A,B). (2.2)

p(A,B) is subtracted, because it is added twice when summing p(A) and p(B).
There are two important rules for joint probabilities. First:

p(A,B) = p(A)p(B) (2.3)

iff (if and only if) A and B are independent events. In probability theory,
independence means that event A has no bearing on the occurrence of event
B. For example, two coin flips are independent events, because the outcome
of the first flip has no bearing on the outcome of the second flip. Second, if A
and B are not independent, then:

1 If the sample space is continuous, then integration, rather than summation, is
used. We will discuss this issue in greater depth shortly.
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Fig. 2.1. Sample Venn diagram: Outer box is sample space; and circles are events
A and B.

p(A,B) = p(A|B)p(B). (2.4)

Expressed another way:

p(A|B) =
p(A,B)

p(B)
. (2.5)

Here, the “|” represents a conditional and is read as “given.” This last rule can
be seen via Figure 2.1. p(A|B) refers to the region that contains A, given that
we know B is already true. Knowing that B is true implies a reduction in the
total sample space from the entire rectangle to the circle B only. Thus, p(A)
is reduced to the (A,B) region, given the reduced space B, and p(A|B) is the
proportion of the new sample space, B, which includes A. Returning to the
rule above, which states p(A,B) = p(A)p(B) iff A and B are independent,
if A and B are independent, then knowing B is true in that case does not
reduce the sample space. In that case, then p(A|B) = p(A), which leaves us
with the first rule.
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Although we have limited our discussion to two events, these rules gener-
alize to more than two events. For example, the probability of observing three
independent events A, B, and C, is p(A,B,C) = p(A)p(B)p(C). More gener-
ally, the joint probability of n independent events, E1, E2 . . . En, is

∏n
i=1 p(Ei),

where the
∏

symbol represents repeated multiplication. This result is very
useful in statistics in constructing likelihood functions. See DeGroot (1986)
for additional generalizations. Surprisingly, with basic generalizations, these
basic probability rules are all that are needed to develop the most common
probability models that are used in social science statistics.

2.2 Probability distributions in general

The sample space for a single coin flip is easy to represent using set notation
as we did above, because the space consists of only two possible events (heads
or tails). Larger sample spaces, like the sample space for 100 coin flips, or
the sample space for drawing a random integer between 1 and 1,000,000,
however, are more cumbersome to represent using set notation. Consequently,
we often use functions to assign probabilities or relative frequencies to all
events in a sample space, where these functions contain “parameters” that
govern the shape and scale of the curve defined by the function, as well as
expressions containing the random variable to which the function applies.
These functions are called “probability density functions,” if the events are
continuously distributed, or “probability mass functions,” if the events are
discretely distributed. By continuous, I mean that all values of a random
variable x are possible in some region (like x = 1.2345); by discrete, I mean
that only some values of x are possible (like all integers between 1 and 10).
These functions are called “density” and “mass” functions because they tell us
where the most (and least) likely events are concentrated in a sample space.
We often abbreviate both types of functions using “pdf,” and we denote a
random variable x that has a particular distribution g(.) using the generic
notation: x ∼ g(.), where the “∼” is read “is distributed as,” the g denotes a
particular distribution, and the “.” contains the parameters of the distribution
g.

If x ∼ g(.), then the pdf itself is expressed as f(x) = . . . , where
the “. . .” is the particular algebraic function that returns the relative fre-
quency/probability associated with each value of x. For example, one of the
most common continuous pdfs in statistics is the normal distribution, which
has two parameters—a mean (µ) and variance (σ2). If a variable x has prob-
abilities/relative frequencies that follow a normal distribution, then we say
x ∼ N(µ, σ2), and the pdf is:

f(x) =
1√

2πσ2
exp

{

− (x− µ)2

2σ2

}

.
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We will discuss this particular distribution in considerable detail through-
out the book; the point is that the pdf is simply an algebraic function that,
given particular values for the parameters µ and σ2, assigns relative frequen-
cies for all events x in the sample space.

I use the term “relative frequencies” rather than “probabilities” in dis-
cussing continuous distributions, because in continuous distributions, techni-
cally, 0 probability is associated with any particular value of x. An infinite
number of real numbers exist between any two numbers. Given that we com-
monly express the probability for an event E as the number of ways E can
be realized divided by the number of possible equally likely events that can
occur, when the sample space is continuous, the denominator is infinite. The
result is that the probability for any particular event is 0. Therefore, instead
of discussing the probability of a particular event, we may discuss the proba-
bility of observing an event within a specified range. For this reason, we need
to define the cumulative distribution function.

Formally, we define a “distribution function” or “cumulative distribution
function,” often denoted “cdf,” as the sum or integral of a mass or density
function from the smallest possible value for x in the sample space to some
value X, and we represent the cdf using the uppercase letter or symbol that
we used to represent the corresponding pdf. For example, for a continuous pdf
f(x), in which x can take all real values (x ∈ R),

p(x < X) = F (x < X) =

∫ X

−∞

f(x) dx. (2.6)

For a discrete distribution, integration is replaced with summation and
the “<” symbol is replaced with “≤,” because some probability is associated
with every discrete value of x in the sample space.

Virtually any function can be considered a probability density function,
so long as the function is real-valued and it integrates (or sums) to 1 over
the sample space (the region of allowable values). The latter requirement is
necessary in order to keep consistent with the rule stated in the previous
section that the sum of all possible events in a sample space equals 1. It is
often the case, however, that a given function will not integrate to 1, hence
requiring the inclusion of a “normalizing constant” to bring the integral to
1. For example, the leading term outside the exponential expression in the
normal density function (1/

√
2πσ2) is a normalizing constant. A normalized

density—one that integrates to 1—or a density that can integrate to 1 with
an appropriate normalizing constant is called a “proper” density function. In
contrast, a density that cannot integrate to 1 (or a finite value), is called “im-
proper.” In Bayesian statistics, the propriety of density functions is important,
as we will discuss throughout the remainder of the book.

Many of the most useful pdfs in social science statistics appear compli-
cated, but as a simple first example, suppose we have some random variable
x that can take any value in the interval (a, b) with equal probability. This
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is called a uniform distribution and is commonly denoted as U(a, b), where a
and b are the lower and upper bounds of the interval in which x can fall. If
x ∼ U(a, b), then

f(x) =

{

c if a < x < b
0 otherwise.

(2.7)

What is c? c is a constant, which shows that any value in the interval (a, b)
is equally likely to occur. In other words, regardless of which value of x one
chooses, the height of the curve is the same. The constant must be determined
so that the area under the curve/line is 1. A little calculus shows that this
constant must be 1/(b− a). That is, if:

∫ b

a

c dx = 1,

then
c x|ba = 1,

and so

c =
1

(b− a)
.

Because the uniform density function does not depend on x, it is a rectangle.
Figure 2.2 shows two uniform densities: the U(−1.5, .5) and the U(0, 1) den-
sities. Notice that the heights of the two densities differ; they differ because
their widths vary, and the total area under the curve must be 1.

The uniform distribution is not explicitly used very often in social science
research, largely because very few phenomena in the social sciences follow
such a distribution. In order for something to follow this distribution, values
at the extreme ends of the distribution must occur as often as values in the
center, and such simply is not the case with most social science variables.
However, the distribution is important in mathematical statistics generally,
and Bayesian statistics more specifically, for a couple of reasons. First, random
samples from other distributions are generally simulated from draws from uni-
form distributions—especially the standard uniform density [U(0, 1)]. Second,
uniform distributions are commonly used in Bayesian statistics as priors on
parameters when little or no information exists to construct a more informa-
tive prior (see subsequent chapters).

More often than not, variables of interest in the social sciences follow
distributions that are either peaked in the center and taper at the extremes,
or they are peaked at one end of the distribution and taper away from that end
(i.e., they are skewed). As an example of a simple distribution that exhibits
the latter pattern, consider a density in which larger values are linearly more
(or less) likely than smaller ones on the interval (r, s):

f(x) =

{

c(mx+ b) if r < x < s
0 otherwise.

(2.8)
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Fig. 2.2. Two uniform distributions.

This density function is a line, with r and s as the left and right bound-
aries, respectively. As with the uniform density, c is a constant—a normalizing
constant—that must be determined in order for the density to integrate to 1.
For this generic linear density, the normalizing constant is (see Exercises):

c =
2

(s− r)[m(s+ r) + 2b]
.

In this density, the relative frequency of any particular value of x depends on
x, as well as on the parameters m and b. If m is positive, then larger values
of x occur more frequently than smaller values. If m is negative, then smaller
values of x occur more frequently than larger values.

What type of variable might follow a distribution like this in social sci-
ence research? I would argue that many attitudinal items follow this sort of
distribution, especially those with ceiling or floor effects. For example, in the
2000 General Social Survey (GSS) special topic module on freedom, a ques-
tion was asked regarding the belief in the importance of being able to express
unpopular views in a democracy. Figure 2.3 shows the histogram of responses
for this item with a linear density superimposed. A linear density appears to
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fit fairly well (of course, the data are discrete, whereas the density function is
continuous).
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Fig. 2.3. Histogram of the importance of being able to express unpopular views in
a free society (1 = Not very important...6 = One of the most important things).

To be sure, we commonly treat such attitudinal items as being normally
distributed and model them accordingly, but they may follow a linear distri-
bution as well as, or better than, a normal distribution. Ultimately, this is a
question we will address later in the book under model evaluation.

Figure 2.4 shows a particular, arbitrary case of the linear density in which
m = 2, b = 3; the density is bounded on the interval (0, 5); and thus c = 1/40.
So:

f(x) =

{

(1/40)(2x+ 3) 0 < x < 5
0 otherwise.

(2.9)

Notice that the inclusion of the normalizing constant ultimately alters the
slope and intercept if it is distributed through: The slope becomes 1/20 and
the intercept becomes 3/40. This change is not a problem, and it highlights
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the notion of “relative frequency”: The relative frequency of values of x are
unaffected. For example, the ratio of the height of the original function at
x = 5 and x = 0 is 13/3, whereas the ratio of the new function at the same

values is 13/40
3/40 = 13/3.
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Fig. 2.4. Sample probability density function: A linear density.

2.2.1 Important quantities in distributions

We generally want to summarize information concerning a probability dis-
tribution using summary statistics like the mean and variance, and these
quantities can be computed from pdfs using integral calculus for continuous
distributions and summation for discrete distributions. The mean is defined
as:

µx =

∫

x∈S

x× f(x)dx, (2.10)

if the distribution is continuous, and:
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µx =
∑

x∈S

x× p(x), (2.11)

if the distribution is discrete. The mean is often called the “expectation” or
expected value of x and is denoted as E(x). The variance is defined as:

σ2
x =

∫

x∈S

(x− µx)2 × f(x)dx, (2.12)

if the distribution is continuous, and:

σ2
x =

1

n

∑

x∈S

(x− µx)2, (2.13)

if the distribution is discrete. Using the expectation notation introduced for
the mean, the variance is sometimes referred to as E((x − µx)2); in other
words, the variance is the expected value of the squared deviation from the
mean.2

Quantiles, including the median, can also be computed using integral cal-
culus. The median of a continuous distribution, for example, is obtained by
finding Q that satisfies:

.5 =

∫ Q

−∞

f(x)dx. (2.14)

Returning to the examples in the previous section, the mean of the U(a, b)
distribution is:

E(x) = µx =

∫ b

a

x×
(

1

b− a

)

dx =
b+ a

2
,

and the variance is:

E((x− µx)2) =

∫ b

a

1

b− a
(x− µx)2 dx =

(b− a)2

12
.

For the linear density with the arbitrary parameter values introduced in
Equation 2.9 (f(x) = (1/40)(2x+ 3)), the mean is:

µx =

∫ 5

0

x× (1/40)(2x+ 3)dx = (1/240)(4x3 + 9x2)dx

∣

∣

∣

∣

5

0

= 3.02.

The variance is:

2 The sample mean, unlike the population distribution mean shown here, is esti-
mated with (n − 1) in the denominator rather than with n. This is a correction
factor for the known bias in estimating the population variance from sample data.
It becomes less important asymptotically (as n →∞.)
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Var(x) =

∫ 5

0

(x− 3.02)2 × (1/40)(2x+ 3)dx = 1.81.

Finally, the median can be found by solving for Q in:

.5 =

∫ Q

0

(1/40)(2x+ 3)dx.

This yields:
20 = Q2 + 3Q,

which can be solved using the quadratic formula from algebra. The quadratic
formula yields two real roots—3.22 and −6.22—only one of which is within
the “support” of the distribution (3.22); that is, only one has a value that
falls in the domain of the distribution.

In addition to finding particular quantiles of the distribution (like quartile
cutpoints, deciles, etc.), we may also like to determine the probability associ-
ated with a given range of the variable. For example, in the U(0,1) distribution,
what is the probability that a random value drawn from this distribution will
fall between .2 and .6? Determining this probability also involves calculus3:

p(.2 < x < .6) =

∫ .6

.2

1

1− 0
dx = x

∣

∣

∣

∣

.6

.2

= .4.

An alternative, but equivalent, way of conceptualizing probabilities for regions
of a density is in terms of the cdf. That is, p(.2 < x < .6) = F (x = .6)−F (x =

.2), where F is
∫X

0
f(x)dx [the cumulative distribution function of f(x)].

2.2.2 Multivariate distributions

In social science research, we routinely need distributions that represent more
than one variable simultaneously. For example, factor analysis, structural
equation modeling with latent variables, simultaneous equation modeling, as
well as other methods require the simultaneous analysis of variables that are
thought to be related to one another. Densities that involve more than one
random variable are called joint densities, or more commonly, multivariate
distributions. For the sake of concreteness, a simple, arbitrary example of
such a distribution might be:

f(x, y) =

{

c(2x+ 3y + 2) if 0 < x < 2 , 0 < y < 2
0 otherwise.

(2.15)

Here, the x and y are the two dimensions of the random variable, and f(x, y)
is the height of the density, given specific values for the two variables. Thus,

3 With discrete distributions, calculus is not required, only summation of the rele-
vant discrete probabilities.
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f(x, y) gives us the relative frequency/probability of particular values of x
and y. Once again, c is the normalizing constant that ensures the function of
x and y is a proper density function (that it integrates to 1). In this example,
determining c involves solving a double integral:

c

∫ 2

0

∫ 2

0

(2x+ 3y + 2) dx dy = 1.

For this distribution, c = 1/28 (find this).
Figure 2.5 shows this density in three dimensions. The height of the density

represents the relative frequencies of particular pairs of values for x and y. As
the figure shows, the density is a partial plane (bounded at 0 and 2 in both x
and y dimensions) that is tilted so that larger values of x and y occur more
frequently than smaller values. Additionally, the plane inclines more steeply
in the y dimension than the x dimension, given the larger slope in the density
function.
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Fig. 2.5. Sample probability density function: A bivariate plane density.
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What pair of variables might follow a distribution like this one (albeit
with different parameters and domains)? Realistically, we probably would not
use this distribution, but some variables might actually follow this sort of
pattern. Consider two items from the 2000 GSS topic module on freedom: the
one we previously discussed regarding the importance of the ability to express
unpopular views in a free society, and another asking respondents to classify
the importance of political participation to freedom. Table 2.1 is a cross-
tabulation of these two variables. Considered separately, each variable follows
a linear density such as discussed earlier. The proportion of individuals in
the “Most Important” category for each variable is large, with the proportion
diminishing across the remaining categories of the variable. Together, the
variables appear to some extent to follow a planar density like the one above.
Of course, there are some substantial deviations in places, with two noticeable
‘humps’ along the diagonal of the table.

Table 2.1. Cross-tabulation of importance of expressing unpopular views with im-
portance of political participation.

Express Unpopular Views
Political

Participation 1 2 3 4 5 6

1 361 87 39 8 2 2 36%

2 109 193 51 13 2 3 27%

3 45 91 184 25 4 5 26%

4 15 17 35 17 4 2 7%

5 10 4 9 5 2 0 2%

6 11 9 4 3 1 5 2%

40% 29% 23% 5% 1% 1% 100%

Note: Data are from the 2000 GSS special topic module on freedom (variables are
expunpop and partpol). 1 = One of the most important parts of freedom . . . 6 =
Not so important to freedom.

Figure 2.6 presents a three-dimensional depiction of these data with an es-
timated planar density superimposed. The imposed density follows the general
pattern of the data but fits poorly in several places. First, in several places the
planar density substantially underestimates the true frequencies (three places
along the diagonal). Second, the density tends to substantially overestimate
frequencies in the middle of the distribution. Based on these problems, finding
an alternative density is warranted. For example, a density with exponential
or quadratic components may be desirable in order to allow more rapid de-
clines in the expected relative frequencies at higher values of the variables.
Furthermore, we may consider using a density that contains a parameter—
like a correlation—that captures the relationship between the two variables,
given their apparent lack of independence (the “humps” along the diagonal).
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Fig. 2.6. Three-dimensional bar chart for GSS data with “best” planar density
superimposed.

In multivariate continuous densities like this planar density, determining
the probability that x and y fall in particular regions of the density is deter-
mined via integration, just as in univariate densities. That is, the concept of
cumulative distribution functions extends to multivariate densities:

p(x < X , y < Y ) = F (x, y) =

∫ X

−∞

∫ Y

−∞

f(x, y) dx dy. (2.16)

Considering the planar density with parameters arbitrarily fixed at 2 and 3,
for example, the probability that x < 1 and y < 1 is:

∫ 1

0

∫ 1

0

(1/28)(2x+ 3y + 2) dx dy =
9

56
.

This region is presented in Figure 2.7, with the shadow of the omitted portion
of the density shown on the z = 0 plane.
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Fig. 2.7. Representation of bivariate cumulative distribution function: Area under
bivariate plane density from 0 to 1 in both dimensions.

2.2.3 Marginal and conditional distributions

Although determining the probabilities for particular regions of multivariate
densities is important, we may be interested in only a subset of the dimen-
sions of a multivariate density. Two types of “subsets” are frequently needed:
marginal distributions and conditional distributions. The data contained in
Table 2.1 help differentiate these two types of distributions.

The marginal distribution for the “Express unpopular views” item is the
row at the bottom of the table: It is the distribution of this variable summing
across the categories of the other variable (or integrating, if the density were
continuous). The conditional distribution of this item, on the other hand,
is the row of the table corresponding to a particular value for the political
participation variable. For example, the conditional distribution for expressing
unpopular views, given the value of “1” for political participation, consists of
the data in the first row of the table (361, 87, 39, 8, 2, and 2, or in renormalized
percents: 72%, 17%, 8%, 2%, .4%, and .4%).
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Thus, we can think of marginal distributions for a variable as being the
original distribution “flattened” in one dimension, whereas the conditional
distribution for a variable is a “slice” through one dimension.

Finding marginal and conditional distributions mathematically is concep-
tually straightforward, although often difficult in practice. Although Equa-
tion 2.5 was presented in terms of discrete probabilities, the rule also applies
to density functions. From Equation 2.5, a conditional distribution can be
computed as:

f(x|y) =
f(x, y)

f(y)
(2.17)

This equation says that the conditional distribution for x given y is equal to
the joint density of x and y divided by the marginal distribution for y, where a
marginal distribution is the distribution of one variable, integrating/summing
over the other variables in the joint density. Thus:

f(y) =

∫

x∈S

f(x, y)dx. (2.18)

In terms of our bivariate distribution above (f(x, y) = (1/28)(2x+3y+2)),
the marginal distributions for x and y can be found as:

f(x) =

∫ 2

y=0

(1/28)(2x+ 3y + 2)dy = (1/28)(4x+ 10)

and

f(y) =

∫ 2

x=0

(1/28)(2x+ 3y + 2)dx = (1/28)(6y + 8).

The conditional distributions can then be found as:

f(x|y) =
(1/28)(2x+ 3y + 2)
∫ 2

x=0
(2x+ 3y + 2)dx

=
(1/28)(2x+ 3y + 2)

(1/28)(6y + 8)

and

f(y|x) =
(1/28)(2x+ 3y + 2)
∫ 2

y=0
(2x+ 3y + 2)dy

=
(1/28)(2x+ 3y + 2)

(1/28)(4x+ 10)
.

Observe how the marginal distributions for each variable exclude the other
variable (as they should), whereas the conditional distributions do not. Once a
specific value for x or y is chosen in the conditional distribution, however, the
remaining function will only depend on the variable of interest. Once again,
in other words, the conditional distribution is akin to taking a slice through
one dimension of the bivariate distribution.

As a final example, take the conditional distribution f(x|y), where y = 0,
so that we are looking at the slice of the bivariate distribution that lies on the
x axis. The conditional distribution for that slice is:
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f(x|y = 0) =
2x+ 3(y = 0) + 2

6(y = 0) + 8
= (1/8)(2x+ 2).

With very little effort, it is easy to see that this result gives us the formula
for the line that we observe in the x, z plane when we set y = 0 in the original
unnormalized function and we exclude the constant 1/8. In other words:

(1/8)(2x+ 2) ∝ (1/28)(2x+ 3y + 2)

when y = 0. Thus, an important finding is that the conditional distribution
f(x|y) is proportional to the joint distribution for f(x, y) evaluated at a par-
ticular value for y [expressed f(x|y) ∝ f(x, y)], differing only by a normalizing
constant. This fact will be useful when we discuss Gibbs sampling in Chap-
ter 4.

2.3 Some important distributions in social science

Unlike the relatively simple distributions we developed in the previous sec-
tion, the distributions that have been found to be most useful in social science
research appear more complicated. However, it should be remembered that,
despite their sometimes more complicated appearance, they are simply alge-
braic functions that describe the relative frequencies of occurence for partic-
ular values of a random variable. In this section, I discuss several of the most
important distributions used in social science research. I limit the discussion
at this point to distributions that are commonly applied to random variables
as social scientists view them. In the next chapter, I discuss some additional
distributions that are commonly used in Bayesian statistics as “prior distri-
butions” for parameters (which, as we will see, are also treated as random
variables by Bayesians). I recommend Evans, Hastings, and Peacock (2000)
for learning more about these and other common probability distributions.

2.3.1 The binomial distribution

The binomial distribution is a common discrete distribution used in social
science statistics. This distribution represents the probability for x successes
in n trials, given a success probability p for each trial. If x ∼ Bin(n, p), then:

pr(x|n, p) =

(

n
x

)

px(1− p)n−x. (2.19)

Here, I change the notation on the left side of the mass function to “pr”
to avoid confusion with the parameter p in the function. The combinatorial,
(

n
x

)

, at the front of the function, compensates for the fact that the x suc-

cesses can come in any order in the n trials. For example, if we are interested
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in the probability of obtaining exactly 10 heads in 50 flips of a fair coin [thus,
pr(x = 10 | n = 50, p = .5)], the 10 heads could occur back-to-back, or several
may appear in a row, followed by several tails, followed by more heads, etc.
This constant is computed as n!/(x!(n − x)!) and acts as a normalizing con-
stant to ensure the mass under the curve sums to 1. The latter two terms in
the function multiply the independent success and failure probabilities, based
on the observed number of successes and failures. Once the parameters n and
p are chosen, the probability of observing any number x of successes can be
computed/deduced. For example, if we wanted to know the probability of ex-

actly x = 10 heads out of n = 50 flips, then we would simply substitute those
numbers into the right side of the equation, and the result would tell us the
probability. If we wanted to determine the probability of obtaining at least 10
heads in 50 flips, we would need to sum the probabilities from 10 successes up
to 50 successes. Obviously, in this example, the probability of obtaining more
heads than 50 or fewer heads than 0 is 0. Hence, this sample space is bounded
to counting integers between 0 and 50, and computing the probability of at
least 10 heads would require summing 41 applications of the function (for
x = 10, x = 11, ..., x = 50).

The mean of the binomial distribution is np, and the variance of the bi-
nomial distribution is np(1 − p). When p = .5, the distribution is symmetric
around the mean. When p > .5, the distribution is skewed to the left; when
p < .5, the distribution is skewed to the right. See Figure 2.8 for an example of
the effect of p on the shape of the distribution (n = 10). Note that, although
the figure is presented in a histogram format for the purpose of appearance
(the densities are presented as lines), the distribution is discrete, and so 0
probability is associated with non-integer values of x.

A normal approximation to the binomial may be used when p is close to
.5 and n is large, by setting µx = np and σx =

√

np(1− p). For example,
in the case mentioned above in which we were interested in computing the
probability of obtaining 10 or more heads in a series of 50 coin flips, computing
41 probabilities with the function would be tedious. Instead, we could set
µx = 25, and σx =

√

50(.5)(1− .5) = 3.54, and compute a z-score as z =
(10−25)/(3.54) = −4.24. Recalling from basic statistics that there is virtually
0 probability in the tail of the z distribution to the left of −4.24, we would
conclude that the probability of obtaining at least 10 heads is practically 1,
using this approximation. In fact, the actual probability of obtaining at least
10 heads is .999988.

When n = 1, the binomial distribution reduces to another important dis-
tribution called the Bernoulli distribution. The binomial distribution is often
used in social science statistics as a building block for models for dichotomous
outcome variables like whether a Republican or Democrat will win an upcom-
ing election, whether an individual will die within a specified period of time,
etc.
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Fig. 2.8. Some binomial distributions (with parameter n = 10).

2.3.2 The multinomial distribution

The multinomial distribution is a generalization of the binomial distribution
in which there are more than two outcome categories, and thus, there are
more than two “success” probabilities (one for each outcome category). If
x ∼Multinomial(n, p1, p2, . . . , pk), then:

pr(x1 . . . xk | n, p1 . . . pk) =
n!

x1! x2! . . . xk!
px1

1 px2

2 . . . pxk

k , (2.20)

where the leading combinatorial expression is a normalizing constant,
∑k

i=1 pi =

1, and
∑k

i=1 xi = n. Whereas the binomial distribution allows us to compute
the probability of obtaining a given number of successes (x) out of n trials,
given a particular success probability (p), the multinomial distribution allows
us to compute the probability of obtaining particular sets of successes, given
n trials and given different success probabilities for each member of the set.
To make this idea concrete, consider rolling a pair of dice. The sample space
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for possible outcomes of a single roll is S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, and
we can consider the number of occurrences in multiple rolls of each of these
outcomes to be represented by a particular x (so, x1 represents the number
of times a 2 is rolled, x2 represents the number of times a 3 is rolled, etc.).
The success probabilities for these possible outcomes vary, given the fact that
there are more ways to obtain some sums than others. The vector of prob-
abilities p1 . . . p11 is { 1

36 ,
2
36 ,

3
36 ,

4
36 ,

5
36 ,

6
36 ,

5
36 ,

4
36 ,

3
36 ,

2
36 ,

1
36}. Suppose we roll

the pair of dice 36 times. Then, if we want to know the probability of obtain-
ing one “2”, two “3s”, three “4s”, etc., we would simply substitute n = 36,
p1 = 1

36 , p2 = 2
36 , . . . , p11 = 1

36 , and x1 = 1, x2 = 2, x3 = 3, . . . into the
function and compute the probability.

The multinomial distribution is often used in social science statistics to
model variables with qualitatively different outcomes categories, like religious
affiliation, political party affiliation, race, etc, and I will discuss this distribu-
tion in more depth in later chapters as a building block of some generalized
linear models and some multivariate models.

2.3.3 The Poisson distribution

The Poisson distribution is another discrete distribution, like the binomial,
but instead of providing the probabilities for a particular number of successes
out of a given number of trials, it essentially provides the probabilities for a
given number of successes in an infinite number of trials. Put another way,
the Poisson distribution is a distribution for count variables. If x ∼ Poi(λ),
then:

p(x|λ) =
e−λλx

x!
. (2.21)

Figure 2.9 shows three Poisson distributions, with different values for the λ
parameter. When λ is small, the distribution is skewed to the right, with most
of the mass concentrated close to 0. As λ increases, the distribution becomes
more symmetric and shifts to the right. As with the figure for the binomial
distribution above, I have plotted the densities as if they were continuous for
the sake of appearance, but because the distribution is discrete, 0 probability
is associated with non-integer values of x

The Poisson distribution is often used to model count outcome variables,
(e.g., numbers of arrests, number of children, etc.), especially those with low
expected counts, because the distributions of such variables are often skewed
to the right with most values clustered close to 0. The mean and variance of the
Poisson distribution are both λ, which is often found to be unrealistic for many
count variables, however. Also problematic with the Poisson distribution is
the fact that many count variables, such as the number of times an individual
is arrested, have a greater frequency of 0 counts than the Poisson density
predicts. In such cases, the negative binomial distribution (not discussed here)
and mixture distributions (also not discussed) are often used (see Degroot 1986
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Fig. 2.9. Some Poisson distributions.

for the development of the negative binomial distribution; see Long 1997 for
a discussion of negative binomial regression modeling; see Land, McCall, and
Nagin 1996 for a discussion of the use of Poisson mixture models).

2.3.4 The normal distribution

The most commonly used distribution in social science statistics and statistics
in general is the normal distribution. Many, if not most, variables of interest
follow a bell-shaped distribution, and the normal distribution, with both a
mean and variance parameter, fits such variables quite well. If x ∼ N(µ, σ2),
then:

f(x|µ, σ) =
1√

2πσ2
exp

{

− (x− µ)2

2σ2

}

. (2.22)

In this density, the preceding (
√

2πσ2)−1 is included as a normalizing
constant so that the area under the curve from −∞ to +∞ integrates to 1.
The latter half of the pdf is the “kernel” of the density and gives the curve its
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location and shape. Given a value for the parameters of the distribution, µ and
σ2, the curve shows the relative probabilities for every value of x. In this case,
x can range over the entire real line, from −∞ to +∞. Technically, because an
infinite number of values exist between any two other values of x (ironically
making p(x = X) = 0,∀X), the value returned by the function f(x) does not
reveal the probability of x, unlike with the binomial and Poisson distribution
above (as well as other discrete distributions). Rather, when using continuous
pdfs, one must consider the probability for regions under the curve. Just as
above in the discussion of the binomial distribution, where we needed to sum
all the probabilities between x = 10 and x = 50 to obtain the probability
that x ≥ 10, here we would need to integrate the continuous function from
x = a to x = b to obtain the probability that a < x < b. Note that we did
not say a ≤ x ≤ b; we did not for the same reason mentioned just above: The
probability that x equals any number q is 0 (the area of a line is 0). Hence
a < x < b is equivalent to a ≤ x ≤ b.

The case in which µ = 0 and σ2 = 1 is called the “standard normal
distribution,” and often, the z distribution. In that case, the kernel of the
density reduces to exp

{

−x2/2
}

, and the bell shape of the distribution can
be easily seen. That is, where x = 0, the function value is 1, and as x moves
away from 0 in either direction, the function value rapidly declines.

Figure 2.10 depicts three different normal distributions: The first has a
mean of 0 and a standard deviation of 1; the second has the same mean but
a standard deviation of 2; and the third has a standard deviation of 1 but a
mean of 3.

The normal distribution is used as the foundation for ordinary least squares
(OLS) regression, for some generalized linear models, and for many other mod-
els in social science statistics. Furthermore, it is an important distribution in
statistical theory: The Central Limit Theorem used to justify most of classical
statistical testing states that sampling distributions for statistics are, in the
limit, normal. Thus, the z distribution is commonly used to assess statistical
“significance” within a classical statistics framework. For these reasons, we
will consider the normal distribution repeatedly throughout the remainder of
the book.

2.3.5 The multivariate normal distribution

The normal distribution easily extends to more than one dimension. If X ∼
MVN(µ,Σ), then:

f(X|µ,Σ) = (2π)−
k

2 |Σ|− 1

2 exp

{

−1

2
(X − µ)TΣ−1(X − µ)

}

, (2.23)

where X is a vector of random variables, k is the dimensionality of the vector,
µ is the vector of means of X, and Σ is the covariance matrix of X. The
multivariate normal distribution is an extension of the univariate normal in
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Fig. 2.10. Some normal distributions.

which x is expanded from a scalar to a k-dimensional vector of variables,
x1, x2, . . . , xk, that are related to one another via the covariance matrix Σ.
If X is multivariate normal, then each variable in the vector X is normal. If
Σ is diagonal (all off-diagonal elements are 0), then the multivariate normal
distribution is equivalent to k univariate normal densities.

When the dimensionality of the MVN distribution is equal to two, the
distribution is called the “bivariate normal distribution.” Its density function,
although equivalent to the one presented above, is often expressed in scalar
form as:

f(x1, x2) =
1

2πσ1σ2

√

1− ρ2
exp

[

− 1

2(1− ρ2)
(Q−R+ S)

]

, (2.24)

where

Q =
(x1 − µ1)

2

σ2
1

, (2.25)

R =
2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
, (2.26)
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and

S =
(x2 − µ2)

2

σ2
2

. (2.27)

The bivariate normal distribution, when the correlation parameter ρ is 0,
looks like a three-dimensional bell. As ρ becomes larger (in either positive or
negative directions), the bell flattens, as shown in Figure 2.11. The upper part
of the figure shows a three-dimensional view and a (top-down) contour plot of
the bivariate normal density when ρ = 0. The lower part of the figure shows
the density when ρ = .8.
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Fig. 2.11. Two bivariate normal distributions.
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The multivariate normal distribution is used fairly frequently in social
science statistics. Specifically, the bivariate normal distribution is used to
model simultaneous equations for two outcome variables that are known to
be related, and structural equation models rely on the full multivariate normal
distribution. I will discuss this distribution in more depth in later chapters
describing multivariate models.

2.3.6 t and multivariate t distributions

The t (Student’s t) and multivariate t distributions are quite commonly used
in modern social science statistics. For example, when the variance is un-
known in a model that assumes a normal distribution for the data, with the
variance following an inverse gamma distribution (see subsequent chapters),
the marginal distribution for the mean follows a t distribution (consider tests
of coefficients in a regression model). Also, when the sample size is small, the
t is used as a robust alternative to the normal distribution in order to com-
pensate for heavier tails in the distribution of the data. As the sample size
increases, uncertainty about σ decreases, and the t distribution converges on
a normal distribution (see Figure 2.12). The density functions for the t dis-
tribution appears much more complicated than the normal. If x ∼ t(µ, σ, v),
then:

f(x) =
Γ ((v + 1)/2)

Γ (v/2)σ
√
vπ

(

1 + v−1

(

x− µ

σ

)2
)−(v+1)/2

, (2.28)

where µ is the mean, σ is the standard deviation, and v is the “degrees of
freedom.” If X is a k-dimensional vector of variables (x1 . . . xk), and X ∼
mvt(µ,Σ, v), then:

f(X) =
Γ ((v + d)/2)

Γ (v/2)vk/2πk/2
| Σ |−1/2

(

1 + v−1(X − µ)TΣ−1(X − µ)
)−(v+k)/2

,

(2.29)
where µ is a vector of means, and Σ is the variance-covariance matrix of X.

We will not explicitly use the t and multivariate t distributions in this
book, although a number of marginal distributions we will be working with
will be implicitly t distributions.

2.4 Classical statistics in social science

Throughout the fall of 2004, CNN/USAToday/Gallup conducted a number
of polls attempting to predict whether George W. Bush or John F. Kerry
would win the U.S. presidential election. One of the key battleground states
was Ohio, which ultimately George Bush won, but all the polls leading up
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Fig. 2.12. The t(0, 1, 1), t(0, 1, 10), and t(0, 1, 120) distributions (with an N(0, 1)
distribution superimposed).

to the election showed the two candidates claiming proportions of the votes
that were statistically indistinguishable in the state. The last poll in Ohio
consisted of 1,111 likely voters, 46% of whom stated that they would vote for
Bush, and 50% of whom stated that they would vote for Kerry, but the poll
had a margin of error of ±3%.4

In the previous sections, we discussed probability theory, and I stated
that statistics is essentially the inverse of probability. In probability, once we
are given a distribution and its parameters, we can deduce the probabilities
for events. In statistics, we have a collection of events and are interested in

4 see http://www.cnn.com/ELECTION/2004/special/president/showdown/OH/
polls.html for the data reported in this and the next chapter. Additional polls are
displayed on the website, but I use only the CNN/USAToday/Gallup polls, given
that they are most likely similar in sample design. Unfortunately, the proportions
are rounded, and so my results from here on are approximate. For example, in
the last poll, 50% planned to vote for Kerry, and 50% of 1,111 is 556. However,
the actual number could range from 550 to 561 given the rounding.
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determining the values of the parameters that produced them. Returning to
the polling data, determining who would win the election is tantamount to
determining the population parameter (the proportion of actual voters who
will vote for a certain candidate) given a collection of events (a sample of
potential votes) thought to arise from this parameter and the probability
distribution to which it belongs.

Classical statistics provides one recipe for estimating this population pa-
rameter; in the remainder of this chapter, I demonstrate how. In the next
chapter, I tackle the problem from a Bayesian perspective. Throughout this
section, by “classical statistics” I mean the approach that is most commonly
used among academic researchers in the social sciences. To be sure, the clas-
sical approach to statistics in use is a combination of several approaches,
involving the use of theorems and perspectives of a number of statisticians.
For example, the most common approach to model estimation is maximum
likelihood estimation, which has its roots in the works of Fisher, whereas the
common approach to hypothesis testing using p-values has its roots in the
works of both Neyman and Pearson and Fisher—each of whom in fact devel-
oped somewhat differing views of hypothesis testing using p-values (again, see
Hubbard and Bayarri 2003 or see Gill 2002 for an even more detailed history).

2.5 Maximum likelihood estimation

The classical approach to statistics taught in social science statistics courses
involves two basic steps: (1) model estimation and (2) inference. The first step
involves first determining an appropriate probability distribution/model for
the data at hand and then estimating its parameters. Maximum likelihood
(ML) is the most commonly used method of estimating parameters and de-
termining the extent of error in the estimation (steps 1 and 2, respectively) in
social science statistics (see Edwards 1992 for a detailed, theoretical discus-
sion of likelihood analysis; see Eliason 1993 for a more detailed discussion of
the mechanics of ML estimation).

The fundamental idea behind maximum likelihood estimation is that a
good choice for the estimate of a parameter of interest is the value of the
parameter that makes the observed data most likely to have occurred. To do
this, we need to establish some sort of function that gives us the probability
for the data, and we need to find the value of the parameter that maximizes
this probability. This function is called the “likelihood function” in classical
statistics, and it is essentially the product of sampling densities—probability
distributions—for each observation in the sample. The process of estimation
thus involves the following steps:

1. Construct a likelihood function for the parameter(s) of interest.
2. Simplify the likelihood function and take its logarithm.
3. Take the partial derivative of the log-likelihood function with respect to

each parameter, and set the resulting equation(s) equal to 0.
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4. Solve the system of equations to find the parameters.

This process seems complicated, and indeed it can be. Step 4 can be quite
difficult when there are lots of parameters. Generally, some sort of iterative
method is required to find the maximum. Below I detail the process of ML
estimation.

2.5.1 Constructing a likelihood function

If x1, x2 . . . xn are independent observations of a random variable, x, in a data
set of size n, then we know from the multiplication rule in probability theory
that the joint probability for the vector X is:

f(X|θ) ≡ L(θ | x) =
n
∏

i=1

f(xi | θ). (2.30)

This equation is the likelihood function for the model. Notice how the
parameter and the data switch places in the L(.) notation versus the f(.)
notation. We denote this as L(.), because from a classical standpoint, the
parameter is assumed to be fixed. However, we are interested in estimating
the parameter θ, given the data we have observed, so we use this notation.
The primary point of constructing a likelihood function is that, given the data
at hand, we would like to solve for the value of the parameter that makes
the occurence of the data most probable, or most “likely” to have actually
occurred.

As the right-hand side of the equation shows, the construction of the like-
lihood function first relies on determining an appropriate probability distri-
bution f(.) thought to generate the observed data. In our election polling
example, the data consist of 1,111 potential votes, the vast majority of which
were either for Bush or for Kerry. If we assume that candidates other than
these two are unimportant—that is, the election will come down to whom
among these two receives more votes—then the data ultimately reduce to 556
potential votes for Kerry and 511 potential votes for Bush. An appropriate
distribution for such data is the binomial distribution. If we are interested
in whether Kerry will win the election, we can consider a vote for Kerry a
“success,” and its opposite, a vote for Bush, a “failure,” and we can set up
our likelihood function with the goal of determining the success probability
p. The likelihood function in this case looks like:

L(p|X) =

(

1067
556

)

p556(1− p)511.

As an alternative view that ultimately produces the same results, we can con-
sider that, at the individual level, each of our votes arises from a Bernoulli dis-
tribution, and so our likelihood function is the product of n = 1, 067 Bernoulli
distributions. In that case:
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L(p|X) =
n=1067
∏

i=1

pxi(1− p)1−xi . (2.31)

Given that we know nothing about our potential voters beyond for whom they
plan to vote, we can consider the individuals “exchangeable,” and after car-
rying out the multiplication across individuals, this version of the likelihood
function is proportional to the first one based on the binomial distribution,
only differing by a combinatorial expression. This expression simply scales
the curve, and so it is ultimately unimportant in affecting our estimate. Fig-
ure 2.13 shows this result: The upper figure shows the likelihood function
based on the binomial distribution; the lower figure shows the likelihood func-
tion based on the Bernoulli distribution. The only difference between the two
functions can be found in the scale of the y axis.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.0

0
0

0
.0

1
5

p (Binomial Likelihood)

L
(p

 |
 x

=
5
5
6
)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
  

 e
+

0
0

8
  

 e
−

0
5

p (Bernoulli Likelihood)

L
(p

 |
 s

u
m

(x
)=

5
5
6
)

Fig. 2.13. Binomial (top) and Bernoulli (bottom) likelihood functions for the OH
presidential poll data.
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2.5.2 Maximizing a likelihood function

How do we obtain the estimates for the parameters after we set up the like-
lihood function? Just as many pdfs are unimodal and slope away from the
mode of the distribution, we expect the likelihood function to look about the
same. So, what we need to find is the peak of this curve. From calculus we
know that the slope of the curve should be 0 at its peak. Thus, we should
take the derivative of the likelihood function with respect to the parameter,
set it equal to 0, and find the x coordinate (the parameter value) for which
the curve reaches a maximum.

We generally take the logarithm of the likelihood function before we dif-
ferentiate, because the log function converts the repeated multiplication to
repeated addition, and repeated addition is much easier to work with. The
log-likelihood reaches a maximum at the same point as the original function.
Generically:

Log-Likelihood ≡ LL(θ | X) =
n
∑

i=1

log(f(xi | θ)). (2.32)

For our specific problem:

LL(p|x) ∝ 556 ln p+ 511 ln(1− p).

To find the value of p where this log-likelihood function reaches a maximum,
we need to take the derivative of the function with respect to p, set it equal
to 0, and solve for p. Generically, the derivative of a binomial log-likelihood
function is:

dLL

dp
=

∑

xi

p
− n−∑xi

1− p
. (2.33)

If we set this derivative equal to 0 and solve for p, we obtain:

n−∑xi

1− p
=

∑

xi

p
.

Simplifying yields:

p̂ =

∑

xi

n
. (2.34)

This result shows that the maximum likelihood estimate for p is simply the
observed proportion of successes. In our example, this is the proportion of
potential votes for Kerry, out of those who opted for either Kerry or Bush
(here, 556/1067 = .521). Given that this value for p is an estimate, we typically
denote it p̂, rather than p.

Figure 2.14 displays this process of estimation graphically. The figure
shows that both the likelihood function and the log-likelihood functions peak
at the same point. The horizontal lines are the tangent lines to the curve
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where the slopes of these lines are 0; they are at the maximum of the func-
tions. The corresponding x coordinate where the curves reach their maximum
is the maximum likelihood estimate (MLE).
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Fig. 2.14. Finding the MLE: Likelihood and log-likelihood functions for the OH
presidential poll data.

2.5.3 Obtaining standard errors

p̂ is an estimate and is not guaranteed to equal the population parameter p in
any particular sample. Thus, we need some way to quantify our uncertainty
in estimating p with p̂ from our sample. A nice additional feature of the
log-likelihood is that a function of the second derivative of the log-likelihood
function can be used to estimate the variance of the sampling distribution
(the square root of which is called the “standard error”).5 Specifically, we

5 See Appendix B for a discussion of the Central Limit Theorem and the basis for
classical inference.
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must take the inverse of the negative expected value of the second derivative
of the log-likelihood function. Mathematically:

I(θ)−1 =

(

−E
(

∂2LL

∂θ∂θT

))−1

, (2.35)

where θ is our parameter or vector of parameters and I(θ) is called the “infor-
mation matrix.” The square root of the diagonal elements of this matrix are
the parameter standard errors. I(θ)−1 can be computed using the following
steps:

1. Take the second partial derivatives of the log-likelihood. In multiparameter
models, this produces a matrix of partial derivatives (called the Hessian
matrix).

2. Take the negative of the expectation of this matrix to obtain the “infor-
mation matrix” I(θ).

3. Invert this matrix to obtain estimates of the variances and covariances of
parameters (get standard errors by square-rooting the diagonal elements
of the matrix).

The fact that I(θ)−1 contains the standard errors is not intuitive. But,
if you recall that the first derivative is a measure of the slope of a function
at a point (the rate of change in the function at that point), and the second
derivative is a measure of the rate of change in the slope, we can think of
the second derivative as indicating the rate of curvature of the curve. A very
steep curve, then, has a very high rate of curvature, which makes its second
derivative large. Thus, when we invert it, it makes the standard deviation
small. On the other hand, a very shallow curve has a very low rate of curvature,
which makes its second derivative small. When we invert a small number, it
makes the standard deviation large. Note that, when we evaluate the second
derivative, we substitute the MLE estimate for the parameter into the result
to obtain the standard error at the estimate.

Returning to our data at hand, the second partial derivative of the generic
binomial log-likelihood function with respect to p is:

∂2LL

∂p2
=

∑

x

p2
− n−

∑

x

(1− p)2
. (2.36)

Taking expectations yields:

E

(

∂2LL

∂p2

)

= E

[

−
∑

x

p2
− n−∑x

(1− p)2

]

.

The expectation of these expressions can be computed by realizing that the
expectation of

∑

x/n is p (put another way: E(p̂) = p). Thus:

E

(

∂2LL

∂p2

)

= −np
p2
− n− np

(1− p)2
.
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Some simplification yields:

E

(

∂2LL

∂p2

)

= − n

p(1− p)
.

At this point, we can negate the expectation, invert it, and evaluate it at the
MLE (p̂) to obtain:

I(p)−1 =
p̂(1− p̂)

n
. (2.37)

Taking the square root of this yields the estimated standard error. In our
polling data case, the standard error is

√

(.521× .479)/1067 = .015.
Recall that our question is whether Kerry would win the vote in Ohio. Our

estimate for the Ohio population proportion to vote for Kerry (versus Bush)
was .521, which suggests he would win the popular vote in Ohio (discounting
third party candidates). However, the standard error of this estimate was
.015. We can construct our usual confidence interval around the maximum
likelihood estimate to obtain a 95% interval for the MLE. If we do this, we
obtain an interval of [.492, .550] (CI = p̂ ± 1.96 × s.e.(p̂)). Given that the
lower bound on this interval is below .5, we can conclude that we cannot rule
out the possibility that Kerry would not win the popular vote in Ohio.

An alternative to the confidence interval approach to answering this ques-
tion is to construct a t test, with a null hypothesis H0 : p < .5. Following that
approach:

t =
(.521− .5)

.015
= 1.4.

This t value is not large enough to reject the null hypothesis (that Kerry’s
proportion of the vote is less than .5), and thus, the conclusion we would reach
is the same: We do not have enough evidence to conclude that Kerry will win
(see Appendix B for more discussion of null hypotheses, confidence intervals,
and t tests).

Note that this result is consistent with the result I stated at the beginning
of this section: The results of the original poll suggested that the vote was
too close to call, given a ±3% margin of error. Here, I have shown essentially
from where that margin of error arose. We ended up with a margin of error
of .0294, which is approximately equal to the margin of error in the original
poll.

2.5.4 A normal likelihood example

Because the normal distribution is used repeatedly throughout this book and
throughout the social sciences, I conclude this chapter by deriving parameter
estimates and standard errors for a normal distribution problem. I keep this
example at a general level; in subsequent chapters, we will return to this
likelihood function with specific problems and data.
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Suppose you have n observations x1, x2, . . . , xn that you assume are nor-
mally distributed. Once again, if the observations are assumed to be indepen-
dent, a likelihood function can be constructed as the multiple of independent
normal density functions:

L(µ, σ | X) =
n
∏

i=1

1√
2πσ2

exp

{

− (xi − µ)2

2σ2

}

. (2.38)

We can simplify the likelihood as:

L(µ, σ | X) = (2πσ2)−
n

2 exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

.

The log of the likelihood is:

LL(µ, σ | X) ∝ −n ln(σ)− 1

2σ2

n
∑

i=1

(xi − µ)2. (2.39)

In the above equation, I have eliminated the −n
2 log(2π), an irrelevant con-

stant. It is irrelevant, because it does not depend on either parameter and
will therefore drop once the partial derivatives are taken. In this example, we
have two parameters, µ and σ, and hence the first partial derivative must be
taken with respect to each parameter. This will leave us with two equations
(one for each parameter). After taking the partial derivatives with respect to
each parameter, we obtain the following:

∂LL

∂µ
=
n(x̄− µ)

σ2

and
∂LL

∂σ
= −n

σ
+

1

σ3

n
∑

i=1

(xi − µ)2.

Setting these partial derivatives each equal to 0 and doing a little algebra
yields:

µ̂ = x̄ (2.40)

and

σ̂2 =

∑n
i=1(xi − µ)2

n
. (2.41)

These estimators should look familiar: The MLE for the population mean is
the sample mean; the MLE for the population variance is the sample variance.6

Estimates of the variability in the estimates for the mean and standard
deviation can be obtained as we did in the binomial example. However, as

6 The MLE is known to be biased, and hence, a correction is added, so that the
denominator is n− 1 rather than n.
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noted above, given that we have two parameters, our second derivate matrix
will, in fact, be a matrix. For the purposes of avoiding taking square roots
until the end, let τ = σ2, and we’ll construct the Hessian matrix in terms of
τ . Also, let θ be a vector containing both µ and τ . Thus, we must compute:

∂2LL

∂θ∂θT
=







∂2LL
∂µ2

∂2LL
∂µ∂τ

∂2LL
∂τ∂µ

∂2LL
∂τ2






. (2.42)

Without showing all the derivatives (see Exercises), the elements of the Hes-
sian matrix are then:

∂2LL

∂θ∂θT
=







−n
τ −n(x̄−µ)

τ2

−n(x̄−µ)
τ2

n
2τ2 −

P

n

i=1
(xi−µ)2

τ3






.

In order to obtain the information matrix, which can be used to compute the
standard errors, we must take the expectation of this Hessian matrix and take
its negative. Let’s take the expectation of the off-diagonal elements first. The
expectation of x̄− µ is 0 (given that the MLE is unbiased), which makes the
off-diagonal elements of the information matrix equal to 0. This result should
be somewhat intuitive: There need be no relationship between the mean and
variance in a normal distribution.

The first element, (−n/τ), is unchanged under expectation. Thus, after
substituting σ2 back in for τ and negating the result, we obtain n/σ2 for this
element of the information matrix.

The last element, (n/2τ2) − (
∑n

i=1(xi − µ)2)/τ3, requires a little con-
sideration. The only part of this expression that changes under expecta-
tion is

∑n
i=1(xi − µ)2. The expectation of this expression is nτ . That is,

E(xi − µ)2 = τ , and we are taking this value n times (notice the summa-
tion). Thus, this element, after a little algebraic manipulation, negation, and
substitution of σ2 for τ , becomes: n/2σ4. So, our information matrix appears
as:

I(θ) =

[

n
σ2 0
0 n

2σ4

]

. (2.43)

To obtain standard errors, we need to (1) invert this matrix, and (2) take
the square root of the diagonal elements (variances) to obtain the standard
errors. Matrix inversion in this case is quite simple, given that the off-diagonal
elements are equal to 0. In this case, the inverse of the matrix is simply the
inverse of the diagonal elements.

Once we invert and square root the elements of the information matrix,
we find that the estimate for the standard error for our estimate µ̂ is σ̂/

√
n,

and our estimate for the standard error for σ̂2 is σ̂2
√

2/n. The estimate for
the standard error for µ̂ should look familiar: It is the standard deviation of
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the sampling distribution for a mean based on the Central Limit Theorem
(see Appendix B).

2.6 Conclusions

In this chapter, we have reviewed the basics of probability theory. Importantly,
we have developed the concept of probability distributions in general, and we
have discussed a number of actual probability distributions. In addition, we
have discussed how important quantities like the mean and variance can be
derived analytically from probability distributions. Finally, we reviewed the
most common approach to estimating such quantities in a classical setting—
maximum likelihood estimation—given a collection of data thought to arise
from a particular distribution. As stated earlier, I recommend reading De-
Groot (1986) for a more thorough introduction to probability theory, and I
recommend Billingsley (1995) and Chung and AitSahlia (2003) for more ad-
vanced and detailed expositions. For a condensed exposition, I suggest Rudas
2004. Finally, I recommend Edwards (1992) and Gill (2002) for detailed dis-
cussions of the history and practice of maximum likelihood (ML) estimation,
and I suggest Eliason (1993) for a highly applied perspective on ML estima-
tion. In the next chapter, we will discuss the Bayesian approach to statistics
as an alternative to this classical approach to model building and estimation.

2.7 Exercises

2.7.1 Probability exercises

1. Find the normalizing constant for the linear density in Equation 2.8.
2. Using the binomial mass function, find the probability of obtaining 3 heads

in a row with a fair coin.
3. Find the probability of obtaining 3 heads in a row with a coin weighted

so that the probability of obtaining a head is .7.
4. What is the probability of obtaining 3 heads OR 3 tails in a row with a

fair coin?
5. What is the probability of obtaining 3 heads and 1 tail (order irrelevant)

on four flips of a fair coin?
6. Using a normal approximation to the binomial distribution, find the prob-

ability of obtaining 130 or more heads in 200 flips of a fair coin.
7. Plot a normal distribution with parameters µ = 5 and σ = 2.
8. Plot a normal distribution with parameters µ = 2 and σ = 5.
9. Plot the t(0, 1, df = 1) and t(0, 1, df = 10) distributions. Note: Γ is a

function. The function is: Γ (n) =
∫∞

0
e−uun−1du. For integers, Γ (n) =

(n − 1)! Thus, Γ (4) = (4 − 1)! = 6. However, when the argument to the
function is not an integer, this formula will not work. Instead, it is easier
to use a software package to compute the function value for you.
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10. Show that the multivariate normal density function reduces to the univari-
ate normal density function when the dimensionality of the distribution
is 1.

2.7.2 Classical inference exercises

1. Find the MLE for p in a binomial distribution representing a sample in
which 20 successes were obtained out of 30 trials.

2. Based on the binomial sample in the previous question, if the trials in-
volved coin flips, would having 20 heads be sufficient to question the fair-
ness of the coin? Why or why not?

3. Suppose a sample of students at a major university were given an IQ test,
which resulted in a mean of 120 and a standard deviation of 10. If we
know that IQs are normally distributed in the population with a mean of
100 and a standard deviation of 16, is there sufficient evidence to suggest
that the college students are more intelligent than average?

4. Suppose a single college student were given an IQ test and scored 120. Is
there sufficient evidence to indicate that college students are more intelli-
gent than average based on this sample?

5. What is the difference (if any) between the responses to the previous two
questions?

6. Derive the Hessian matrix for the normal distribution example at the end
of the chapter.

7. Derive the MLE for λ from a sample of n observations from a Poisson
distribution.

8. Derive the standard error estimate for λ from the previous question.


