36-463/663Multilevel and Hierarchical Models

From Bayes to MCMC to MLMs Brian Junker 132E Baker Hall brian@stat.cmu.edu

11/7/2016

Outline

- Bayesian Statistics and MCMC
- Distribution of Skill Mastery in a Population
- Digression: What is Markov Chain Monte Carlo (MCMC)
- Estimating the Distribution of Skills
 - □ JAGS & RUBE for MCMC
 - Checking the MCMC output
 - Results of the MCMC output
 - P3() function
- The JAGS recipe: Prof Smedley's Histograms
- MCMC for Hierarchical Linear Models: Minnesota Radon

Bayesian Statistics and MCMC

- Our slogan(s)
 - □ (posterior) ∝ (likelihood) × (prior)
 - (posterior) \propto (level 1) \times (level 2)
 - □ (posterior) \propto (level 1)×(level 2)×(level 3)
 - □ etc.
- Often there are no formulas for posterior, so we have to simulate draws from the posterior
- MCMC is a general method for doing posterior draws
 - Calculate complete conditionals
 - Invent methods for sampling from complete conditionals
 - Stitch together samples into a Markov Chain
 - Summarize Markov Chain with histograms, medians, credible intervals, etc.

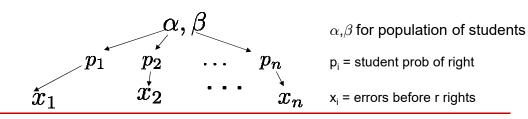
11/7/2016

Mastery Learning: Distribution of Masteries

 We want to know the distribution of p, the probability of success, in the population: <u>i.e. we</u> <u>want to estimate α & β!</u>

• Level 1: $x_i \sim NB(x|r,p_i)$, i=1, ..., n n+2 parameters!

- Level 2: $p_i \sim \text{Beta}(p(\alpha,\beta), i = 1, ..., n$
- □ Level 3: α ~ Gamma(α |a₁,b₁), β ~ Gamma(α |a₂,b₂)



Mastery Learning: Distribution of Masteries

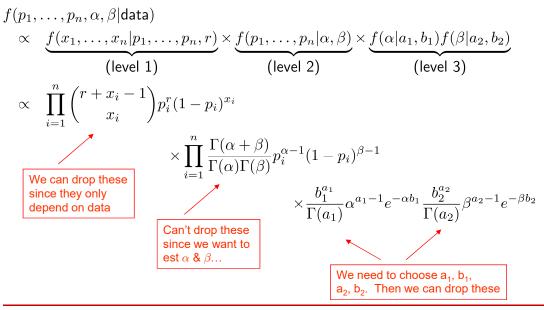
• <u>Level 1</u>: If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are the failure counts then $f(x_1, \dots, x_n | p_1, \dots, p_n, r) = \prod_{i=1}^n \binom{r + x_i - 1}{x_i} p_i^r (1 - p_i)^{x_i}$

• Level 2: If
$$p_1$$
, p_2 , ... p_n are the success probabilties,
 $f(p_1, \dots, p_n | \alpha, \beta) = \prod_{i=1}^n \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p_i^{\alpha - 1} (1 - p_i)^{\beta - 1}$
• Level 3: $f(\alpha | a_1, b_1) = \frac{b_1^{a_1}}{\Gamma(a_1)} \alpha^{a_1 - 1} e^{-\alpha b_1}$
 $f(\beta | a_2, b_2) = \frac{b_2^{a_2}}{\Gamma(a_2)} \beta^{a_2 - 1} e^{-\beta b_2}$

11/7/2016

Distribution of Mastery probabilities...

Applying the "slogan" for 3 levels:



<u>Solution</u>: Markov-Chain Monte Carlo (MCMC)

- MCMC is very useful for multivariate distributions, e.g. f(θ₁,θ₂, ...,θ_K)
- Instead of dreaming up a way to make a draw (simulation) of all K variables at once MCMC takes draws one at a time
- We "pay" for this by not getting independent draws. The draws are the states of a <u>Markov Chain.</u>
- The draws will not be "exactly right" right away; the Markov chain has to "burn in" to a stationary distribution; the draws after the "burn-in" are what we want!

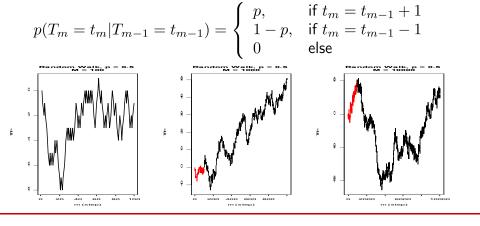
11/7/2016

(Digression: What is a Markov Chain?)

- A <u>Markov Chain</u> is a stochastic process (36-410!), i.e. it is a sequence of random variables T₁, T₂, T₃, T₄, T₅, ...
- The thing that makes it a Markov Chain is the <u>Markov</u> <u>Property</u>:
 - $\ \ \, \Box \ \ \, T_{m+1} \text{ is independent of } T_1, \, ... \, T_{m-1}, \text{ given } T_m$
 - "the future is independent of the past, given the present"
- A <u>stationary</u> Markov Chain has a transition probability function f(t_m|t_{m-1})...
 - If the T's are discrete rv's, can write f(t_m|t_{m-1}) in terms of a matrix of probabilities
 - If the T's are continuous rv's, f(t_m|t_{m-1}) is just a conditional density

(Digression: What is a Markov Chain? ... An Example)

- Random Walk
 - \Box T₀ = initial state or "starting point", e.g. 0
 - The transition probability is



11/7/2016

Back to MCMC...

- We want to simulate draws from $f(\theta_1, ..., \theta_K)$.
 - \square Let $T_m = (heta_1^{(m)}, heta_2^{(m)}, \dots, heta_K^{(m)})$ be a reasonable initial state
 - □ Now successively sample each θ_k from its "complete conditional" distribution:

$$\begin{array}{lll} \theta_{1}^{(m+1)} & \sim & f(\theta_{1}|\theta_{2}^{(m)}, \theta_{3}^{(m)}, \dots, \theta_{K}^{(m)}) \\ \theta_{2}^{(m+1)} & \sim & f(\theta_{2}|\theta_{1}^{(m+1)}, \theta_{3}^{(m)}, \dots, \theta_{K}^{(m)}) \\ \theta_{3}^{(m+1)} & \sim & f(\theta_{3}|\theta_{1}^{(m+1)}, \theta_{2}^{(m+1)}, \theta_{4}^{(m)}, \dots, \theta_{K}^{(m)}) \\ & \vdots & \vdots & \vdots \\ \theta_{K}^{(m+1)} & \sim & f(\theta_{K}|\theta_{2}^{(m+1)}, \theta_{3}^{(m+1)}, \dots, \theta_{K-1}^{(m+1)}) \\ \end{array}$$
 and let $T_{m+1} = (\theta_{1}^{(m+1)}, \theta_{2}^{(m+1)}, \dots, \theta_{K}^{(m+1)})$

Now T₁, T₂, ..., T_M are MCMC draws "from f

MCMC generalities...

- The theory of MCMC (e.g. Chib & Greenberg, American Statistician, 1995, pp. 327-335) tells us that
 - \Box $T_m = (\theta_1^{(m)}, \theta_2^{(m)}, \dots, \theta_K^{(m)})$ is a stationary Markov Chain \Box T_m has stationary distribution f(θ_1 , ..., θ_K)
- So, if we sample M steps, and throw away the first few, the remaining T_m 's can be treated like a sample from $f(\theta_1, ..., \theta_K)$

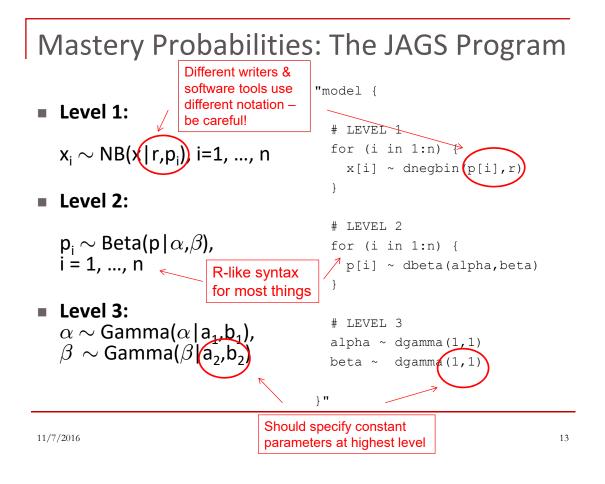
• Not an iid sample though! \sqrt{M} -law may not apply!

11/7/2016

MCMC and BUGS (JAGS) / RUBE

- Working out the complete conditionals (CC's) is fun but error prone
- Working out how to sample from the CC's is fun but error-prone
- BUGS¹/ JAGS² can work out CC's and sample from them, for a large set of models, automagically!
- RUBE is an interface to BUGS or JAGS that
 - □ checks syntax,
 - provides additional flexibility for writing models,
 - makes nice diagnostic plots, etc.

1. <u>Bayesian inference</u> <u>Using</u> <u>Gibbs</u> <u>Sampling</u> 2.



Running JAGS from R with RUBE

```
> library(R2jags)
                               > # 4. Check JAGS model
> library(rube)
                               > #
                                      with RUBE
> # 1. Write model for JAGS
                               > rube(mastery.model,
> #
      (prev slide!)
                               + mastery.data,
> # 2. Write the data as an
                               + mastery.inits)
> #
      R list, or data frame
                              > # 5. Perform JAGS simu-
> mastery.data <- list(x =</pre>
+ c(4,10,5,7,3), n=5, r=3)
                              > #
                                      lation with RUBE
> # 3. Make an "initial
                              > mcmc.3 < -
      values" function
> #
                               + rube(mastery.model,
> mastery.inits<-function()</pre>
                               + mastery.data,
{ list(alpha=rgamma(1,1,1),
                               + mastery.inits,
 beta = rgamma(1, 1, 1))
                               + parameters.to.save =
}
                               + c("alpha", "beta", "p"))
```

Results of MCMC Simulation

- Normally, RUBE removes half the MCMC steps as "burnin", runs 3 chains & produces ~ 300 samples per chain.
- I adjusted the arguments to rube so that I got 1000 steps with no burn-in, for each chain. I looked carefully at the output for the first chain, for all seven parameters:
 - $\square \quad \alpha, \beta, p_1, p_2, p_3, p_4 \text{ and } p_5$
- On the next couple of pages are pictures of the raw output, so you can see
 - What it looks like
 - What to look for

[Can get this and other diagnostics with rube's p3() function!]

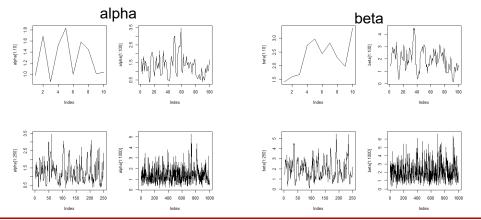
 After that, I present some results (Cl's, the distribution of P[mastery] in the population, etc.)

11/7/2016

15

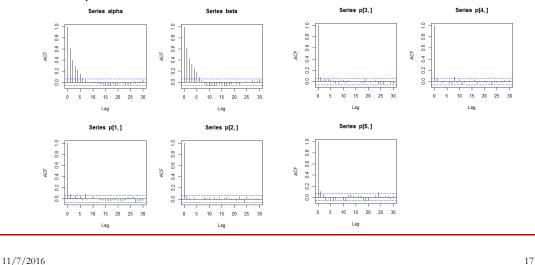
Raw MCMC output

- Two things you should always check:
 - 1. Graph the "random walk" of each parameter to decide whether the initial value has too much influence, the chain is "sticky" or appears not to be hovering around a good central value, etc.



Raw MCMC output

- Two things you should always check:
 - 2. Graph the "autocorrelation plot" of each parameter. Too much correlation makes using means, variances, etc. of the posterior sample more difficult



Results of the MCMC Simulation, I

95% Cl's and (median) point estimates

	2.5%	50%	97.5%
alpha	0.41	1.25	3.21
beta	0.55	1.86	4.65
pl	0.15	0.41	0.72
p2	0.08	0.25	0.50
р3	0.13	0.37	0.67
p4	0.11	0.32	0.58
р5	0.18	0.47	0.78

Results of the MCMC Simulation, I (Aside)

 It can be a good idea to check the correlation between parameters, to see whether there really is separable information about every parameter

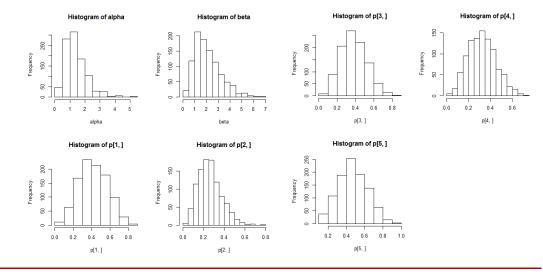
	alpha	beta	p1	p2	р3	p4	р5
alpha	1.00	0.54	0.10	0.19	0.10	0.16	0.07
beta	0.54	1.00	-0.14	-0.01	-0.11	-0.08	-0.20
pl	0.10	-0.14	1.00	0.03	0.05	0.07	0.07
p2	0.19	-0.01	0.03	1.00	0.05	-0.01	0.04
pЗ	0.10	-0.11	0.05	0.05	1.00	0.01	0.11
p4	0.16	-0.08	0.07	-0.01	0.01	1.00	0.07
p5	0.07	-0.20	0.07	0.04	0.11	0.07	1.00

11/7/2016

19

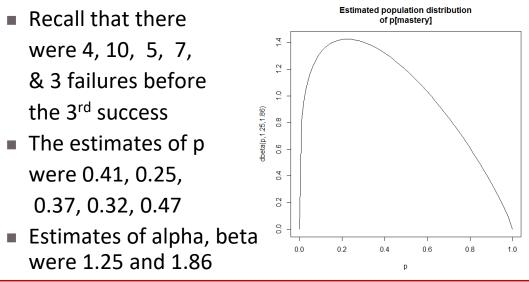
Results of the MCMC Simulation, II

Histograms of the posterior distributions



Results of the MCMC Simulation, III

 A picture of the population distribution of P[mastery], as estimated from these 5 students



11/7/2016

Recipe: Building and Fitting a Bayesian model with JAGS/rube MCMC

- 1. Write down the model as a hierarchical model
- 2. Rewrite the model in JAGS notation
- 3. Write the pieces rube() needs
 - A. Model (as an extended text string)
 - B. Data List
 - c. Initial Values Function
- 4. Check syntax and modeling assumptions with rube()
- 5. Decide
 - A. <u>parameters.to.save</u>: which parameters do you want simulation for?
 - B. <u>n.chains</u>: how many MCMC chains to create?
- 6. Perform JAGS simulation with rube(), look with p3()

Example: Professor Smedley's Boxplots

- Three randomly-chosen students from Prof. Smedley's class took x₁ = 3, x₂ = 10 and x₃ = 8 days to learn boxplots
- We assume likelihood (level 1) is exponential:

$$f(x_i|\lambda) = \lambda e^{-\lambda x_i}, \ i = 1, \dots, n$$

We will assume a Gamma prior distribution (level
 2) to start with, with α=1, β=2:

$$f(\lambda|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\lambda\beta}$$

11/7/2016

1. Write the model down as a hierarchical model

Level 1:

$$x_i \stackrel{iid}{\sim} \mathsf{Expon}(\lambda), i = 1, \dots, n$$

Level 2:

$$\lambda \sim \mathsf{Gamma}(\alpha,\beta)$$

2. Rewrite the model in JAGS notation

```
# LEVEL 1
for (i in 1:n) {
    x[i] ~ dexp(lambda)
  }
# LEVEL 2
lambda ~ dgamma(1, 2)
```

11/7/2016

3. The pieces rube() needs: B: data list

```
data.list.1 <- list(x=c(3,10,8), n=3)</pre>
```

- Each data variable is one element in the list
- You can (& should) add other constants to the list (like sample size: n=3 in this case)
- When the data is in a data frame "my.data.frame", it usually works to do something like this:

```
my.data.list <- as.list(my.data.frame)
my.data.list$N <- dim(my.data.frame)[1]
my.data.list$J <- 35 # however many groups you
have!</pre>
```

11/7/2016

```
3. The pieces rube() needs:
C: initial values function
inits.1 <- function () {
    list(lambda=rgamma(1,.5,1))
}</li>
Each parameter should get an initial value
    lf you forget, JAGS will supply a lame initial value
Typical initial values:
    Draw from the prior for that parameter (the lame JAGS value)
Draw from a distribution with greater variance than the posterior for that parameter ("overdispersed")
In complicated problems, can take initial value from a simpler model (more on this in later lectures!)
```

```
4. Check syntax and assumptions with
rube()
library(rube)
library(R2jags)
rube(M1,data.list.1,inits.1)
```

- If you do not supply "parameters.to.save" argument, rube() will not run JAGS, it will just check your model
- rube() will summarize
 - constants in your data.list (e.g. n=3)
 - data variables in your data.list (e.g. x=c(3,10,8)
 - distributions for data and parameters (dexp, dgamma)
 - initial values for parameters
- rube() will also try to catch syntax errors for you

11/7/2016

```
29
```

5. Decide... A: Which parameters you want random samples of

```
parameters.to.save=c("lambda")
```

- If there is more than one, list each parameter name in quotes, separated by commas (e.g. c("lambda","alpha","beta")
- The more parameters you "save" random samples of, the larger the files you get back from JAGS
 - Eats disk space
 - Eats RAM, may slow down your laptop
- For small problems, this isn't an issue!

5. Decide... B: How many MCMC chains to produce

n.chains=3

- For the "first run" of a big/complicated problem, use n.chains=1
 - Something will go wrong
 - You won't have to wait as long to find out and fix it
- For the "last run" of a complicated problem, or if you just have a small problem to start with, use n.chains=3 or more
 - □ Three chains is usually enough to assess convergence
 - □ Rhat < 1.1 \rightarrow MCMC sample is representative of the posterior

11/7/2016

Perform JAGS simulation with rube(), look with p3()

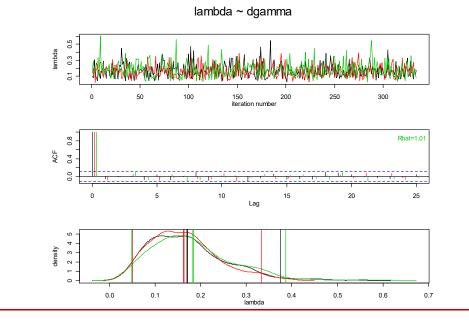
```
> M1.fit <- rube(M1,data.list.1,inits.1,
    parameters.to.save=c("lambda"), n.chains=3)</pre>
```

> M1.fit

Rube Results: Run at 2010-11-10 11:32 and taking 2.82 secs mean sd MCMCerr 2.5% 25% 50% 75% 97.5% Rhat n.eff lambda 0.172 0.085 0.0411 0.0496 0.11 0.163 0.216 0.361 1.01 310 deviance 18.529 1.203 0.0027 17.6800 17.77 18.045 18.820 21.696 1.02 290 DIC = 19.269

> p3(M1.fit)

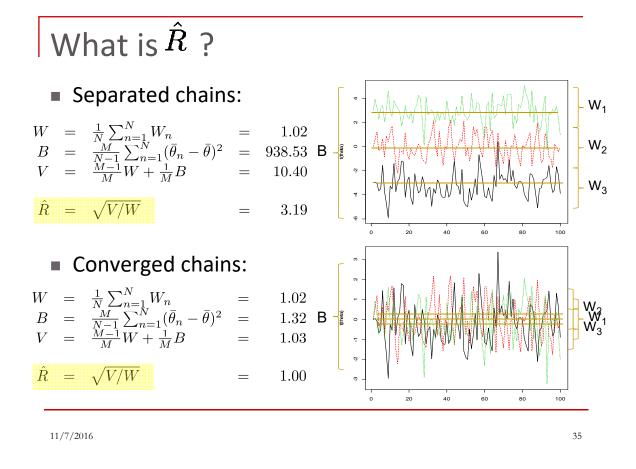
6. Perform WinBUGS simulation with rube(), look with p3()



11/7/2016

What is \hat{R} ?

Suppose we have M chains:						
	Chains			Means	Variances	
	$\theta^{(1;1)},$	$ heta^{(1;2)},$,	$ heta^{(1;N)}$	$\overline{ heta}_1$	W_1
	÷	÷	·	÷	÷	÷
	$\theta^{(M;1)},$	\vdots $\theta^{(M;2)},$	••••,	$\theta^{(M;N)}$	$\overline{\theta}_M$	W_M
			Gra	nd mean	$\overline{ heta}$	
Defin	$W = \frac{1}{\lambda}$	$rac{1}{\mathcal{I}(N-1)}\sum_{n=1}^{N}$ verage with		-	$(- \overline{ heta}_n)^2 =$	$\frac{1}{M}\sum_{m=1}^{M}W_m$
$B = \frac{M}{M-1} \sum_{m=1}^{M} (\bar{\theta}_m - \bar{\theta})^2$ = Between-chain variance, inflated for sample size						
		$\frac{M-1}{M}W + \frac{1}{M}$ ooled varia		mate,		



Example: Minnesota Radon – Intercept Only

- MLM: $y_i = \alpha_{0j[i]} + \epsilon_i,$ $\epsilon_i \sim N(0, \sigma^2)$ $\alpha_{0j} = \beta_0 + \eta_j,$ $\eta_j \sim N(0, \tau^2)$
- Hierarchical:

Level 1: $y_i \sim N(\alpha_{0j[i]}, \sigma^2)$

Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$

- Demonstration in R and rube()/JAGS...
- (comparison with Imer also)

Multilevel Models in JAGS

MLM form	BUGS/rube form
$y_i = \alpha_{0j[i]} + \epsilon_i,$	model {
$\begin{aligned} \epsilon_i &\sim N(0,\sigma^2) \\ \alpha_{0j} &= & \beta_0 + \eta_j, \\ & \eta_j &\sim N(0,\tau^2) \end{aligned}$	<pre># LEVEL 1 for (i in 1:N) { log.radon[i] ~ dnorm(a0[county[i]],prec.y) } # LEVEL 2 for (j in 1:MAX.COUNTY=85) { a0[j] ~ dnorm(b0,prec.cty) }</pre>
Level 1: $y_i \sim N(\alpha_{0j[i]}, \sigma^2)$ Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$	<pre># PRIORS/LEVEL 3: b0 ~ dnorm(0,PREC.b0=1e-6) prec.y ~ dgamma(ALPHA=0.001,BETA=0.001) prec.cty ~ dgamma(ALPHA=0.001,BETA=0.001) # CONVERT PRECISION TO VARIANCES var.y <- 1/prec.y var.cty <- 1/prec.cty }</pre>

11/7/2016

37

Multilevel Models in JAGS

MLM form	BUGS/rube form
$y_i = \alpha_{0j[i]} + \epsilon_i,$	model {
$\epsilon_i \sim N(0, \sigma^2)$ $\alpha_{0j} = \beta_0 + \eta_j,$ $N(0, \sigma^2)$	<pre># LEVEL 1 for (i in 1:N) { log.radon[i] ~ dnorm(a0[county[i]],prec.y) }</pre>
$\eta_j \sim N(0,\tau^2)$ Hierarchical form	<pre># LEVEL 2 for (j in 1:MAX.COUNTY=85) { a0[j] ~ dnorm(b0,prec.cty) }</pre>
Level 1: $y_i \sim N(\alpha_{0j[i]}, \sigma^2)$	<pre># PRIORS/LEVEL 3: b0 ~ dnorm(0,PREC.b0=1e-6) prec.y ~ dgamma(ALPHA=0.001,BETA=0.001) prec.cty ~ dgamma(ALPHA=0.001,BETA=0.001)</pre>
Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$	<pre># CONVERT PRECISION TO VARIANCES var.y <- 1/prec.y var.cty <- 1/prec.cty }</pre>

Multilevel Models in JAGS BUGS/rube form MLM form $y_i = \alpha_{0j[i]} + \epsilon_i,$ model { # LEVEL 1 $\epsilon_i \sim N(0, \sigma^2)$ for (i in 1:N) { log.radon[i]~~ $\alpha_{0j} = \beta_0 + \eta_j,$ dnorm(a0[county[i]], prec.y) } $\eta_i \sim N(0, \tau^2)$ # LEVEL 2 for (j in 1:MAX.COUNTY=85) { a0[j] ~ dnorm(b0,prec.cty) Hierarchical form # PRIORS/LEVEL 3: b0 ~ dnorm(0,PREC.b0=1e-6) Level 1: $y_i \sim N(\alpha_{0j[i]}, \sigma^2)$ prec.y ~ dgamma(ALPHA=0.001,BETA=0.001) prec.cty ~ dgamma (ALPHA=0.001, BETA=0.001) Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$ # CONVERT PRECISION TO VARIANCES var.y <- 1/prec.y</pre> var.cty <- 1/prec.cty</pre> }

39

11/7/2016

Multilevel Models in JAGS

 MLM form 	BUGS/rube form
$y_i = \alpha_{0j[i]} + \epsilon_i,$	model {
$\epsilon_i \sim N(0, \sigma^2)$ $\alpha_{0j} = \beta_0 + \eta_j,$	<pre># LEVEL 1 for (i in 1:N) { log.radon[i] ~ dnorm(a0[county[i]] prec.y)</pre>
$\eta_j \sim N(0, \tau^2)$	<pre>} # LEVEL 2 for (j in 1:MAX.COUNTY=85) {</pre>
 Hierarchical form 	a0[j] ~ dnorm(b0,prec.cty) }
Level 1: $y_i \sim N(\alpha_{0j[i]}, \sigma^2)$	<pre># PRIORS/LEVEL 3: b0 ~ dnorm(0,PREC,b0=1e-6) prec.y ~ dgamma(ALPHA=0.001,BETA=0.001) prec.cty ~ dgamma(ALPHA=0.001,BETA=0.001)</pre>
Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$	<pre># CONVERT PRECISION TO VARIANCES var.y <- 1/prec.y</pre>
	Var.cty <- 1/prec.cty } Look at the Distributions
11/7/2016	section (pp 56ff in manual14ºpdf)

Multilevel Models in JAGS BUGS/rube form MLM form $= \alpha_{0j[i]} + \epsilon_i,$ y_i model { # LEVEL 1 $\epsilon_i \sim N(0, \sigma^2)$ for (i in 1:N) { log.radon[i] ~ $\alpha_{0j} = \beta_0 + \eta_j,$ dnorm(a0[county[i]],prec.y) } $\eta_i \sim N(0, \tau^2)$ # LEVEL 2 for (j in 1:MAX.COUNTY=85) { (a0[j]) ~ dnorm(b0, prec.cty)) Hierarchical form # PRIORS/LEVEL 3: b0 ~ dnorm(0, PREC. b0=1e-6) Level 1: $y_i \sim N(\alpha_{0j[i]}, \sigma^2)$ prec.y ~ dgamma (ALPHA=0.001, BETA=0.001) prec.cty ~ dgamma (ALPHA=0.001, BETA=0.001) Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$ # CONVERT PRECISION TO VARIANCES var.y <- 1/prec.y var.cty <- 1/prec.cty</pre> } 11/7/2016 41

Multilevel Models in JAGS

 MLM form 	BUGS/rube form
$y_i = \alpha_{0j[i]} + \epsilon_i,$	model {
$\epsilon_i \sim N(0, \sigma^2)$	<pre># LEVEL 1 for (i in 1:N) { log.radon[i] ~</pre>
$\alpha_{0j} = \beta_0 + \eta_j,$	<pre>dnorm(a0[county[i]],prec.y)</pre>
$\eta_j \sim N(0, \tau^2)$	<pre> # LEVEL 2 for (j in 1:MAX.COUNTY=85) {</pre>
 Hierarchical form 	a0[j] ~ dnorm(b0,prec.cty) }
Level 1: $y_i \sim N(\alpha_{0j[i]}, \sigma^2)$	<pre># PRIORS/LEVEL 3: b0 ~ dnorm(0, PREC.b0=1e-6) prec.y ~ dgamma(ALPHA=0.001, BETA=0.001) prec.cty ~ dgamma(ALPHA=0.001, BETA=0.001)</pre>
Level 2: $\alpha_{0j} \sim N(\beta_0, \tau^2)$	<pre># CONVERT PRECISION TO VARIANCES var.y <- 1/prec.y var.cty <- 1/prec.cty Have to add priors }</pre>
	to all free parameters

What's new?

- summary(rube.object): point estimates and Cl's for "some" parameters. Others available in
 - rube.object\$mean
 - □ rube.object\$sd
 - rube.object\$median
 - rube.object\$sims.list
 - 🗆 etc
- p3(rube.object): interactive graphical summaries

11/7/2016

What's new?

- rube()/WinBUGS/JAGS automatically
 - Runs 3 separate MCMC chains
 - Runs each MCMC chain for 2000 steps, and throws away the first 1000 steps as "burn-in"
 - Thins each chain by 1/3 to reduce autocorrelation
 - You can change this when you run rube(); see pp. 25ff. of the "rube.pdf" documentation.
- rube()/WinBUGS/JAGS reports an "Rhat" statistic for each parameter estimated
 - Rhat is a ratio of between-chain to within-chain variation
 - When the chain is converged, Rhat < 1.2. Otherwise, the chain hasn't run long enough yet.

Outline

- Bayesian Statistics and MCMC
- Distribution of Skill Mastery in a Population
- Digression: What is Markov Chain Monte Carlo (MCMC)
- Estimating the Distribution of Skills
 - JAGS & RUBE for MCMC
 - Checking the MCMC output
 - Results of the MCMC output
 - P3() function
- The JAGS recipe: Prof Smedley's Histograms
- MCMC for Hierarchical Linear Models: Minnesota Radon

11/7/2016