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Outline

� Exponential Likelihood, Gamma Prior, & Prof Smedley

� Prior Influence on Posterior

� Comparing 95% intervals

� Conjugate Priors

� Non-Conjugate Priors & WinBUGS

� Normal Model: Estimate Mean, Variance Known

� Shrinkage and the Minnesota Radon  Example

� Start reading Lynch Ch 4 – on course website!
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Exponential Distribution

� Last week we saw that if x1, …, xn ∼ Expon (λ), i.e. 

each xi is indep., with density f(x|λ) = λ e-λ x, then

and
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MLE point estimate and interval 

for Prof. Smedley

� We saw that three randomly-chosen students from Prof. 
Smedley’s class took x1 = 3, x2 = 10 and x3 = 8 days to 
learn boxplots 

� The MLE and SE are:

� and so a rough 95% confidence interval for λ would be 

[1/7 – 2(1/7)/sqrt(3), 1/7 + 2(1/7)/sqrt(3)],  or 

(-0.022, 0.308)
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How does this look as a Bayesian 

problem?

� Still have

� Need a prior distribution for λ.  We’ll start with a 

gamma distribution:

� Since (posterior) ∝ (likelihood)×(prior),
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Prior influence on Posterior

� Here are plots for 

� α=1, β=2

� α=4, β=8

� α=20, β=20

� We see the “shrinkage” 
idea again: the posterior 
is “between” the 
likelihood and the prior

� We see that the location 
and spread of the prior 
influences the location 
and spread of the 
posterior distribution
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Bayesian point estimate and interval 

for Prof. Smedley

� We will take α=4, β=8, as an example

� There are formulae, but we will simulate
> n <- 3

> xbar <- 7

> alpha <- 4

> beta <- 8

> nsim <- 1000

> simdata <- rgamma(nsim,alpha+n,beta+n*xbar)

> quantile(simdata,c(0.025,0.5,0.975))

2.5%        50%      9.75% 

0.0975616  0.2308562  0.4435332

So a point estimate would be 0.23, and a 95% 
interval would be (0.098, 0.444)
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Comparing the MLE and Bayes intervals

� MLE interval: (-0.022, 0.308)

� Left endpoint can be unrealistic

� “In 95% of experiments, the procedure we used 

would produce a CI that contains the true value of λ”

� CI = “confidence interval”

� Bayesian interval: (0.098, 0.444)

� Endpoints always in the parameter space

� P[0.098 < λ < 0.444 | data] = 0.95

� CI = “credible interval”
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Choosing priors… Conjugate priors

� For the binomial

� Beta prior:

� Binomial likelihood:            L(p) ∝ pk (1-p)n-k

� Beta posterior:

� For the exponential

� Gamma prior:

� Exponential likelihood:

� Gamma posterior:

� Conjugate prior: iff posterior is in same “family”
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� Conjugate priors make life easy

� Even with no formulae, using rbeta() or rgamma()
to simulate from the posterior was easy!

� For exponential model, a non-conjugate choice:

� Prior: log-normal:

� Likelihood: exponential:

� Posterior:

� JAGS, WinBUGS are programs for simulating from 

the posterior, no matter what prior!

Non-conjugate priors & JAGS
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Normal Model: Estimate µ, with σ

Known, One Observation x ∼ N(µ,σ)

� Easy to “see” conjugate prior

� Posterior must be normal for µ (quadratic in µ!); 

to identify it, complete the square…
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� The exponent of p(µ|x) looks like -1/2 times

so that µ|x ∼ N(µ, τ
), where
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� The exponent of p(µ|x) looks like -1/2 times

so that µ|x ∼ N(µ, τ
), where
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n Observations xi ∼ N(µ,σ)

� Since

we can apply the results for one observation

� p(x1, …, xn|µ) ∝ N(x|µ, σn
),  σn

 = σ/n

� p(µ) = N(µ|µ, τ
)

� p(µ|data) = N(µ|µn , τn
) where
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Normal Mean, Example
� Suppose we know σ=12, we look at n=169 IQ 

scores, and we find x = 100.

� We use as prior N(µ, τ
) with µ=90, τ

 = 4

� Shrinkage determined by

� is the reliability

� n larger ⇒

reliability larger ⇒

less shrinkage 90 100 110
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Minnesota Radon Example
� Emphasize Distribution Structure

� Emphasize Bayesian point of view (more later!)

� Emphasize two-stage (multistage) sampling
Mean radon across MN

County-level differences

from grand mean

individual house levels
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Minnesota Radon Example

� In each county i with ni houses, the posterior

mean radon level will be

� When ni large, µi
post ≈ yi

� When ni small, µi
post ≈ µ

Mean radon across MN

County-level differences

from grand mean

individual house levels
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Minnesota Radon Example

� In the figure, the grand 

mean is µ

� In each county i with ni

houses, posterior mean is

� When ni large, µi
post ≈ yi

� When ni small, µi
post ≈ µ
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Summary

� Exponential Likelihood, Gamma Prior, & Prof Smedley

� Prior Influence on Posterior

� Comparing 95% intervals

� Conjugate Priors

� Non-Conjugate Priors & WinBUGS

� Normal Model: Estimate Mean, Variance Known

� Shrinkage and the Minnesota Radon  Example

� Start reading Lynch Ch 4 – on course website!


