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Outline

� Bayesian Statistics and MCMC 

� Distribution of Skill Mastery in a Population

� Digression: What is Markov Chain Monte Carlo (MCMC)

� Estimating the Distribution of Skills

� JAGS & RUBE for MCMC

� Checking the MCMC output

� Results of the MCMC output

� P3() function

� The JAGS recipe: Prof Smedley’s Histograms

� MCMC for Hierarchical Linear Models: Minnesota Radon
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Bayesian Statistics and MCMC

� Our slogan(s)

� (posterior)∝(likelihood)×(prior)

� (posterior)∝(level 1)×(level 2)

� (posterior)∝(level 1)×(level 2)×(level 3)

� etc.

� Often there are no formulas for posterior, so we have to 
simulate draws from the posterior

� MCMC is a general method for doing posterior draws

� Calculate complete conditionals

� Invent methods for sampling from complete conditionals

� Stitch together samples into a Markov Chain

� Summarize Markov Chain with histograms, medians, credible 
intervals, etc.
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Mastery Learning: Distribution of 

Masteries

� We want to know the distribution of p, the 

probability of success, in the population: i.e. we 

want to estimate α & β !

� Level 1: xi ∼ NB(x|r,pi), i=1, …, n

� Level 2: pi ∼ Beta(p|α,β), i = 1, …, n

� Level 3: α∼ Gamma(α|a1,b1), β ∼ Gamma(α|a2,b2)

α,β for population of students

pi = student prob of right

xi = errors before r rights

n+2 parameters!
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Mastery Learning: Distribution of 

Masteries

� Level 1: If x1, x2, … xn are the failure counts then

� Level 2: If p1, p2, … pn are the success probabilties,

� Level 3:
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Distribution of Mastery probabilities…

� Applying the “slogan” for 3 levels:

We can drop these

since they only

depend on data

Can’t drop these

since we want to 
est α & β…

We need to choose a1, b1,
a2, b2.  Then we can drop these
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Solution: Markov-Chain Monte Carlo 

(MCMC)

� MCMC is very useful for multivariate distributions, 
e.g. f(θ,θ, …,θK)

� Instead of dreaming up a way to make a draw 
(simulation) of all K variables at once MCMC takes 
draws one at a time

� We “pay” for this by not getting independent draws.  
The draws are the states of a Markov Chain.

� The draws will not be “exactly right” right away; the 
Markov chain has to “burn in” to a stationary 
distribution; the draws after the “burn-in” are what 
we want!
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(Digression:  What is a Markov Chain?)

� A Markov Chain is a stochastic process (36-410!), i.e. it is 

a sequence of random variables T1, T2, T3, T4, T5, …

� The thing that makes it a Markov Chain is the Markov 

Property:

� Tm+1 is independent of T1, … Tm-1, given Tm

� “the future is independent of the past, given the present”

� A stationary Markov Chain has a transition probability 

function f(tm|tm-1)…

� If the T’s are discrete rv’s, can write f(tm|tm-1) in terms of a 

matrix of probabilities

� If the T’s are continuous rv’s, f(tm|tm-1) is just a conditional 

density
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(Digression:  What is a Markov Chain? 

…An Example)
� Random Walk

� T0 = initial state or “starting point”, e.g. 0

� The transition probability is
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Back to MCMC…

� We want to simulate draws from f(θ, …,θK).

� Let                                             be a reasonable initial state

� Now successively sample each θk from its “complete 

conditional” distribution:

and let

� Now T1, T2, …, TM are MCMC draws “from f”
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MCMC generalities…

� The theory of MCMC (e.g. Chib & Greenberg, 

American Statistician, 1995, pp. 327-335) tells us 

that

� is a stationary Markov Chain

� Tm has stationary distribution f(θ, …., θK)

� So, if we sample M steps, and throw away the 

first few, the remaining Tm’s can be treated like a 

sample from f(θ, …., θK)

� Not an iid sample though!         -law may not apply!  
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MCMC and BUGS (JAGS) / RUBE

� Working out the complete conditionals (CC’s) is 

fun but error prone

� Working out how to sample from the CC’s is fun 

but error-prone

� BUGS1/ JAGS2 can work out CC’s and sample from 

them, for a large set of models, automagically!

� RUBE is an interface to BUGS or JAGS that 

� checks syntax, 

� provides additional flexibility for writing models,

� makes nice diagnostic plots, etc.

1. Bayesian inference Using Gibbs Sampling

2. Just Another Gibbs Sampler



Mastery Probabilities: The JAGS Program

� Level 1:

xi ∼ NB(x|r,pi), i=1, …, n

� Level 2: 

pi ∼ Beta(p|α,β), 
i = 1, …, n

� Level 3:

α∼ Gamma(α|a1,b1), 
β ∼ Gamma(β|a2,b2)

"model {

# LEVEL 1

for (i in 1:n) {

x[i] ~ dnegbin(p[i],r)

}

# LEVEL 2

for (i in 1:n) {

p[i] ~ dbeta(alpha,beta)

}

# LEVEL 3 

alpha ~ dgamma(1,1)

beta ~  dgamma(1,1)

}"

1311/7/2016

Different writers & 

software tools use 

different notation –

be careful!

R-like syntax

for most things

Should specify constant 

parameters at highest level

Running JAGS from R with RUBE

> library(R2jags)

> library(rube)

> # 1. Write model for JAGS

> #    (prev slide!)

> # 2. Write the data as an

> #    R list, or data frame

> mastery.data <- list(x = 

+ c(4,10,5,7,3), n=5, r=3)

> # 3. Make an “initial 

> #    values” function

> mastery.inits<-function() 

{ list(alpha=rgamma(1,1,1), 

beta = rgamma(1,1,1))

}

> # 4. Check JAGS model

> #    with RUBE

> rube(mastery.model, 

+ mastery.data, 

+ mastery.inits)

> # 5. Perform JAGS simu-

> #    lation with RUBE

> mcmc.3 <-

+ rube(mastery.model,

+ mastery.data, 

+ mastery.inits,

+ parameters.to.save =

+ c("alpha","beta","p"))
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Results of MCMC Simulation
� Normally, RUBE removes half the MCMC steps as “burn-

in”, runs 3 chains & produces ~ 300 samples per chain.

� I adjusted the arguments to rube so that I got 1000 steps 
with no burn-in, for each chain.  I looked carefully at the 
output for the first chain, for all seven parameters:

� α, β, p1, p2, p3, p4 and p5

� On the next couple of pages are pictures of the raw 
output, so you can see

� What it looks like

� What to look for

[Can get this and other diagnostics with rube’s p3() function!]

� After that, I present some results (CI’s, the distribution of 
P[mastery] in the population, etc.)
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Raw MCMC output

� Two things you should always check:

1. Graph the “random walk” of each parameter to decide whether 

the initial value has too much influence, the chain is “sticky” or 

appears not to be hovering around a good central value, etc.

alpha beta
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Raw MCMC output

� Two things you should always check:

2. Graph the “autocorrelation plot” of each parameter.  Too much 

correlation makes using means, variances, etc. of the posterior 

sample more difficult
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Results of the MCMC Simulation, I

� 95% CI’s and (median) point estimates

2.5%  50% 97.5%

alpha 0.41 1.25  3.21

beta  0.55 1.86  4.65

p1    0.15 0.41  0.72

p2    0.08 0.25  0.50

p3    0.13 0.37  0.67

p4    0.11 0.32  0.58

p5    0.18 0.47  0.78
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Results of the MCMC Simulation, I

(Aside)
� It can be a good idea to check the correlation between parameters, to 

see whether there really is separable information about every 
parameter

alpha  beta    p1    p2    p3    p4    p5

alpha  1.00  0.54  0.10  0.19  0.10  0.16  0.07

beta   0.54  1.00 -0.14 -0.01 -0.11 -0.08 -0.20

p1     0.10 -0.14  1.00  0.03  0.05  0.07  0.07

p2     0.19 -0.01  0.03  1.00  0.05 -0.01  0.04

p3     0.10 -0.11  0.05  0.05  1.00  0.01  0.11

p4     0.16 -0.08  0.07 -0.01  0.01  1.00  0.07

p5     0.07 -0.20  0.07  0.04  0.11  0.07  1.00
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Results of the MCMC Simulation, II

� Histograms of the posterior distributions



� A picture of the population distribution of 
P[mastery], as estimated from these 5 students

� Recall that there

were 4, 10,  5,  7,

& 3 failures before

the 3rd success

� The estimates of p

were 0.41, 0.25,

0.37, 0.32, 0.47

� Estimates of alpha, beta
were 1.25 and 1.86

2111/7/2016

Results of the MCMC Simulation, III
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Recipe: Building and Fitting a Bayesian 

model with JAGS/rube MCMC
1. Write down the model as a hierarchical model

2. Rewrite the model in JAGS notation

3. Write the pieces rube() needs
A. Model (as an extended text string)

B. Data List

C. Initial Values Function

4. Check syntax and modeling assumptions with rube()

5. Decide
A. parameters.to.save: which parameters do you want simulation 

for?

B. n.chains: how many MCMC chains to create?

6. Perform JAGS simulation with rube(), look with p3()
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Example: Professor Smedley’s Boxplots

� Three randomly-chosen students from Prof. 

Smedley’s class took x1 = 3, x2 = 10 and x3 = 8 

days to learn boxplots 

� We assume likelihood (level 1)  is exponential:

� We will assume a Gamma prior distribution (level 

2) to start with, with α=1, β=2:
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1. Write the model down as a 

hierarchical model

� Level 1:

� Level 2:
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2. Rewrite the model in JAGS notation

# LEVEL 1

for (i in 1:n) {

x[i] ~ dexp(lambda)

}

# LEVEL 2

lambda ~ dgamma(1, 2)
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3. The pieces rube() needs:

A: model (as extended string)

M1 <- "model {

for (i in 1:n) {

x[i] ~ dexp(lambda)

}

lambda ~ dgamma(1,2)

}"
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3. The pieces rube() needs:

B: data list

data.list.1 <- list(x=c(3,10,8), n=3)

� Each data variable is one element in the list

� You can (& should) add other constants to the list (like 
sample size: n=3 in this case)

� When the data is in a data frame “my.data.frame”, it 
usually works to do something like this:
my.data.list <- as.list(my.data.frame)

my.data.list$N <- dim(my.data.frame)[1]

my.data.list$J <- 35 # however many groups you 
have!
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3. The pieces rube() needs:

C: initial values function
inits.1 <- function () {

list(lambda=rgamma(1,.5,1))

}

� Each parameter should get an initial value

� If you forget, JAGS will supply a lame initial value

� Typical initial values:

� Draw from the prior for that parameter (the lame JAGS value)

� Draw from a distribution with greater variance than the 
posterior for that parameter (“overdispersed”)

� In complicated problems, can take initial value from a 
simpler model (more on this in later lectures!)
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4. Check syntax and assumptions with 

rube()
library(rube)

library(R2jags)

rube(M1,data.list.1,inits.1)

� If you do not supply “parameters.to.save” argument, 
rube() will not run JAGS, it will just check your model

� rube() will summarize
� constants in your data.list (e.g. n=3)

� data variables in your data.list (e.g. x=c(3,10,8)

� distributions for data and parameters (dexp, dgamma)

� initial values for parameters

� rube() will also try to catch syntax errors for you
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5. Decide… A: Which parameters you 

want random samples of

parameters.to.save=c(“lambda”)

� If there is more than one, list each parameter name in 

quotes, separated by commas (e.g. 

c(“lambda”,”alpha”,”beta”)

� The more parameters you “save” random samples of, the 

larger the files you get back from JAGS

� Eats disk space

� Eats RAM, may slow down your laptop

� For small  problems, this isn’t an issue!
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5. Decide… B: How many MCMC chains 

to produce

n.chains=3

� For the “first run” of a big/complicated problem, use 

n.chains=1

� Something will go wrong

� You won’t have to wait as long to find out and fix it

� For the “last run” of a complicated problem, or if you just 

have a small problem to start with, use n.chains=3 or 

more

� Three chains is usually enough to assess convergence

� Rhat < 1.1 � MCMC sample is representative of the posterior
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6. Perform JAGS simulation with rube(), 

look with p3()
> M1.fit <- rube(M1,data.list.1,inits.1,               

parameters.to.save=c("lambda"), n.chains=3)

> M1.fit

Rube Results:

Run at 2010-11-10 11:32 and taking 2.82 secs 

mean    sd MCMCerr    2.5%   25%    50%    75%  97.5% Rhat n.eff

lambda    0.172 0.085  0.0411  0.0496  0.11  0.163  0.216  0.361 1.01   310

deviance 18.529 1.203  0.0027 17.6800 17.77 18.045 18.820 21.696 1.02   290

DIC = 19.269

> p3(M1.fit)
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6. Perform WinBUGS simulation with 

rube(), look with p3()

0 50 100 150 200 250 300
0
.1

0
.3

0
.5

la
m

b
d
a

iteration number

lambda ~ dgamma

0 5 10 15 20 25

0
.0

0
.4

0
.8

A
C

F

Lag

Rhat=1.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
1

2
3

4
5

d
e
n
s
ity

lambda

What is     ?

� Suppose we have M chains:

� Define
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What is     ?

� Separated chains:

� Converged chains:
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Example: Minnesota Radon – Intercept 

Only

� MLM:

� Hierarchical:

� Demonstration in R and 

rube()/JAGS…

� (comparison with lmer 

also)
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Multilevel Models in JAGS
� MLM form

� Hierarchical form

� BUGS/rube form

model {

# LEVEL 1

for (i in 1:N) {

log.radon[i] ~ 

dnorm(a0[county[i]],prec.y)

}

# LEVEL 2

for (j in 1:MAX.COUNTY=85) {

a0[j] ~ dnorm(b0,prec.cty)

}

# PRIORS/LEVEL 3:

b0 ~ dnorm(0,PREC.b0=1e-6)

prec.y ~ dgamma(ALPHA=0.001,BETA=0.001)

prec.cty ~ dgamma(ALPHA=0.001,BETA=0.001)

# CONVERT PRECISION TO VARIANCES

var.y <- 1/prec.y

var.cty <- 1/prec.cty

}

� MLM form

� Hierarchical form
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Multilevel Models in JAGS
� BUGS/rube form

model {

# LEVEL 1

for (i in 1:N) {

log.radon[i] ~ 

dnorm(a0[county[i]],prec.y)

}

# LEVEL 2

for (j in 1:MAX.COUNTY=85) {

a0[j] ~ dnorm(b0,prec.cty)

}

# PRIORS/LEVEL 3:

b0 ~ dnorm(0,PREC.b0=1e-6)

prec.y ~ dgamma(ALPHA=0.001,BETA=0.001)

prec.cty ~ dgamma(ALPHA=0.001,BETA=0.001)

# CONVERT PRECISION TO VARIANCES

var.y <- 1/prec.y

var.cty <- 1/prec.cty

}
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Multilevel Models in JAGS
� MLM form

� Hierarchical form

� BUGS/rube form

model {

# LEVEL 1

for (i in 1:N) {

log.radon[i] ~ 

dnorm(a0[county[i]],prec.y)

}

# LEVEL 2

for (j in 1:MAX.COUNTY=85) {

a0[j] ~ dnorm(b0,prec.cty)

}

# PRIORS/LEVEL 3:

b0 ~ dnorm(0,PREC.b0=1e-6)

prec.y ~ dgamma(ALPHA=0.001,BETA=0.001)

prec.cty ~ dgamma(ALPHA=0.001,BETA=0.001)

# CONVERT PRECISION TO VARIANCES

var.y <- 1/prec.y

var.cty <- 1/prec.cty

}

� MLM form

� Hierarchical form
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Multilevel Models in JAGS
� BUGS/rube form

model {

# LEVEL 1

for (i in 1:N) {

log.radon[i] ~ 

dnorm(a0[county[i]],prec.y)

}

# LEVEL 2

for (j in 1:MAX.COUNTY=85) {

a0[j] ~ dnorm(b0,prec.cty)

}

# PRIORS/LEVEL 3:

b0 ~ dnorm(0,PREC.b0=1e-6)

prec.y ~ dgamma(ALPHA=0.001,BETA=0.001)

prec.cty ~ dgamma(ALPHA=0.001,BETA=0.001)

# CONVERT PRECISION TO VARIANCES

var.y <- 1/prec.y

var.cty <- 1/prec.cty

} Look at the 

Distributions

section (pp 56ff

in manual14.pdf)
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Multilevel Models in JAGS
� MLM form

� Hierarchical form

� BUGS/rube form

model {

# LEVEL 1

for (i in 1:N) {

log.radon[i] ~ 

dnorm(a0[county[i]],prec.y)

}

# LEVEL 2

for (j in 1:MAX.COUNTY=85) {

a0[j] ~ dnorm(b0,prec.cty)

}

# PRIORS/LEVEL 3:

b0 ~ dnorm(0,PREC.b0=1e-6)

prec.y ~ dgamma(ALPHA=0.001,BETA=0.001)

prec.cty ~ dgamma(ALPHA=0.001,BETA=0.001)

# CONVERT PRECISION TO VARIANCES

var.y <- 1/prec.y

var.cty <- 1/prec.cty

}

4211/7/2016

Multilevel Models in JAGS
� MLM form

� Hierarchical form

� BUGS/rube form

model {

# LEVEL 1

for (i in 1:N) {

log.radon[i] ~ 

dnorm(a0[county[i]],prec.y)

}

# LEVEL 2

for (j in 1:MAX.COUNTY=85) {

a0[j] ~ dnorm(b0,prec.cty)

}

# PRIORS/LEVEL 3:

b0 ~ dnorm(0,PREC.b0=1e-6)

prec.y ~ dgamma(ALPHA=0.001,BETA=0.001)

prec.cty ~ dgamma(ALPHA=0.001,BETA=0.001)

# CONVERT PRECISION TO VARIANCES

var.y <- 1/prec.y

var.cty <- 1/prec.cty

} Have to add priors

to all free parameters
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What’s new?

� summary(rube.object): point estimates and CI’s 

for “some” parameters.  Others available in 

� rube.object$mean

� rube.object$sd

� rube.object$median

� rube.object$sims.list

� etc

� p3(rube.object): interactive graphical summaries
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What’s new?

� rube()/WinBUGS/JAGS automatically

� Runs 3 separate MCMC chains

� Runs each MCMC chain for 2000 steps, and throws away the first 

1000 steps as “burn-in”

� Thins each chain by 1/3 to reduce autocorrelation

� You can change this when you run rube(); see pp. 25ff. of the 

“rube.pdf” documentation.

� rube()/WinBUGS/JAGS reports an “Rhat” statistic for 

each parameter estimated

� Rhat is a ratio of between-chain to within-chain variation

� When the chain is converged, Rhat < 1.2.  Otherwise, the chain 

hasn’t run long enough yet.



4511/7/2016

Outline

� Bayesian Statistics and MCMC 
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� Digression: What is Markov Chain Monte Carlo (MCMC)

� Estimating the Distribution of Skills
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� Checking the MCMC output

� Results of the MCMC output

� P3() function

� The JAGS recipe: Prof Smedley’s Histograms

� MCMC for Hierarchical Linear Models: Minnesota Radon


