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Practical Bayesian Statistics

m (posterior)  (likelihood)x (prior)
= We typically want quantities like
0 point estimate: Posterior mean, median, mode
0 uncertainty: SE, IQR, or other measure of ‘spread’

o credible interval (Cl)
- (’9 25E, 0 + 2SE)
" (00050 Oo.g75)
o Other aspects of the “shape” of the posterior distribution
m Aside: If (prior) < 1, then
o (posterior) o (likelihood)
o posterior mode = mle, posterior SE = 1/1(6)/2, etc.
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Obtaining posterior point estimates,
credible intervals

= Easy if we recognize the posterior distribution and we
have formulae for means, variances, etc.

= Whether or not we have such formulae, we can get
similar information by simulating from the posterior
distribution.

= Keyidea: F[g(f)|data] = /g(@)f(9|data)d0

1 M
~ Z 9(0m)
m=1

where 0 , 0,/ is a sample from (0| data).

17 PYAT

11/3/2016



‘ Example: Mastery Learning

= Some computer-based tutoring systems declare
that you have “mastered” a skill if you can
perform it successfully r times.

= The number of times x that you erroneously
perform the skill before the rth success is a
measure of how likely you are to perform the skill
correctly (how well you know the skill).

m The distribution for the number of failures x
before the rth success is the negative binomial
distribution.
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‘ Negative Binomial Distribution

m Let X = x, the number of failures before the rt"
success. The negative binomial distribution is

f(zlp,r) = (w e 1)20“"(1 —p)°

xr
m The conjugate prior distribution is the beta
distribution

F(pla, gy = OTB) s

far? P
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‘ Posterior inference for negative
binomial and beta prior

m (posterior) o< (likelihood) x (prior):

f|X =) ocp"(1 = p)* x p*~H(1 = p)"~*

= Since this is Beta(p | a+r,6+x),
a—+r
at+r+p+2x
(a+7)(B+x)
(a+r+p+z)(a+r+B+z+1)

= and this lets us compute point estimate and
approximate 95% Cl’s.

Ep|X =] =

Var(p| X =z) =
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‘ Some specific cases...

m Leta=1, 3=1 (so the prioris Unif(0,1)), and suppose
we declare mastery for 3 successes

m |[f X=4, then s )
a+r +
EplX =2] = a+r+B+z 1+3+1+4 9
VarGlX = o) = (143)(1 +4) 20

(14+3+1+4)2(1+3+1+4+1) 810
Approx 95% Cl: (0.12, 0.76)

= If X =10, then

1 4
EplX=a2] = —2FT  _ t3 4
at+r+pf+z 1+3+1+10 15
14+3)(1+10 44
Var(p|X =z) = (1+3)(1+10) =

(1+3+1+10)2(1+3+14+10+1) 3600
Approx 95% ClI: (0.05, 0.49)

11/3/2016



We can get similar answers with
simulation

m WhenX=4,r=3,a+r=4,3+x=5
> p.post <- rbeta(10000,4,5)
> mean (p.post) .
[1] 0.4444919 .
> var (p.post) gg,
[1] 0.02461883
> quantile(p.post,c(0.025,0.975))

2.5% 97.5%
0.1605145 0.7572414 e
> plot (density(p.post)) N=10000 Bandwidth=0.02238
= When X = 10' r= 3, a+r= 4’ ﬁ +x=11 density.default(x = p.post)

> p.post <- rbeta(10000,4,11)
> mean (p.post)
[1] 0.2651332

25 30 35
L L L

> var (p.post) =

[1] 0.01201078 e

> quantile(p.post,c(0.025,0.975)) o
2.5% 97.5%

0.0846486 0.5099205
> plot (density(p.post))

00 05
L L

N=10000 Bandwidth=001563
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Using a non-conjugate prior distribution

= Instead of a uniform prior, suppose psychological theory
says the prior density should increase linearly from 0.5
to 1.5 as @ moves from O to 1?

fp)=1,0<p<1 flp)=p+05 0<p<1
- 0
g - [
| .
8 8 |

o.o 0.z o0a o6 o.= 1.0 0o o= o.a o o.= 1.0
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‘ Posterior inference for negative
binomial and linear prior

m (posterior) o< (likelihood) x (prior):

fpIX =z) < p"(1—=p)* x (p+0.5)
mr=3,x=4:

f(pIX =) < p°(1 = p)*(p+0.5) 77
mr=3,x=10:

fplX =) cp’(1—p)°(p+0.5) 77

11/3/2016 11

What to do with p" (1 —p)*(p+0.5) ?

= No formulae for means, variances!
= No nice function in R for simulation!
m There are many simulation methods that we can
build “from scratch”
o B. Ripley (1981) Stochastic Simulation, Wiley.
o L. Devroye (1986) Nonuniform random variate
generation, Springer.
= We will focus on just one method:
o Markov Chain Monte Carlo (MCMC)

0 Programs like WinBUGS and JAGS automate the
simulation/sampling method for us.
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‘ We will use this to give a taste of
JAGS... Need likelihood and prior:

m Likelihood is easy:
x ~ dnegbin (p, r)

m Prior for p is a little tricky:
p ~ f(p) = p + 0.5 not a standard density!

m But we can use a trick:
the inverse probability transform
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‘ Aside: the Inverse Probability

Transform

m [f U ~ Unif(0,1) and F(z) is the CDF of a continuous
random variable, then Z = F1(U) will have F(z) as
its CDF (exercise!!).

m The prior for p in our model has pdf p + 1/2, so its
CDF is F(p)=(p? + p)/2.
s Fl(u)=(2u + 1/4)*?-1/2
= Soif U~ Unif(0,1), then
P=(2U+1/4)2-1/2
has density f(p) =p + 1/2.
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‘ JAGS: Need to specify likelihood and
prior

m Likelihood is easy:
X ~ dnegbin(p, r)

m Priorforpis:
p <- (u + 1/4)~{1/2} + 1/2
where
u ~ dunif (0, 1)
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‘The JAGS model

mastery.learning.model <- "model ({

# specify the number of successes needed for mastery
r <- 3

# specify likelihood
x ~ dnegbin (p, r)

# specify prior (using inverse probability xform)
p <- sgrt(2*u + 0.25) - 0.5
u ~ dunif (0, 1)
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‘ Estimate p when student has 4
failures before 3 successes

library (R2jags)

library (rube) Histogram of p

mastery.data <- list(x=4)

rube.fit <- rube (mastery.learning.model, 7;§¥
mastery.data, mastery.init, - ?#
parameters.to.save=c ("p"), ff ix
n.iter=20000,n.thin=3)

# generates about 10,000 samples :

20

Density
15
|
.
T

p <- rube.fit$sims.list$p

1.0

hist (p, prob=T)
lines (density(p))
mean (p) + c(-2,0,2)*sd(p)

05

vV V.V V V 4+ + + V V V V

[1] 0.1549460 0.4685989 0.7822518

> quantile (p,c(0.025, 0.50, 0.975)) ~ . :

00 02 04 06
2.5% 50% 97.5%
0.1777994 0.4661076 0.7801111

08
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‘ Estimate p when student has 10
failures before 3 successes

# library(R2jags)

# library (rube)

mastery.data <- list(x=10)

rube.fit <- rube(mastery.learning.model, Histogram of p

mastery.data, mastery.init,
parameters.to.save=c ("p"), ; N

35
|

25

# generates about 10,000 samples | X\
p <- rube.fit$sims.listSp

Density
20
|

15

hist (p, prob=T)
lines (density(p))

10

mean(p) + c(-2,0,2)*sd(p)
1] 0.05594477 0.28247419 0.50900361

05
1

>

>

>

>

+

+ o
+  n.iter=20000,n.thin=3) ) XK
>

>

>

>

>

[

>

quantile (p,c(0.025, 0.50, 0.975)) © o ‘
2.5% 50% 97.5%
0.09085802 0.27119223 0.52657339

08 08
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Hierarchical Form of Bayesian Models

= In the past few lectures, we’ve seen many models
that involve a likelihood and a prior

= A somewhat more compact notation is used to
describe the models, and we will start using it
now

o Level 1: the likelihood (the distribution of the data)
o Level 2: the prior (the distribution of the parameter(s))

= Eventually there will be other levels as well!
m Examples on the following pages...

11/3/2016 19

‘ Hierarchical Beta-Binomial model

= Likelihood is binomial: m Level 1: x ~ Binom(x|n,p)
f(xln,p) = (3)p" (1 —p)"~*

m Prioris beta distribution: = Level 2: p ~ Beta(p|«, )

F(pla, B) = piseokpe (1 — p)P~1

m (posterior) < m (posterior)
(likelihood) x (prior) (level 1) x (level 2)

= Beta(p | a+x,3+n-x)
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‘ Hierarchical Gamma-Exponential Model

m Likelihood is Exponential: = Level 1:
n

flxy,....,xn) = H Ae AT z; % Expon(z|\),
1=1

1=1,....n
= Prior is Gamma: = Level 2:
F(Ma, B) = o xa1e A ~ Gamma(Ala, B)
I'(a)
m (posterior) < m (posterior)
(likelihood) x (prior) (level 1) x (level 2)

= Gamma(\|a+n,B + n X)
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‘ Hierarchical Normal-Normal model

m Likelihood (for mean) is = Level 1:
normal:
n ) . jid
flxy, ..., Tplp) = H . e 27 (#im 1) L1, L2y yTp ~ N(:UM 02)
i 2mo
m Prioris normal (for s Level 2:
mean): 5
1 —imemw? o~ N(po, T
flu) = g (k0,76

e
V21T

m (posterior) o
(likelihood) x (prior)

m (posterior)o
(level 1) x(level 2)

p~ N (i, 772)
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‘ Hierarchical Beta-Negative Binomial
Model

= Likelihood is Negative- = Level 1:
Binomial: NB(zlr. p)
€T ~ x|T,
[(elp,r) = (”’ e 1)pr<1 )" g
= Level 2:
m Prioris Gamma:
D@+ 8) oy 51 p ~ Beta(p|a, B)
f(ple, B) = T (5)” (1-p)

m (posterior)o
= (posterior)ox (level 1) x(level 2)

likelihood) % (pri
(likelihood)> (prior) p ~ Beta(pla+r, 5+ x)
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‘ Hierarchical Linear-Negative Binomial
Model

= Likelihood is Negative- = Level 1:
Binomial:
R x ~ NB(z|r,p)
falpr) = (" -y
= Level 2:

m Prior is Linear Density:
p~ f(p)=p+05

flp)=p+05 0<p<1
m (posterior)o

= (posterior)oc (level 1) x (level 2)

(likelihood) x (prior) f(pldata) o p" (1 — p)*(p + 0.5)

11/3/2016 24



‘ The “levels” and the “slogan”

= The “levels” and the “slogan” are based on the

idea that

f(z,0)

and so

f(0]z)

= f(z|0)f(0)

x f(x]0)f(0)
—  (likelihood) x (prior)
= (level 1) x (level 2)

11/3/2016
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‘ Extending the “levels” and the “slogan”

= Now suppose we have two parameters:

f(90791,92)

— f(x|'91792)f(‘91792)
= f(x]01,02)f(01|02)f(02)

m This means we can write

f<917 92|$)

f(x, (91, 92)
/()
f(@|61,02)f(01162)f(02)
(likelihood) x (prior) x (“hyper-prior")
(level 1) x (level 2) x (level 3)

m This idea can be extended with more parameters
and more levels...

11/3/2016
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Mastery Learning: Distribution of
Masteries

= Last time, we considered one student at a time according
to
o Level 1: x ~ NB(x|r,p)
o Level 2: p ~ Beta(p|a,()

= Now, suppose we have a sample of n students, and the
number of failures before the rt" success for each
student is x;, X,, ..., X,,.
o We want to know the distribution of p, the probability of success,

in the population: i.e. we want to estimate a & (!

= We will model this as
o Level 1: x, ~ NB(x|r,p), i=1, ..., n
o Level 2: p, ~ Beta(p|a,0),i=1, .., n
o Level 3: @ ~ Gamma(a|a,,b,), B ~ Gamma(3|a,,b,)
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Mastery Learning: Distribution of
Masteries

= We want to know the distribution of p, the
probability of success, in the population: i.e. we
want to estimate a & (!

o Level 1: x, ~ NB(x|r,p,), =1,
A
0 Level 2:p)~ Beta(p (a,0),i=1, .., n

o Level 3: « ~ Gamma(a|a,b,), B ~ Gamma(a|a,,b,)
Cs 8 ,3 for population of students
A/?// /\ (04
/pl D2 “e Pn p; = student prob of right
|

I X2 C s x; = errors before r rights

n+2 parameters!
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Mastery Learning: Distribution of
Masteries

m Level 1:If x,, X,, ... X, are the failure counts then

n

f(mla”'axnlpl;'"?pn?'r) :H<

=1

r+x; —
Li

1 'S €T;
)ml—po ;

m Level 2:If py, p,, ... P, are the success probabilties,

= (81
fp1y- - Pnles ) = LT(a)T(5)"" (1—ps)
s Level3:  flalab) = %aal—le—abl
f(Blaz,bs) = %5@2—16—&2
e 29

Distribution of Mastery probabilities...

m Applying the “slogan” for 3 levels:

f(p17 s 7pnaa75|data)
X f(xlv <. '>$n|p17 s 7pn7T) X f(ph s ,pn|a75)jXf(a‘a17b1)f(/8‘a2,b2)/

/ N

(level 1) (level 2) (level 3)
n
r+xz; — 1Y\ , }
(1 — p;)*e
< TI(7 0 Jpem
n
/ XH F(a‘i‘ﬁ)p?—l(l_pi),ﬁ—l
We can drop these i=1 F(a)F(ﬁ)
since they only / por paz
depend on data X T 1 aal—le—abl - 2 Baz—le—,@bz
Can’t drop these (al) (QQ)

since we want to

esta & f... \

We need to choose a4, by,

a,, b,. Then we can drop these
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Distribution of Mastery probabilities...

= If we take a,=1, b,=1, a,=1, b,=1, and drop the
constants we can drop, we get

f(p17 ce oy Pn, & 7/8|data)

T
x sz 1—p;)* XH% e O e O

m Suppose our data consist of the n=5 values
=4, x,=10, x3=5, x,=7, X;=3
(number of failures before r=3 successes)

m Problem: We need a way to sample from the
5+2=7 parameters py, ..., ps, @, (!
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‘ Solution: Markov-Chain Monte Carlo
(MCMC)

m MCMC is very useful for multivariate distributions,
e.g. (0,0, ...,0x)

= Instead of dreaming up a way to make a draw
(simulation) of all K variables at once MCMC takes
draws one at a time

m We “pay” for this by not getting independent draws.
The draws are the states of a Markov Chain.

m The draws will not be “exactly right” right away; the
Markov chain has to “burn in” to a stationary
distribution; the draws after the “burn-in” are what
we want!

11/3/2016 ‘ For theory, see Chib & Greenberg, American Statistician, 1995, pp. 327-335 ‘ 3
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