
1

Markov Chain Monte Carlo for Item
Response Models∗

CONTENTS

1.1 Introduction . 1
1.2 Applied Bayesian Inference . 2
1.3 Markov Chain Monte Carlo—General Ideas . 4
1.4 Gibbs Sampling . 6
1.5 Metropolis-Hastings . 7
1.6 Tricks of the Trade . 9

1.6.1 Initial State, Burn-In, and Convergence . 9
1.6.2 Monte Carlo Standard Error and Posterior Uncertainty 14
1.6.3 Blocking . 17
1.6.4 Data Augmentation . 18
1.6.5 Rao-Blackwellization . 19

1.7 Item Response Theory Models . 20
1.8 Implementing an MCMC Algorithm . 23

1.8.1 Simulating Fake Data . 24
1.8.2 The MCMC Algorithm Shell . 27
1.8.3 Building the Complete Conditionals . 29
1.8.4 Tuning Metropolis-Hastings . 33
1.8.5 Testing on Simulated Data . 35
1.8.6 Applying the Algorithm to Real Data . 36
1.8.7 Miscellaneous Advice . 38

1.9 Discussion . 43

1.1 Introduction

Markov Chain Monte Carlo (MCMC) has revolutionized modern statistical
computing, especially for complex Bayesian and latent variable models. A
recent Web of Knowledge search (Thompson ISI, 2012) for “Markov Chain
Monte Carlo” yielded 6,015 articles, nearly half in Statistics, and the rest
spread across fields ranging from Computational Biology to Transportation
and Thermodynamics. Of these, seventy-two articles appear in Psychome-
trika, Journal of Educational and Behavioral Statistics and Applied Psycho-

∗This work was supported in part by a Graduate Training Grant awarded to Carnegie
Mellon University by the US Department of Education, Institute of Education Sciences
(#R305B090023). The opinions and views expressed do not necessarily reflect those of IES
or the DoEd. The order of authorship is alphabetical.

1

2 Markov Chain Monte Carlo for Item Response Models

logical Measurement, and another seventeen in Psychological Methods, Jour-
nal of Educational Measurement and Educational and Psychological Measure-
ment. This is remarkable for an estimation method that first appeared in a
psychometrics-related journal around 1990.

For all of its success, it dawned on the broader scientific and statistics
community slowly. With roots at the intersection of modern computing and
atomic weapons research at Los Alamos New Mexico during World War II
(Los Alamos National Laboratory, 2012; Metropolis, 1987), MCMC began as a
method for doing state calculations in physics (Metropolis, Rosenbluth, Rosen-
bluth, Teller, and Teller, 1953) and image restoration Geman and Geman
(1984), and first came to widespread notice in the field of statistics through
the work of Gelfand and Smith (1990), despite earlier pioneering work of Hast-
ings (1970) and Tanner and Wong (1987). A more complete history of MCMC
is provided by Robert and Casella (2011), and a very accessible introduction
to the method can be found in Chib and Greenberg (1995).

As is evident from its roots (Metropolis, 1987, p. 129, Metropolis et al.,
1953), MCMC is not inherently a Bayesian technique. It was used for years as
a way of sampling from intractable, often high-dimensional, distributions, and
has widespread applications in the integration, estimation and optimization
of functions (e.g. Geyer, 1996). Its success in statistics and psychometrics
however is driven by the extent to which it makes computation and estimation
for complex, novel Bayesian models tractable (e.g. Congdon, 2007; Fox, 2010;
Gelman, Carlin, Stern, and Rubin, 2003, etc.). In this chapter we consider the
application of MCMC methods to Bayesian IRT and IRT-like models.

1.2 Applied Bayesian Inference

Item response theory (IRT) models, and psychometric models generally, deal
fundamentally with multiway data. The most common formulation is two-way
data consisting of coded responses Upi of persons p = 1, . . . , P to items (tasks,
stimuli, test questions, etc.) i = 1, . . . , I. IRT provides a family of probabilistic
models for the two-way array U = [Upi] of coded item responses,

f(U|Θ,B,γ) , (1.1)

given a set Θ of possibly multidimensional person parameters Θ =
(θ1, . . . ,θP), a set B of possibly multidimensional item parameters B =
(β1, . . . ,βI), and possibly an additional set γ of other parameters. (Under
mild regularity conditions, e.g. Billingsley, 1995, any parametric model f(U ; τ)
for U expressed in terms of parameters τ can be identified as a conditional
distribution f(U|τ) for U given τ . For the Bayesian calculations considered
in this chapter, we always assume this identification.)

This basic formulation, and all of the methodology discussed in this chap-

Markov Chain Monte Carlo for Item Response Models∗ 3

ter, can be modified to account for additional hierarchical structure (Béguin
and Glas, 2001; Fox and Glas, 2001; Janssen, Tuerlinckx, Meulders, and
de Boeck, 2000; Kamata, 2001; Maier, 2001, for example), multiple time points
(Fox, 2011; Studer, 2012, for example), ratings of each item (Mariano and
Junker, 2007; Patz, Junker, Johnson, and Mariano, 2002, for example), com-
puterized adaptive testing (Jones and Nediak, 2005; Matteucci and Veldkamp,
2011; Segall, 2002, 2003, for example), missing data (Glas and Pimentel, 2008;
Patz and Junker, 1999b, for example), etc. Each of these changes the structure
of U—to be a multiway array, a ragged array, etc.—and may also introduce
covariates and other features of designed and realized data collection. To keep
the discussion focused on fundamental ideas, however, we will mostly consider
complete two-way designs in this chapter.

To make the notation concise, we will collect all of the parameters Θ, B,
γ together into a single J-dimensional vector vector τ = (τ1, . . . , τJ)T , so the
basic model in Equation 1.1 becomes f(U|τ). If we supply a prior distribution
f(τ), we can write the joint distribution of the data and parameters as

f(U , τ) = f(U|τ)f(τ) (1.2)

and, following Bayes’ rule, the posterior distribution of τ as

f(τ |U) =
f(U|τ)f(τ)∫
f(U|t)f(dt)

∝ f(U|τ)f(τ) (1.3)

as a function of τ .
(Here and throughout, we repeatedly re-use the notation f() to represent

various discrete and continuous probability density functions, with the par-
ticular role of f() clear from context. In addition, all integrals

∫
g(x)f(dx)

should be interpreted as Stieltjes integrals, for example, if f() is a continuous
density, this is a usual integral, and if f() is a discrete density, this is a sum.)

Applied Bayesian statistics focuses on characterizing the posterior in Equa-
tion 1.3 in various ways. For example we may be interested in

• The posterior mean, or expected a posteriori (EAP) estimate of τ ,

E[τ |U] =

∫
τf(dτ |U)

or perhaps the posterior mean of a function E[g(τ)|U], or

• The posterior mode, or maximum a posteriori (MAP) estimate of τ ,

argmaxτ f(τ |U)

or

• A credible interval (CI), that is, a set A of parameter values τ such that

P (τ ∈ A|U) = 1− α

for some fixed probability 1− α, or

4 Markov Chain Monte Carlo for Item Response Models

• A graph or other characterization of the shape of f(τ |U) as a function of
(some coordinates of) τ ,

and so forth.

1.3 Markov Chain Monte Carlo—General Ideas

The essential problem is to learn about the posterior distribution f(τ |U),
and this problem is made difficult by the need to compute the integral in
the denominator of Equation 1.3. In most applications this integral must
be computed numerically rather than analytically, and is usually quite high-
dimensional—the dimension J of the parameter space is at least as large as
P + I, the number of persons plus the number of items. Difficult numerical
integration can often be sidestepped by Monte Carlo methods, and Markov
Chain Monte Carlo (MCMC) offers a straightforward methodology for gen-
erating samples from (approximately) the posterior distribution f(τ |U) in
well-behaved Bayesian models, without directly calculating the integral in
Equation 1.3.

The essential idea is to define a stationary Markov chainM0,M1,M2, . . .
with states Mk = (τ (k)), and transition kernel

κ(t(0), t(1)) = P [Mk = (t(1))|Mk−1 = (t(0))] ,∀k ,

the probability of moving to a new state t(1) given the current state t(0), with
stationary distribution π(t), defined by∫

κ(t(0), t(1))π(dt(0)) = π(t(1)) . (1.4)

A common sufficient condition for Equation 1.4 to hold is detailed balance or
reversibility, that is,

π(t(0))κ(t(0), t(1)) = π(t(1))κ(t(1), t(0)) . (1.5)

The Markov chain is said to be π-irreducible if it has positive probability of
entering any set A for which π(A) =

∫
A
π(dt) > 0. It is said to be periodic

if there are portions of the state space that it can visit only at regularly
spaced intervals; otherwise it is aperiodic. If a Markov chain has stationary
distribution π() as in Equation 1.4 and it is π-irreducible and aperiodic then
the distribution of Mk will converge as, k → ∞, to π(); see Tierney (1994)
for details.

If we can define the transition kernel κ(t(0), t(1)) so that in Equation 1.4
π(t) = f(t|U), then, after throwing away the first K observations—the “burn-
in” period before the distribution ofMk has converged to π(t)—the remaining

Markov Chain Monte Carlo for Item Response Models∗ 5

1. Sample τ
(k)
1 from f(τ 1|τ (k−1)

2 , . . . , τ
(k−1)
H ,U);

2. Sample τ
(k)
2 from f(τ 2|τ (k)

1 , τ
(k−1)
3 , . . . , τ

(k−1)
H ,U);

3. Sample τ
(k)
3 from f(τ 3|τ (k)

1 , τ
(k)
2 , τ

(k−1)
4 , . . . , τ

(k−1)
H ,U);

...

H. Sample τ
(k)
H from f(τH |τ (k)

1 , τ
(k)
2 , τ

(k)
3 , . . . , τ

(k)
H−1,U).

FIGURE 1.1
A generic blocked-MCMC algorithm based on the partition (τ 1, τ 2, . . . , τH)
of τ into H blocks of parameters.

“good” observations (τ (1)) = MK+1, (τ
(2)) = Mk+2, . . . , (τ

(M)) = MK+M

can be treated like (dependent) draws from f(τ |U).
For example, an EAP estimate of any integrable function g(τ) can be

obtained simply as ∫
τ
g(τ)f(dτ |U) ≈ 1

M

M∑
m=1

g(τ (m)) ;

with convergence guaranteed as M →∞. Similarly, an approximate graph of
f(τ |U) can be constructed as a (smoothed) histogram of the sample τ (m),m =
1, . . . ,M , and CI’s and MAP estimates can be computed from the graph. More
sophisticated methods leading to more efficient and stable estimates are also
available, and should be used in practice; see for example Section 1.6.

Constructing the transition kernel κ(t(0), t(1)), so that the stationary dis-
tribution of the Markov chain is the posterior distribution f(τ |U), is remark-
ably straightforward. For example, let (τ 1, τ 2) be a disjoint partition of the
parameter vector τ into two blocks of parameters. Then a short calculation
verifying Equation 1.4 shows that

κ(τ (0), τ (1)) = f(τ
(1)
1 |τ

(0)
2 ,U)f(τ

(1)
2 |τ

(1)
1 ,U) (1.6)

has stationary distribution f(τ |U).
More broadly, let (τ 1, τ 2, . . . , τH) be any fixed, disjoint partition of the

parameter vector τ into H ≤ J blocks. In Figure 1.1 we define a sam-

pling scheme to move from Mk−1 = (τ
(k−1)
1 , τ

(k−1)
2 , . . . , τ

(k−1)
H) to Mk =

(τ
(k)
1 , τ

(k)
2 , . . . , τ

(k)
H) in the Markov chain.

The conditional densities on the right in Figure 1.1 are called complete
conditionals, because they express the distribution of each partition element
τh conditional on all other parameters and data in the model. To make the
notation more concise we often abbreviate the conditioning variables in a

6 Markov Chain Monte Carlo for Item Response Models

complete conditional as “rest”, and write f(τh|rest). An extension of the cal-
culation showing that the kernel in Equation 1.6 has f(τ |U) as its stationary
distribution shows that the kernel consisting of the product of the complete
conditionals,

κ(τ (k−1), τ (k)) = f(τ
(k)
1 |τ

(k−1)
2 , . . . , τ

(k−1)
H ,U) (1.7)

× f(τ
(k)
2 |τ

(k)
1 , τ

(k−1)
3 , . . . , τ

(k−1)
H ,U)× f(τ (k)

3 |τ
(k)
1 , τ

(k)
2 , τ

(k−1)
4 , . . . , τ

(k−1)
H ,U)

× · · · × f(τ
(k)
H |τ

(k)
1 , τ

(k)
2 , τ

(k)
3 , . . . , τ

(k)
H−1,U)

= f(τ
(k)
1 |rest)× f(τ

(k)
2 |rest)× f(τ

(k)
3 |rest)× · · · × f(τ

(k)
H |rest)

also has f(τ |U) as its stationary distribution.

Note that each complete conditional density is proportional to the joint
density as a function of its block of parameters, for example

f(τ 1|τ 2, . . . , τH ,U) =
f(U|τ 1, τ 2, . . . , τH)f(τ 1, τ 2, . . . , τH)∫

τ1
f(U|dτ 1, τ 2, . . . , τH)f(dτ 1, τ 2, . . . , τH)

∝ f(U|τ 1, τ 2, . . . , τH)f(τ 1, τ 2, . . . , τH) (1.8)

as a function of τ 1, holding the other blocks τ 2, . . . , τH and the data U fixed.
Thus, when the likelihood f(U|τ 1, τ 2, . . . , τH) and prior f(τ 1, τ 2, . . . , τH)
factor into a product of terms involving separate blocks of the partition
(τ 1, τ 2, . . . , τH), it is easy to “pick out” a function proportional to the com-
plete conditional, by simply retaining those terms in the joint density that
depend on τ 1. Examples of this idea will be presented in Section 1.7.

It should be noted that there is nothing special about the order in which
parameters are sampled in Figure 1.1, or even the fact that each parameter
is sampled once per complete step of the algorithm. In designing an MCMC
algorithm, we are free to change this scan order in any way that we wish, as
long as each parameter is visited a non-vanishing fraction of the time. A basic
result discussed by Hastings (1970, p. 102) and Tierney (1994, p. 1710), and
referred to as the “product of kernels” principle by Chib and Greenberg (1995,
p. 332), guarantees that all such scan orders will have the same stationary
distribution. We will return to this idea in Section 1.8.7.

In Sections 1.4, 1.5 and 1.6 we discuss common, generic approaches to con-
structing transition kernels for MCMC Markov chains and making inferences
from them, and we illustrate these methods in Sections 1.7 and 1.8. It is not
necessary to routinely include the forms of complete conditionals or the meth-
ods used to sample from them in published journal articles, except when the
complete conditionals or sampling methodology deserve special theoretical or
pedagogical attention.

Markov Chain Monte Carlo for Item Response Models∗ 7

1.4 Gibbs Sampling

An MCMC algorithm is simplest to implement when the complete conditionals
in Figure 1.1 can be written in closed form, and can be sampled from directly.
In this case, the MCMC algorithm is called a Gibbs sampler. This is the kind
of sampling scheme first made popular in the statistics literature (Gelfand and
Smith, 1990), and it remains the focal method today.

When directly sampling from a complete conditional is not possible, stan-
dard alternate Monte Carlo methods can be used. If f(t) is a density that is
difficult to sample from, several standard methods can be used, for example:

• If the cumulative distribution function (cdf)

F (t) =

∫ t

−∞
f(s)ds

and its inverse F−1(u) can be calculated in closed form, then it is easy to
see that T ∗ = F−1(U), where U ∼ Unif(0, 1), will have f(t) as its density.
This is called inversion sampling.

• Suppose g(t) is a density that is easy to sample from, with the property that
f(t) < Cg(t) for some constant C and all t. The density g(t) is called the
proposal density. Let T ∗ ∼ g(t) and U ∼ Unif(0, 1). If UCg(T ∗) ≤ f(T ∗)
then it can be shown, with a little calculus, that T ∗ has f(t) as its density.
Otherwise we reject it and sample another pair (T ∗, U), repeating until we
accept a T ∗. This is called rejection sampling.

• Rejection sampling clearly is most efficient (not many rejections per accepted
T ∗) when C ≈ 1. However, finding m(t) that is easy to sample from with
C ≈ 1 can be difficult. If f(t) is a log-concave density, then log f(t) can be
enclosed in a piecewise linear function which, when exponentiated, can serve
as m(t). This piecewise linear function can be improved (so that C comes
closer to 1) each time T ∗ is rejected, as outlined in Gilks and Wild (1992);
the resulting method is adaptive rejection sampling.

Early versions of the BUGS/WinBUGS program relied primarily on these
three methods, for one-variable-at-a-time complete conditionals, to automat-
ically create Gibbs samplers for a variety of Bayesian models (Lunn, Spiegel-
halter, Thomas, and Best, 2009).

An advantage of rejection sampling, especially for sampling from complete
conditionals that are known only proportionally as in Equation 1.8, is that f(t)
need only be known up to a constant of proportionality. It is easy to see that
any required normalizing constant for f(t) can be absorbed into the constant
C: f(t)/B < Cg(t) if and only if f(t) < BCg(t), and UCg(T ∗) ≤ f(T ∗)/B
if and only if UBCg(T ∗) ≤ f(T ∗). Other direct sampling methods, such as
such as slice sampling (Neal, 2003) and importance sampling (Ripley, 1987)
also have this property.

8 Markov Chain Monte Carlo for Item Response Models

1.5 Metropolis-Hastings

A second popular mechanism for generating an MCMC algorithm is known
as the Metropolis-Hastings algorithm (Chib, Greenberg, and Chiband, 1995;
Hastings, 1970; Metropolis et al., 1953). The Metropolis-Hastings algorithm
actually involves a different transition kernel than the one outlined in Equa-
tion 1.8 but one with the same stationary distribution. Results reviewed in
Tierney (1994) guarantee that using Metropolis-Hastings sampling for some
complete conditionals and Gibbs sampling for others maintains f(τ |U) as the
stationary distribution.

For the complete conditional f(τ k|rest), to implement a Metropolis-

Hastings step we first sample τ∗k ∼ gm(τ k|τ (m−1)
k), where gm(τ k|τ (m−1)

k) is
a proposal density, which will be discussed further below. Then we calculate
the acceptance probability

α∗ = min

{
f(τ ∗k|rest)gm(τ

(m−1)
k |τ ∗k)

f(τ
(m−1)
k |rest)gm(τ ∗k|τ

(m−1)
k)

, 1

}
(1.9)

and generate U ∼ Unif(0, 1). If U ≤ α∗, we set τ
(m)
k = τ ∗k, otherwise we set

τ
(m)
k = τ

(m−2)
k .

The proposal density gm(τ k|τ (m−1)
k) can be chosen to be any convenient

density. Two common choices are

• Independence M-H. Take the proposal density gm(τ k|τ (m−1)
k) = gm(τ k),

independent of τ
(m−1)
k .

• Normal random walk M-H. Take the proposal density gm(τ k|τ (m−1)
k) =

n(τ k|µ = τ
(m−1)
k ,Σ), a normal density with mean τ

(m−1)
k and variance

matrix Σ.

Note that if gm() is constant (or symmetric) in τ k and τ
(m−1)
k , then the gm()

terms drop out of Equation 1.9, and the algorithm tends to move toward the
mode of f(τ k|rest).

It is also worth noting that if gm(τ k|τ (m−1)
k) = f(τ k|rest) then the M-H

step reduces to a Gibbs step: we are sampling from f(τ k|rest) and always ac-
cepting τ∗k since in this case all terms cancel in Equation 1.9, leaving α∗ = 1.
In this sense, Gibbs sampling is in fact a special case of Metropolis-Hastings.
A typical MCMC algorithm will intersperse Gibbs steps—for complete con-
ditionals that can be sampled directly—with Metropolis-Hastings steps—for
complete conditionals that cannot be sampled directly. This class of algorithms
is called, somewhat inaccurately, Metropolis-Hastings within Gibbs.

Results reviewed in Rosenthal (2011) suggest that the MCMC algorithm
will achieve good mixing and convergence to the stationary distribution, if

Markov Chain Monte Carlo for Item Response Models∗ 9

gm(τ k|τ (m−1)
k) is chosen so that if τ k is one dimensional, the rate at which τk∗

is accepted is approximately 0.44, and if τ k is of dimension d, the acceptance
rate should fall to 0.234 for d ≈ 5 or more. In fact, the mixing and rate of
convergence tend to be good as long as the acceptance rate is roughly between
0.1 and 0.6 (Rosenthal, 2011, Figure 4.5).

For example, the normal random walk proposal density for unidimensional
τk is

gm(τk|τ (m−1)k) =
1√

2πσ2
g

e−
1
2 (τk−τ

(m−1)
k)2/σ2

g .

The proposal variance σ2
g is a tuning parameter than can be adjusted until

the acceptance rate is in the rough neighborhood of 0.44.
Rosenthal (2011) outlines a general theory for adaptive MCMC, in which

details of the Markov Chain can be tuned “on the fly” without undermining
convergence to the stationary distribution. One such adaptation would be
to adjust the variances of normal random walk M-H steps to achieve the
above target acceptance rates. Indeed, when M-H steps were introduced into
WinBUGS (Lunn et al., 2009), they were introduced in an adaptive form, so
that σ2

g was adjusted toward a target acceptance rate between 0.2 and 0.4.

1.6 Tricks of the Trade

1.6.1 Initial State, Burn-In, and Convergence

From Equation 1.4, it is clear that the best choice for an initial state for
the Markov chain would be a draw from the stationary distribution, since
then there would be no burn-in segment. We cannot do this (if we could,
we wouldn’t need MCMC!) but it does suggest starting the chain somewhere
near the center of the posterior density f(τ |U). The default starting values in
WinBUGS are draws from the prior distribution; this only makes sense if the
prior and the posterior are centered similarly.

In practice, one often proceeds by simulating starting values from normal,
t, or similar distributions, centered at provisional parameter estimates (e.g.,
maximum likelihood or method of moments estimates from a simpler model),
overdispersed relative to provisional standard errors. MCMC is fundamentally
a local search algorithm, and starting the algorithm from several well-dispersed
initial states can help to ensure that the parameter space is fully explored.
In addition, starting multiple chains at well-dispersed initial states facilitates
correct interpretation of convergence indices such as the R̂ statistic (Brooks
and Gelman, 1998; Gelman and Rubin, 1992). On the other hand we have
found IRT and similar models to be somewhat delicate with respect to starting
values, a point we will discuss further below in Sections 1.8.5 and 1.8.6.

As discussed in Section 1.3, the burn-in segment of a Markov chain is

10 Markov Chain Monte Carlo for Item Response Models

the initial segment of the chain before it has converged—that is, before
samples from the chain are like samples from the stationary distribution
π(τ) ≡ f(τ |U). These samples of the chain should be discarded; only samples
after burn-in are useful for inference about the posterior distribution f(τ |U).

Although many methods have been proposed as heuristics for assessing
convergence (Cowles and Carlin, 1996), only three or four methods stand
out as convenient enough and informative enough to have become standard
practice. Apart from perfect sampling (Fill, 1998) and regenerative methods
(Mykland, Tierney, and Yu, 1995), there are no guaranteed methods of deter-
mining when an MCMC algorithm has “converged” to its stationary distribu-
tion. When developing or applying an MCMC algorithm, one should always
look at trace plots, or summaries of trace plots, and autocorrelation function
(acf) plots. These are basic graphical tools for assessing whether the MCMC
algorithm is functioning well, and they are also useful for assessing burn-in,
mixing and convergence to the stationary distribution.

Trace Plots

Trace plots or time-series plots are simply plots of g(τ (m)), as a function of
m, m = 1, . . . ,M . Most often, g(τ) = τj , one of the parameters in the model.
But it could be anything. To aid visual detection of some of these problems, it
is useful to add a horizontal line at the mean or median of the graphed values,
and/or a smoothed running mean or median curve.

Ideal plots look like white (unpatterned) noise centered at the posterior
mean or median, as in Figure 1.13. On the other hand, Figure 1.2 illustrates
four common problems in trace plots:

(a) An initial segment that looks like it “drifted in from somewhere
else”;

(b) A low-frequency cycle or other pattern in the graph (e.g. the white
noise is following a large sinusoid rather than being centered on a
horizontal line);

(c) Excessive “stickiness”, that is, the trace plot stays constant for sev-
eral steps before moving to a new value;

(d) An overall trend or drift upwards or downwards across the whole
trace plot.

Problem (a) is due to the early part of the chain not being very near the
stationary distribution. The usual fix is to throw away the initial (burn-in) part
of the chain, and use the stable remaining part for inference. Problem (b) is
often due to excessive dependence between steps in the MCMC algorithm. This
can happen with parameters that are sampled with random-walk Metropolis-
Hastings steps if the proposal variance is too small, for example. It can also
happen with parameters that are sampled with Gibbs steps. One can live with
this problem if MCMC sampling is fast enough that one can take many many

Markov Chain Monte Carlo for Item Response Models∗ 11

(a) Drift in the initial (burn-in)
segment.

(b) Oscillation or other non-
constant pattern.

(c) Sticky chain. (d) Drift in entire chain.

FIGURE 1.2
A collection of trace plots indicating various problems.

more steps M to get precise estimates of posterior quantities. The alternative
is to redesign the chain so as to reduce this dependence. Problem (c) is often
seen in parameters that are sampled with Metropolis-Hastings steps, and it is
simply due to too low an acceptance rate, e.g., too high a proposal variance in
random-walk Metropolis-Hastings. Tune or change the proposal density to fix
this. Problem (d) may be a special case of problems (a) or (b), which one would
discover by running the chain longer to see what happens. If the drift persists
even after running the chain a very long time, it may be evidence of problems
in the underlying statistical model, Equation 1.2. For example, the posterior
density f(τ |U) may not be sufficiently peaked around a dominant posterior
mode (e.g., not enough data), or there may be an identification problem (e.g.,
the MCMC samples for one parameter drift toward +∞, and the MCMC
samples for another drift toward −∞ but their sum stays constant).

Autocorrelation plots

Autocorrelation plots and cross-correlation plots are useful for directly assess-
ing dependence between steps of the chain. Let τ (m), m = 1, 2, 3, . . . be the
output from the MCMC algorithm, and consider functions g1(τ) and g2(τ).
The autocorrelation function (acf) for g1(τ) is

ρg1k =
Cov (g1(τ (m)), g1(τ (m+k)))

Var (g1(τ (m)))

12 Markov Chain Monte Carlo for Item Response Models

−
0.

2
0.

2
0.

6
1.

0
−

0.
2

0.
2

0.
6

1.
0

−
0.

2
0.

2
0.

6
1.

0
−

0.
2

0.
2

0.
6

1.
0

(a) Autocorrelations remain high. (b) Autocorrelations oscillate be-
tween values near and far from 0.

FIGURE 1.3
Two common problems evident in autocorrelation plots.

and similarly for g2(τ), and the cross-correlation function is

σg1g2k =
Cov (g1(τ (m)), g2(τ (m+k)))√

Var (g1(τ (m)))Var (g2(τ (m+k)))

(neither function depends on m if the Markov chain is stationary). The acf
plot is a plot of ρ̂g1k as a function of k, and the cross-correlation plot is a
plot of σ̂g1g2k . These estimates are usually straightforward method-of-moments
estimates; and are reasonably useful if k is not large compared to M . Note
that ρ̂g10 is forced to be 1, and then ρ̂g1k should fall toward zero in absolute
value as k increases. The cross-correlation plot should exhibit similar behavior,
except that σg1g2k is not constrained to be equal to 1. To aid in interpreting
the plots, it is useful to add a horizontal line at zero correlation to the graph,
and also add lines indicating the rejection region for a test of the hypothesis
that ρg1k = 0, or the hypothesis that σg1,g2k = 0.

Problematic behavior in acf and cross-correlation plots include

(a) ρg1k (or σg1g2k) remains significantly different from zero for all ob-
servable values of k;

(b) ρg1k (or σg1g2k) oscillates between values close to zero and values far
from zero;

examples are shown in Figure 1.3. Both problems (a) and (b) reflect excessive
autocorrelation (or cross correlation) in the Markov chain. These problems,
especially persistent positive autocorrelation, are often associated with prob-
lems (a), (b) or (c) in Figure 1.2, for example. One can live with this problem
if MCMC sampling is fast enough that one can take many many more steps
M (and perhaps discard an initial burn-in segment) to get precise estimates
of posterior quantities. The alternative is to redesign the chain so as to reduce
this dependence. For example, a “good” autocorrelation plot can be seen later
in the chapter, in Figure 1.13.

Markov Chain Monte Carlo for Item Response Models∗ 13

Single and Multiple Chain Methods

There exist several heuristic methods for assessing convergence of an MCMC
algorithm to its stationary distribution, based on a single run of the algorithm.
A visual inspection of trace plots and autocorrelation plots may be enough:
if the trace plots look like white noise centered at the mean or median of the
output, and the acf plot drops quickly to zero and stays there, we may have
some confidence that the chain has reached its stationary distribution. As a
quantitative check, one can break a long chain into two (or more) parts and
compare posterior mean and variance estimates, density plots of the posterior,
etc., from the different parts of the chain; if the chain has converged and the
parts of the chain are long enough, the posterior summaries should be similar.
A more formal measure of convergence along the same lines is the time series
diagnostic of Geweke (1992).

Another approach to assessing the convergence of an MCMC algorithm is
to generate three or more chains from different starting values. If the trace
plots overlap one another to a great extent after a suitable burn-in segment
is discarded, this is some assurance that the algorithm is mixing well and
has reached the stationary distribution. If the chains converge quickly (have
short burn-in segments) and not much autocorrelation, then samples from the
multiple chains can be pooled together to make inferences about the posterior
distribution. Since the chains do not depend on each other in any way, they can
be run in parallel on either multiple cores or multiple computers to generate
output faster. If convergence to the stationary distribution is slow, it may be
more efficient to run one long chain, to avoid spending computation on the
burn-in for multiple chains.

An informal quantitative assessment of convergence using multiple chains
would be to compare posterior mean and variance estimates, posterior density
plots, etc., across the multiple chains. The R̂ statistic (Brooks and Gelman,
1998; Gelman and Rubin, 1992) formalizes and quantifies this idea, essen-
tially by examining the ratio of between-chain variation to within-chain varia-
tion. When all the chains have achieved stationarity, the between- and within-
variation will be comparable; otherwise the between-variation is likely to be
larger than the within-variation. A common heuristic is to declare convergence
if R̂ < 1.1.

The above methods for assessing convergence of the MCMC algorithm
for univariate functions g(τ), as well as several methods for assessing
multivariate convergence, are implemented in the software package BOA
(Bayesian output analysis) of Smith (2007), available at http://www.public-
health.uiowa.edu/boa), which derives from the methodology surveyed in
Cowles and Carlin (1996). The graphical and multiple chain methods above
are also readily available in WinBUGS and R interfaces to WinBUGS such as
R2WinBUGS (Gelman, Sturtz, Legges, Gorjanc, and Kerman, 2012) and rube

(Seltman, 2010).

14 Markov Chain Monte Carlo for Item Response Models

Thinning and Saving Values From the Converged Chain

It is fairly common practice to “thin” the Markov chain in some way, for
example, to retain only every mth

thin step of of the converged Markov chain.
Thinning is useful for reducing autocorrelation, and for reducing the amount
of MCMC data one has to store and calculate with. A common procedure to
determine the thinning interval mthin is to examine autocorrelation plots from
a preliminary run with no thinning, and then for the final run take mthin to be
an interval at which the autocorrelation is near zero. Because of uncertainty
of estimation in the acf plot, however, there will still be some autocorrelation
in the retained MCMC samples, and this should be addressed using a method
like that of Equation 1.11 in Section 1.6.2, to understand the precision of
inferences from the MCMC output. Because thinning involves throwing away
perfectly good draws from the posterior distribution, some authors advocate
against thinning to reduce autocorrelation. For example, in large interesting
models, requiring small autocorrelations can result in mthin = 50 or 100 or
more; 98% or more of the computation is then wasted. In such cases it may
be possible (and is desirable) to reformulate the model or MCMC algorithm
in order to reduce autocorrelation and make the thinning interval and hence
computational efficiency more reasonable.

Once you are satisfied that the chain has converged to its stationary distri-
bution, and the burn-in segment has been discarded, the problem remains to
decide how many steps of the chain to save, for inference about the posterior
distribution. One rule of thumb is to keep roughly 1000 steps from the chain
or chains, after burn-in and thinning if any of this is done. For example if one
wishes to calculate 2.5th and 97.5th percentiles in order to report equal-tailed
95% posterior credible intervals, 1000 is a minimal sample size. A more princi-
pled approach might be to monitor the Monte Carlo standard error (discussed
below in Section 1.6.2) as the length of the chain grows: we want the Monte
Carlo standard error to be much smaller than the posterior standard error,
and small enough to ensure a couple of digits of accuracy in posterior mean
estimates.

It does not seem necessary to publish trace plots, acf plots, or Monte
Carlo standard errors routinely in journal articles (except when one is trying
to make a point about the behavior of the MCMC algorithm), but they should
be available in on-line supplements for referees or interested readers. Numer-
ical evidence of good mixing and convergence to the stationary distribution
(Brooks and Gelman, 1998; Gelman and Rubin, 1992; Geweke, 1992) is useful
for published papers.

1.6.2 Monte Carlo Standard Error and Posterior Uncer-
tainty

Two different uncertainty calculations are important to carry out in MCMC
estimation of posterior quantities. For specificity, suppose we are interested in

Markov Chain Monte Carlo for Item Response Models∗ 15

estimating a function of τ , g(τ), using MCMC output τ (m), m = 1, . . . ,M .
For example, to estimate the kth univariate parameter in τ = (τ1, . . . , τK), we
would take g(τ) = τk.

• Monte Carlo Uncertainty: Suppose we are interested in estimating the pos-
terior mean

E[g(τ)|U] ≈ 1

M

M∑
m=1

g(τ (m)) ≡ g

How accurate is g as an estimate of E[g(τ)|U]? We would like to compute
a Monte Carlo standard error, SEMCMC and provide a Monte Carlo confi-
dence interval, e.g. g±t∗SEMCMC . We can make this Monte Carlo estimate
more precise (reduce SEMCMC) simply by increasing the MCMC sample size
M , without collecting any more data.

Confidence intervals expressing MCMC estimation error are more readily
interpretable to the extent that the central limit theorem (CLT) applies
to the chain τ (m), m = 1, 2, 3, If the chain is reversible, that is, satis-
fies Equation 1.5, then a CLT can be obtained (Geyer, 2011). If not, the
CLT depends on geometric ergodicity (Flegal and Jones, 2011), which says
essentially that the difference (or, technically, the total variation distance)
between the distribution of τ (m) and f(τ |U) tends to zero like rm for some
number r ∈ (0, 1), and a moment condition such as E[g(τ)2+δ|U] < ∞.
Many, but not all, common MCMC algorithms satisfy this or stronger suf-
ficient conditions for the CLT to hold.

• Posterior Uncertainty: As an inference about τ from the data, we may be in-
terested in summarizing the posterior distribution of g(τ) using the posterior
mean E[g(τ)|U] and the posterior standard error SEpost =

√
Var (g(τ)|U).

For example we may wish to report a posterior credible interval such as
E[g(τ)|U] ± t∗ · SEpost for some suitable cutoff t∗. We can make our in-
ference about g(τ) more precise (reduce SEpost) by collecting more data.
Increasing the MCMC sample size M can make our estimates of E[g(τ)|U]
and SEpost more precise, but it can’t structurally improve the precision of
our inference about g(τ). Intervals based on estimates of E[g(τ)|U] and
SEpost are only interpretable, to the extent that a posterior CLT holds as
more data is collected (e.g. Chang and Stout, 1993; Walker, 1969).

If there is any concern about the shape of the posterior density, it is better to
construct credible intervals directly from the posterior density. For example,
the equal-tailed credible interval running from the 0.025 posterior quantile
to the 0.975 posterior quantile is guaranteed to produce an interval with
95% posterior probability, regardless of whether the posterior CLT holds or
not.

To estimate SEMCMC we must first estimate σ2
g = Var (gm), the variance

of the sampled values of the Markov chain (which is due to both the shape

16 Markov Chain Monte Carlo for Item Response Models

of the posterior distribution and Markov sampling). Because the τ (m) are
dependent, the naive estimator

σ̂2
naive =

1

M − 1

M∑
m=1

(g(τ (m))− g)2 (1.10)

is seldom adequate. Several valid methods are currently in use (Flegal
and Jones, 2011; Geyer, 2011) but we will focus on only one: the method
of overlapping batch means (OLMB) (Flegal and Jones, 2011). Define bM
to be the batch length, and define batches B1 = (τ (1), τ (2), . . . , τ (bM)),
B2 = (τ (2), τ (3), . . . , τ (bM+1)), B3 = (τ (3), τ (4), . . . , τ (bM+2)), etc. There are
M − bM + 1 such batches in an MCMC run of length M . Now let

gj =
1

bM

∑
τ (m)∈Bj

g(τ (m)) , and

σ̂2
OLBM =

MbM
(M − bM)(M − bM + 1)

M−bM+1∑
j=1

(gj − g)2 . (1.11)

Flegal and Jones (2011) argue that under conditions similar to those needed
for the CLT to apply, σ̂2

OLBM will be a consistent estimator of σ2
g , as long as

BM ≈M1/2. In that case, we can take

SEMCMC ≈
√
σ̂2
OLBM/M .

The MCMC confidence interval is then g ± t∗ · SEMCMC where t∗ is a cutoff
from a t-distribution with M − bM degrees of freedom, although for many
practical purposes simply taking t∗ = 2 gives an adequate impression (since
the degrees of freedom M − bM are likely to be quite large). An alternative
method with simpler-to-calculate non-overlapping batch means is described
in Flegal, Haran, and Jones (2008); the non-overlapping approach described
here however is generally thought to be more efficient.

When the Markov chain is ergodic it is reasonable to estimate SEpost ≈√
σ2
naive in the sense that the right-hand side will converge to the left as M

grows. To know how accurate the estimate is, one can exploit the identity
Var (g(τ)|U) = E[(g(τ) − E[g(τ)|U])2|U] = E[g(τ)2|U] − E[g(τ)|U]2, sepa-
rately estimating

E[g(τ)|U] ≈ 1

M

M∑
m=1

g(τ (m)) ≡ g , and

E[g(τ)2|U] ≈ 1

M

M∑
m=1

g(τ (m))2 ≡ g2 ,

and monitoring the MCMC standard error of both estimates to make sure
that we do not get excessive cancellation in the difference g2− g2. An MCMC

Markov Chain Monte Carlo for Item Response Models∗ 17

standard error for ŜEpost =
√
σ2
naive can then be obtained using the delta

method (e.g., Serfling, 1980, p. 124).

When the posterior distribution is not approximately normal, intervals
based on (estimates of) E[g(τ)|U] and SEpost may be misleading; a better
measure of posterior uncertainty can be based on quantiles of the posterior
distribution, estimated as empirical quantiles of the MCMC sequence g(τ (m)),
m = 1, . . . ,M . For example, one might report the empirical median as a
point estimate for g(τ) and the empirical 0.025 and 0.975 quantiles as an
approximate equal-tailed 95% credible interval. Flegal and Jones (2011) also
give methods for estimating the MCMC standard errors of these quantiles.

MCMC standard errors seldom find their way into published empirical
papers. Largely speaking there may be little harm done by this, as long as
authors can assure themselves and their readers (or referees) that the mag-
nitude of the posterior uncertainty overwhelms the magnitude of the MCMC
uncertainty, as is almost always the case. MCMC standard errors would be
important to report in cases where they are comparable in size to posterior
standard errors, or in cases where estimating a posterior quantity (such as
E[g(τ)|U], Corr (τ1, τ2|U), etc.) is of primary interest.

Those who wish to apply MCMC methods in practical testing settings
should note carefully that Monte Carlo uncertainty and posterior uncertainty
are qualitatively different and do not carry equal weight in evaluating a
method’s utility. For example, Monte Carlo uncertainty is probably unac-
ceptable in test scoring, unless it can be reduced to a level well below the
number of digits used in reporting scores. Stakeholders in testing will not find
it acceptable to think that pass/fail decisions or rankings might be sensitive to
such factors as the seed of the random number generator, or the length of the
chain that was run to obtain the estimate. This is perhaps not entirely unique
to MCMC, and we know that maximum-likelihood-based scoring has its own
tolerances and sensitivities. MCMC is much more readily usable in item/test
calibration, where any imprecision due to estimation method is reflected in the
“level playing field” that all examinees encounter when answering test ques-
tions. If we consider that such matters as ’adequate yearly progress’ for schools
might be sensitive to Monte Carlo error in calibration and/or linking, there
is still reason (as if there were not enough reasons already) to be concerned.
Addressing these types of concerns is on the one hand just good psychometric
practice (know the precision of any instruments and make decisions accord-
ingly), but on the other hand might be important for adoption of MCMC for
IRT models to move from the research literature into the professional practice.

1.6.3 Blocking

As should be clear from our discussion at the end of Section 1.3, it is not
necessary for the complete conditional densities to be univariate densities
for each single parameter in the model. If some parameters are known (from
theory, or from preliminary estimation) to be highly correlated in the posterior

18 Markov Chain Monte Carlo for Item Response Models

f(τ |U), then it makes sense to group them together into a block and sample
them together. Posterior correlation corresponds to a ridge in the posterior
distribution, and it is usually more efficient to explore the ridge with MCMC
steps parallel to the ridge (as would be the case for blocked MCMC steps)
rather than steps parallel to the coordinate axes (as would be the case for
one-parameter-at-a-time MCMC steps).

If a block of parameters can be sampled in a Gibbs step, the form of
the complete conditional for that block will have the appropriate association
structure in it. If the block must be sampled using a M-H step, a common
strategy is to use a normal random walk proposal, with a proposal variance-
covariance matrix that reflects the anticipated posterior correlation in that
block. If “good” proposal distributions to update blocks of parameters can
be found, block-sampled MCMC can provide a significant improvement over
one-parameter-at-a-time MCMC (Doucet, Briers, and Sénécal, 2006).

1.6.4 Data Augmentation

Suppose we have a model of the form Equation 1.2 for a set of parameters τ 1

of interest, f(U , τ 1) = f(U|τ 1)f(τ 1), and we wish to calculate the posterior
mean E[g(τ 1)|U] for the function g(τ 1). According to the results of Section 1.3

we could do this directly with the output τ
(m)
1 , m = 1, . . . ,M , from an MCMC

algorithm for the posterior density f(τ 1|U), as

E[g(τ 1)|U] =

∫
g(τ 1)f(dτ 1|U) ≈ 1

M

M∑
m=1

g(τ
(m)
1)

for any integrable function g().
On the other hand, suppose we expand the model to include additional

parameters τ 2, f(U , τ 1, τ 2) = f(U|τ 1, τ 2)f(τ 1, τ 2), and we obtain an MCMC

sample (τ
(m)
1 , τ

(m)
2), m = 1, . . . ,M , from the expanded posterior f(τ 1, τ 2|U).

We can still calculate

E[g(τ 1)|U] =

∫
g(τ 1)f(dτ 1|U) =

∫ ∫
g∗(τ 1, τ 2)f(dτ 1, dτ 2|U)

≈ 1

M

M∑
m=1

g∗(τ
(m)
1 , τ

(m)
2) =

1

M

M∑
m=1

g(τ
(m)
1)

for any integrable g(), where g∗() is simply the function g∗(τ 1, τ 2) = g(τ 1).
This shows that the act of “throwing away” some coordinates of an MCMC
sample is equivalent to integrating them out of a marginal expected value
calculation (Patz and Junker, 1999a).

Moreover, the calculations above suggest a strategy that is often successful:
when it is difficult to construct an efficient, well-mixing Markov chain for
f(τ 1|U), it may be much easier to do so for f(τ 1, τ 2|U). As long as

f(τ 1|U) =

∫
f(τ 1, dτ 2|U)

Markov Chain Monte Carlo for Item Response Models∗ 19

then we can just “throw away” τ
(m)
2 , m = 1, . . . ,M and use τ

(m)
2 , m =

1, . . . ,M to make inferences on the marginal density f(τ 1|U).
This strategy is called data augmentation, first formally suggested by Tan-

ner and Wong (1987), and implemented for the first time in IRT with the with
normal ogive model by Albert (1992). Indeed, we know that the normal ogive
item response function for dichotomous responses

P [Upi = 1|ai, bi, θp] =
1√
2π

∫ ai(θp−bi)

−∞
e−t

2/2dt

obtains for Upi, if Upi is defined with the condensation function (Bartholomew
and Knott, 1999; Maris, 1995) of Zpi ∼ N(0, 1),

Upi =

{
0, if Zpi < −ai(θp − bi)
1, if Zpi ≥ −ai(θp − bi)

.

The parameters ai, bi and θp would play the role of τ 1, and Zpi would play the
role of the data augmentation variables τ 2. This is the basis of the data aug-
mentation approach to analyzing multivariate binary and polytomous probit
models (Albert and Chib, 1993), as well as the data augmentation approach to
estimating the normal ogive IRT model (Albert, 1992; Fox, 2010; Thissen and
Edwards, 2005). Recently progress has been made on an efficient data aug-
mentation scheme for MCMC estimtation of logistic models as well (Polson,
Scott, and Windle, 2013).

1.6.5 Rao-Blackwellization

Again consider the model f(U , τ 1, τ 2) = f(U|τ 1, τ 2)f(τ 1, τ 2), where τ 1 is of
primary interest, and let us examine the problem of estimating E[g(τ 1)|U].
We have

E[g(τ 1)|U] =

∫ ∫
g(τ 1)f(dτ 1, dτ 2|U) =

∫ [∫
g(τ 1)f(dτ 1|τ 2,U)

]
f(dτ 2|U)

≈ 1

M

M∑
m=1

∫
g(τ 1)f(dτ 1|τ (m)

2 ,U)

This gives an alternative to

E[g(τ 1)|U] ≈ 1

M

M∑
m=1

g(τ
(m)
1)

for estimating E[g(τ 1)|U]. By analogy with the Rao-Blackwell theorem of
mathematical statistics, in which conditioning an estimator on the sufficient
statistic reduces the variance of the estimator, the so-called Rao-Blackwellized
(Casella and Robert, 1996) estimator

E[g(τ 1)|U] ≈ 1

M

M∑
m=1

∫
g(τ 1)f(dτ 1|τ (m)

2 ,U) (1.12)

20 Markov Chain Monte Carlo for Item Response Models

is often better behaved than the simple average. Of course in order to
use the Rao-Blackwellized estimator, one has to be able to calculate∫
g(τ 1)f(dτ 1|τ (m)

2 ,U) many times. This is not usually a problem if the inte-
gral can be obtained in closed form or via simple numerical integration; this is
often the case if g() is a relatively simple function and conjugate or partially
conjugate priors are used (so that the complete conditional in Equation 1.12
can be identified by conjugacy).

A related technique can be used to estimate marginal densities smoothly.
Instead of estimating f(τ 1|U) using a histogram or smooth density estimate

using τ
(m)
1 , m = 1, . . . ,M , one can recognize that

f(τ 1|U) =

∫
f(τ 1, dτ 2|U) =

∫
f(τ 1|τ 2,U)f(dτ 2,U) ≈ 1

M

M∑
i=1

f(τ 1|τ (m)
2 ,U) .

Again, this latter estimator may be more stable than the simple histogram
estimator.

1.7 Item Response Theory Models

The generic model in Equation 1.1 can usually be rewritten in IRT applications
as

f(U|τ) =

P∏
p=1

I∏
i=1

f(Upi|θp,βi)

where the product over p is due to the experimental independence assumption
in IRT (Lord and Novick, 1968) and the product over i is due to IRT’s local
independence assumption. It is also typical to specify independent priors for
all parameters, so that the generic joint distribution in Equation 1.2 has the
form

f(U|τ)f(τ)

=

P∏
p=1

I∏
i=1

f(Upi|θp,βi)
P∏
p=1

fp(θp|λθ)
I∏
i=1

fi(βi|λβ)f(λθ)f(λβ)

=

P∏
p=1

{
I∏
i=1

f(Upi|θp,βi)fi(βi|λβ)

}
fp(θp|λθ)f(λθ)f(λβ) (1.13)

where λθ and λβ are hyperparameters for θ and β, respectively, and f(λθ)
f(λβ) are their hyperprior distributions.

To be concrete, consider the two-parameter logistic (2PL) IRT model, with
dichotomous responses Upi = 1 if response i from person p is coded as correct

Markov Chain Monte Carlo for Item Response Models∗ 21

or positive; and Upi = 0 if the response is coded as incorrect or negative. In
this case θp ∈ < is unidimensional and βi = (ai, bi) has two components. The
item response function (IRF) is

Pi(θp; ai, bi) = P [Upi = 1|θp, ai, bi] =
exp(ai(θp − bi))

1 + exp(ai(θp − bi))
,

and the density for Upi becomes

f(upi|θp,βi) = Pi(θp; ai, bi)
upi(1− Pi(θp; ai, bi))1−upi .

In Equation 1.13 we will also use the normal prior distributions for θp and bi
and a log-normal prior distribution for ai,

fp(θp|λθ) = n(θp|µθ, σ2
θ) (1.14)

fi(ai|λa) = n(ln ai|µa, σ2
a)/ai (1.15)

fi(bi|λb) = n(bi|µb, σ2
b) , (1.16)

where n(x|µ, σ2) is the normal density with mean µ and variance σ2. (To be
clear, λθ = (µθ, σ

2
θ), λa = (µa, σ

2
a), etc.)

Although fp(θp|λθ) plays the mathematical role of a prior distribution in
the model, it is usually interpreted in IRT as the population distribution for
θ. For this reason it is not usually taken to be “flat” or uninformative, but
rather its shape tells us directly about the distribution of proficiency in the
population. Specifying a prior f(λθ) allows us to estimate that shape in terms
of the parameters λθ. When fp(θp|λθ) = n(θp|µθ, σ2

θ), it is common to place
prior distributions on µθ and σ2

θ . For the purposes of illustrating an MCMC
algorithm here, we will assume µθ = 0 and σ2

θ ∼ IG(αθ, βθ), an inverse-gamma
distribution with parameters αθ and βθ.

We have now fully specified a Bayesian IRT model, elaborating Equa-
tion 1.13 as follows.

Upi
indep∼ Bernoulli (πpi) (1.17)

ln
πpi

1 + πpi
= ai(θp − bi) (1.18)

θp
iid∼ Normal (0, σ2

θ) (1.19)

ai
iid∼ Log-Normal (µa, σ

2
a) (1.20)

bi
iid∼ Normal (0, σ2

b) (1.21)

σ2
θ ∼ Inv-Gamma (αθ, βθ) (1.22)

µa, σ
2
a, σ

2
b , αθ, βθ assigned in Section 1.8 below (1.23)

for all p = 1, . . . , P and all i = 1, . . . , I. Here, Upi
indep∼ Bernoulli (πpi

means that the Upi’s are independent with densities π
upi

pi (1− πpi)1−upi , σ2
θ ∼

Inv-Gamma (αθ, βθ) means that σ2
θ has inverse-gamma density IG(σ2

θ |αθ, βθ),

22 Markov Chain Monte Carlo for Item Response Models

and similarly Equations 1.19, 1.20 and 1.21 correspond to the density specifi-
cations in Equations 1.14, 1.15 and 1.16.

If responses Upi are missing completely at random (MCAR) or missing by
design, the corresponding terms may simply be omitted from the products in
Equation 1.13 and from Equations 1.17 through 1.23. More complex forms of
missingness require additional modeling and may change the structure of the
model and complete conditionals (e.g. Glas and Pimentel, 2008).

Complications of this basic framework involve richer latent space structure,
and/or dependence induced by constraints on the parameters. MCMC algo-
rithms for Linear logistic test models (De Boeck and Wilson, 2004; Scheiblech-
ner, 1972), latent class models (Lazarsfeld and Henry, 1968), and some con-
junctive cognitive diagnosis models (Haertel, 1989; Junker and Sijtsma, 2001;
Macready and Dayton, 1977) received early consideration in Junker (1999)
and have since been pursued in detail by de la Torre and Douglas (2004);
Roussos, DiBello, Stout, Hartz, Henson, and Templin (2007); Sinharay and
Almond (2007) and many others. Random effects models for “testlets” are
considered in Bradlow, Wainer, and Wang (1999), for example, and for fami-
lies of automatically generated items are considered by Johnson and Sinharay
(2005); Sinharay, Johnson, and Williamson (2003).

The basic model of Equation 1.13 can be expanded to additional “lev-
els” of hierarchical structure, by elaborating on the prior densities f(λθ) and
f(λβ), to account for additional covariates, dependence due to administrative
clustering such as students within classroom, and so forth. Early explorations
of this idea include Kamata (2001); Maier (2001). In addition the IRT model
itself can be embedded in other hierarchical/Bayesian models, for example
MIMIC models. Both of these ideas are nicely developed in Fox (2011).

There is usually not much information available about the item param-
eters, ai and bi in the case of the 2PL model here, and so flat prior distri-
butions are usually chosen for them; we will discuss specific choices below in
Section 1.8. Further hierarchical structure is also possible, and is discussed at
length in recent monographs such as De Boeck and Wilson (2004) and Fox
(2010).

We will discuss particular choices for αθ and βθ in Equation 1.23, below in
Section 1.8; it is usual to take choices such as αθ = βθ = 1, indicating a fairly
flat prior, which will allow the data to determine σ2

θ , and hence the shape
of the normal population distribution fp(θp|λθ). For other prior choices for
the parameters of the normal θ distribution, see for example Casabianca and
Junker (vol. 2, chap 19). Non-normal (e.g. Sass, Schmitt, and Walker, 2008;
van den Oord, 2005) and non-parametric (e.g. Karabatsos and Sheu, 2004;
Miyazaki and Hoshino, 2009; Woods, 2006; Woods and Thissen, 2006) choices
for fp(θp|λθ) also appear in the literature.

The factorization displayed in Equation 1.13 into terms involving differ-
ent blocks of parameters, facilitated by the independence assumptions of IRT,
makes the complete conditionals rather uncomplicated. From Equations 1.17
through 1.23 it it follows that the complete conditional densities for the indi-

Markov Chain Monte Carlo for Item Response Models∗ 23

vidual parameters will be

f(θp|rest) ∝
I∏
i=1

Pi(θp; ai, bi)
upi(1− Pi(θp; ai, bi))1−upin(θp|0, σ2

θ) ,

∀p = 1, . . . , P (1.24)

f(ai|rest) ∝
P∏
p=1

Pi(θp; ai, bi)
upi(1− Pi(θp; ai, bi))1−upin(ln ai|µa, σ2

a)/ai ,

∀i = 1, . . . , I (1.25)

f(bi|rest) ∝
P∏
p=1

Pi(θp; ai, bi)
upi(1− Pi(θp; ai, bi))1−upin(bi|0, σ2

b) ,

∀i = 1, . . . , I (1.26)

f(σ2
θ |rest) ∝

P∏
p=1

n(θp|0, σ2
θ)IG(σ2

θ |αθ, βθ)

= IG

(
σ2
θ

∣∣∣∣∣αθ +
P

2
, βθ +

1

2

P∑
p=1

θ2p

)
(1.27)

with σ2
a, σ2

b , αθ and βθ to be fixed at values we specify.

The complete conditionals in Equations 1.24, 1.25 and 1.26 almost al-
ways lead to Metropolis-Hastings sampling (Section 1.5), because the product-
Bernoulli form of the likelihood is typically not reducible to a simple expo-
nential family or similar distribution. Data augmentation using the normal
ogive/probit model in place of the logistic curve (Albert, 1992; Fox, 2010) is
attractive because they do lead to Gibbs sampling; see for example Thissen
and Edwards (2005) for a sense of the trade-offs between these strategies. Our
choice of an inverse-Gamma distribution for σ2

θ , on the other hand, leads to a
conjugate inverse-Gamma complete conditional distribution, so that this part
of the algorithm can be implemented using Gibbs sampling (Section 1.4).

It is interesting to note that the complete conditional for σ2
θ does not

depend on the data, but only θp. This is typical for parameters at higher
levels in a hierarchical model. It is also interesting to note that, since I is
usually much smaller than P , there is much more information to estimate
αi, βi and σ2

θ than to estimate θp. However, computational problems (e.g.
floating point underflow) are also more common with complete conditionals
that involve more factors.

24 Markov Chain Monte Carlo for Item Response Models

1.8 Implementing an MCMC Algorithm

Conceptually, MCMC is easy: identify complete conditionals, develop a sam-
pling scheme like that of Figure 1.1, run one or more chains for “long enough”,
use the “converged” part of the chains to make inferences about the posterior
distribution. As suggested in Section 1.7, IRT models usually suggest a natu-
ral separation of parameters into single-parameter blocks with fairly natural
Gibbs and M-H steps, and this is a good place to start.

In this section we will sketch a fruitful approach for developing an MCMC
algorithm, using the model and complete conditionals developed in Section 1.7.
For concreteness, code is presented in R (R Development Core Team, 2012),
but the general recipe will apply to any other programming language, choice of
sampling algorithm to implement, or choice of model with suitable translation.
After illustrating the development of the algorithm, we will also illustrate its
application briefly to item response from a mathematics assessment admin-
istered to a US national sample of fifth grade students. Further details are
available in an online supplement to this chapter (VanHoudnos, 2012).

1.8.1 Simulating Fake Data

In order to check that an estimation algorithm is working properly, it is
useful to see if the algorithm can recover the true parameter values in one
or more simulated “test” data sets. Figure 1.4 displays R code, based on
Equations 1.17, 1.18 and 1.19, for simulating dichotomous item responses for
P = 2000 persons and I = 30 items, using the 2PL model, with discrimina-
tion parameters ai sampled randomly from a Unif[0.5, 1.5] distribution, and
difficulty parameters bi equally spaced running from −3 to +3. Persons’ pro-
ficiency parameters θp were sampled randomly from a normal distribution
n(θ|µθ, σ2

θ) with mean µθ = 0 and standard deviation σθ = 1.25. The R func-
tion plogis(x) computes 1/(1 + exp(−x)); below in Figure 1.10 we will also
use the inverse function qlogis(p) which computes log p/(1− p).

After simulating the data it is a good idea to check to see if the simulation
was successful, by checking that quantities estimated from the data agree with
the simulation setup. In the case of a new model for which MCMC will be
the first estimation algorithm, it is useful to check that the simulated data is
consistent with predictions from the simulation model. For example we can
check that moments (means, variances, covariances, etc.) of the simulated data
agree with the same moments of the simulating model. Although the 2PL IRT
model is itself a well-known model, we illustrate this approach in Figure 1.5.
The left panel compares the theoretical values

πi =

∫ ∞
−∞

exp{ai(θ − bi)}
1 + exp{ai(θ − bi)}

· n(θ|0, σ2
θ) dθ

Markov Chain Monte Carlo for Item Response Models∗ 25

Set the random-number generator seed,

to make the results reproducible

set.seed(314159)

set the number of items I and persons P

I.items <- 30

P.persons <- 2000

set the fixed item and population parameters

a.disc <- 1 + runif(I.items,-0.5,0.5)

b.diff <- seq(-3,3,length=I.items)

mean.theta <- 0

sig2.theta <- (1.25)^2

generate thetas and the I x P matrix of response probabilities

theta.abl <- rnorm(P.persons, mean=mean.theta, sd=sqrt(sig2.theta))

term.1 <- outer(theta.abl, a.disc)

term.2 <- matrix(rep(a.disc*b.diff, P.persons), nrow=P.persons,

byrow=TRUE)

P.prob <- plogis(term.1-term.2) ### 1/(1 + exp(term.2 - term.1))

generate the 0/1 responses U as a matrix of Bernoulli draws

U <- ifelse(runif(I.items*P.persons)<P.prob,1,0)

FIGURE 1.4
R code to generate fake 2PL data for testing our MCMC algorithm, based on
Equations 1.17, 1.18 and 1.19.

26 Markov Chain Monte Carlo for Item Response Models

●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●●●

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1D Moments

Theoretical

E
m

pi
ric

al
●

●●
●

●●

●●●
●

●
●

●

●
●

●
●

●

● ●

●
● ●

●

●

●

●●●

●●

●

●
●

●
●●

●
●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●●●

●
●

●
●

●
●●

●
●●

●

●
●

●
●

●

● ●

●
● ●

●

●

●

●●●

●

●
●

●
●●

●
●●

●

●
●

●
●

●

● ●

●
● ●

●

●

●

●●●

●●

●
●●

●
●●

●

●
●

●
●

●

● ●

●
● ●

●

●

●

●●●

●

●
●●

●
●●

●

●
●

●
●

●

● ●

●
●

●●

●

●

●●●

●●●
●

●●
●

●
●

●
●

●

● ●

●
●

●●

●

●

●●●

●●
●

●●
●

●
●

●
●

●

●●

●
●●

●

●

●

●●●

●
●●

●
●

●
●

●
●

●

●●

●
●●●

●

●

●●●

●
●●

●

●●

●●●

●●

●
●●●

●

●

●●●

●●
●

●●

●●
●

●●

●
●●●

●

●

●●●

●
●

●
●

●
●

●
●●

●
●●●

●

●

●●●

●

●●

●
●

●
●●

●
●●●

●

●

●●●

●●

●
●

●
●●

●
●●●

●

●

●●●

●
●●●

●●

●●●●

●

●

●●●

●
●●●●

●●●●

●

●

●●●

●
●

●●
●

●●●

●

●

●●●

●
●●

●●●●

●

●

●●●

●●
●

●●●

●

●

●●●

●
●●●●

●
●

●●●

●●●●

●

●

●●●

●●●
●

●
●●●

●●
●

●
●●●

●
●

●
●●●●

●
●●●●●●●
●●●●●●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

2D Moments

Theoretical

E
m

pi
ric

al

FIGURE 1.5
Checking the fake-data simulation by verifying that empirical moments from
the simulated data match theoretical moments from the simulation model. The
left panel compares theoretical and empirical estimates of πi = P [Ui = 1], and
the right panel compares theoretical and empirical estimates of πij = P [Ui =
1 & Uj = 1].

with their empirical estimates

π̂i =
1

P

P∑
p=1

Upi

The right panel compares the theoretical values

πij =

∫ ∞
−∞

exp{ai(θ − bi)}
1 + exp{ai(θ − bi)}

· exp{aj(θ − bj)}
1 + exp{aj(θ − bj)}

· n(θ|0, σ2
θ) dθ

with their empirical estimates

π̂ij =
1

P

P∑
p=1

UpiUpj

See VanHoudnos (2012) for computational details. Of course other such “mo-
ment matching” checks are possible, and should be chosen to check any fea-
tures of the simulated data that might be in doubt.

In the case of a familiar model such as the 2PL IRT model for which many
other estimation algorithms have been written, we can also check to see that
parameters are recovered by a known algorithm, such as the R package ltm

(Rizopoulos, 2006). This is illustrated in Figure 1.6: the left panel compares
theoretical discrimination parameters ai with their ML estimates from ltm;
the right panel makes the same comparison for difficulty parameters bi. Both
panels employ a linear equating using the means and standard deviations

Markov Chain Monte Carlo for Item Response Models∗ 27

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Item Discrimination

True values

M
L

es
tim

at
es

●●

●
●●●

●●
●

●●●

●
●

●
●

●
●

●●

●●
●

●
●

●

●
●

●
●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Item Difficulty

True values

M
L

es
tim

at
es

FIGURE 1.6
Checking the fake-data simulation by verifying that the simulation model pa-
rameters can be recovered by maximum likelihood (ML). The left panel com-
pares theoretical and ML-estimated values of the discrimination parameters ai
and the right panel makes the same comparison for the difficulty parameters
bi.

of the true and estimated bi’s, as suggested by Cook and Eignor (1991) for
example, to account for scale indeterminacy in estimating the IRT model.
(While this particular transformation is unique to the particular model we are
working with here, it is important to keep similar latent space indeterminacies
in mind when working with other IRT and IRT-like models.) Figures 1.5 and
1.6 suggest that we have successfully simulated fake data from the intended
2PL model; we will use this data to test the MCMC algorithm as we develop
it.

1.8.2 The MCMC Algorithm Shell

Before building the individual sampling functions that generate Monte Carlo
samples from the complete conditionals in Equations 1.24 through 1.27, it
is helpful to think about the context in which they will operate. Figure 1.7
displays the two main components of a working one-variable-at-a-time MCMC
sampler.

• blocked.mcmc.update collects together four functions, sample.th, sample.a,
sample.b and sample.s2 that will be used to implement one full step of
the one-variable-at-a-time MCMC algorithm outlined in Figure 1.1. We will
discuss the definitions of these four functions below in Section 1.8.3.

U.data is the matrix U of item responses. cur is a “list” (an R data struc-
ture) that contains the current state of the Markov chain (the current set
of sampled parameter values), as well as auxiliary information such as hy-

28 Markov Chain Monte Carlo for Item Response Models

blocked.mcmc.update <- function(U.data, cur){

cur <- sample.th(U.data, cur) # Equation 1.24

cur <- sample.a(U.data, cur) # Equation 1.25

cur <- sample.b(U.data, cur) # Equation 1.26

cur <- sample.s2(U.data, cur) # Equation 1.27

return(cur)

}

run.chain.2pl <- function(M.burnin, M.keep, M.thin, ...){

...

Burn-in phase: do not keep these results

if(M.burnin > 0) {

for(ii in 1:M.burnin) {

cur <- blocked.mcmc.update(U.data, cur)

}}

Converged phase: Keep these results after thinning

for (m in 1:M.keep) {

Skip the "thinned" pieces of the chain

if(M.thin > 1) {

for(ii in 1:(M.thin-1)) {

cur <- blocked.mcmc.update(U.data, cur)

}}

Generate a "kept" update and save its results

cur <- blocked.mcmc.update(U.data, cur)

chain.keep[,m] <- c(curth, cura, curb, curs2)

}

...

return(chain.keep)

}

FIGURE 1.7
The R function blocked.mcmc.update collects together four sampling rou-
tines that implement the one-variable-at-a-time MCMC algorithm of Fig-
ure 1.1, for a 2PL IRT model. cur defines the current state of the Markov
Chain. Each function call sample.th , sample.a, etc. implements a set of
draws from complete conditionals; the definitions of these functions will be
described below in Section 1.8.3. The R function run.chain.2pl shows how
blocked.mcmc.update is used to implement a complete MCMC algorithm.
Some housekeeping details have been elided; see Figure 1.8 for these details.

Markov Chain Monte Carlo for Item Response Models∗ 29

perparameters, Metropolis-Hastings proposal variances and acceptance rate
information. The effect of a call to blocked.sample.mcmc is to take one step
in the Markov chain, that is, to replace the old sampled parameter values
with new ones.

• run.chain.2pl is a sketch of the main function that “runs” the entire
MCMC algorithm. Certain housekeeping details are omitted for clarity, and
replaced with “...” in Figure 1.7; they can be seen in detail in Figure 1.8.

The algorithm runs in two phases. In the burn-in phase, M.burnin steps of
the Markov chain are sampled, and simply thrown away, since the Markov
chain is assumed not to have converged yet. In the converged phase, M.keep×
M.thin steps are sampled, and every M.thinth set of sampled parameter
values is kept. The resulting matrix of M.keep samples from the posterior
distribution is returned in the matrix chain.keep.

A complete version of run.chain.2pl is shown in Figure 1.8, for com-
pleteness. Details present in Figure 1.8, but omitted in Figure 1.7, include:

• Additional information passed to run.chain.2pl: U.data, the data matrix
of item responses; hyperpars, the vector of hyperparameters for the prior
distributions according to Equation 1.23; vectors th.init, a.init, b.init
and s2.init for all model parameters; Metropolis-Hastings proposal vari-
ances MH.th, MH.a, MH.b; and a switch verbose to indicate whether to report
M-H acceptance rates.

• Setting up the “current state” list cur and initializing the model parameters
in cur to the initial values passed to run.chain.2pl.

• Setting up the matrix chain.keep in which to keep values of the Markov
chain once it has converged. Each column of chain.keep contains one com-
plete set of model parameters drawn from the posterior distribution.

• Code to report Average acceptance rates for the M-H portions of the
algorithm.

1.8.3 Building the Complete Conditionals

We suggest building and testing each of the parameter-sampling functions
sample.th, sample.a, sample.b and sample.s2 shown in Figure 1.7 sep-
arately. While testing one function, say sample.th, the other functions
should simply return the values they are given, effectively holding those pa-
rameters fixed at their initial values, to isolate the behavior of sample.th

itself. For example, sample.a could be given the provisional definition
sample.a <- function(U.data, cur) { return(cur) }, and identical def-
initions could be used for sample.b and sample.s2. These provisional defini-
tions would be replaced with actual MCMC-sampling code as each sample.*

function is developed (see VanHoudnos, 2012, for details).

30 Markov Chain Monte Carlo for Item Response Models

run.chain.2pl <- function(M.burnin, M.keep, M.thin,

U.data, hyperpars,

th.init, a.init, b.init, s2.init,

MH.th, MH.a, MH.b, verbose=FALSE) {

Define and initialize the list of things to keep track of in the

"current state" of the chain -- see text for detailed explanation

cur <- list(th=th.init, a=a.init, b=b.init, s2=s2.init,

hyperpars=hyperpars,

MH = list(th=MH.th, a=MH.a, b=MH.b),

ACC= list(th=0,th.n=0, a=0,a.n=0, b=0,b.n=0))

Define matrix to store MCMC results...

chain.keep <- matrix(NA, ncol = M.keep,

nrow = length(th.init) + length(a.init)

+ length(b.init) + length(s2.init))

rownames(chain.keep) <- c(paste(’theta.abl’, 1:length(th.init)),

paste(’a.disc’, 1:length(a.init)),

paste(’b.diff’, 1:length(b.init)),

’sig2.theta’)

Burn-in phase: do not keep these results

if(M.burnin > 0) {

for(ii in 1:M.burnin) {

cur <- blocked.mcmc.update(U.data, cur)

}}

Converged phase: Keep these results after thinning

for (m in 1:M.keep) {

Skip the "thinned" pieces of the chain

if(M.thin > 1) {

for(ii in 1:(M.thin-1)) {

cur <- blocked.mcmc.update(U.data, cur)

}}

Generate a "kept" update and save its results

cur <- blocked.mcmc.update(U.data, cur)

chain.keep[,m] <- c(curth, cura, curb, curs2)

if (m %% 100 == 0) {

print(m)

Adaptive tuning would go here.

}

}

if (verbose) {

cat(paste("Average acceptance rates:",

"\n theta.abl:", round(curACCth / curACCth.n ,3),

"\n a.disc: ", round(curACCa / curACCa.n ,3),

"\n b.diff: ", round(curACCb / curACCb.n ,3),"\n"))

}

return(chain.keep)

}

FIGURE 1.8
Function definition for a complete MCMC algorithm for fitting a 2PL model
to data. See text for discussion of the various parts of this function.

Markov Chain Monte Carlo for Item Response Models∗ 31

For illustration, we show a definition for the function sample.th, in Fig-
ure 1.9. We sample from the complete conditional shown in Equation 1.24,
using a random-walk M-H sampler as described in Section 1.5. All probability
calculations have been done on the log scale, to avoid numerical underflow on
the computer, which is common when multiplying many probabilities together
(for larger problems, logarithmic calculations typically have to be combined
with other strategies such as additive offsets, to avoid underflow; see for ex-
ample Monahan, 2011, Chapter 2).

In Figure 1.9, log.prob is an auxiliary function that will be used several
times in sample.th, sample.a and sample.b. It returns a P × I matrix of
terms

log
[
Pi(θp; ai, bi)

upi(1− Pi(θp; ai, bi))1−upi
]

which are useful in calculating the log-likelihoods following Equations 1.24,
1.25 and 1.26.

sample.th is the main function for sampling θp’s from the complete con-
ditional densities in Equation 1.24. In sample.th,

• old contains the “old” current state of the Markov chain, and cur contains
the “new” current state after sample.th is finished. Both variables have the
structure of cur defined in run.mcmc.2pl in Figure 1.8.

• We have exploited the high degree of separation of parameters available
in IRT models (due to independence across persons and items in the IRT
likelihood) to string together the P calculations needed in Equation 1.24 into
a small number of implicit vector calculations in R; this not only shortens
the programming task, it also speeds up R’s execution. In other models not
enjoying such separation, these calculations would have to be done separately
and sequentially.

• The line th.star <- rnorm(P.persons,th.old,th.MH) implements the
normal random-walk proposal draws

θ∗p
indep∼ N(θ(m−1)p , σ2

p), p = 1, . . . , P

where the value of σp is specified in th.MH.

• The next five assignment statements calculate the vector of M-H acceptance
ratios α∗p for each θp (Equation 1.9), using the implicit vector calculations
available in R.

• acc.new contains a vector of 0’s and 1’s: 0 in the pth position if the corre-
sponding θ∗p is not accepted, and 1 if it is.

• Finally, the current state cur of the Markov chain is updated with each
accepted θ∗p, the running sum of acceptances, curACCth, is updated with
the average acceptance rate across all θp’s, and the number of updates,
curACCth.n, is incremented.

32 Markov Chain Monte Carlo for Item Response Models

log.prob <- function(U.data, th, a, b) {

term.1 <- outer(th, a)

term.2 <- matrix(rep(a*b, P.persons), nrow=P.persons,

byrow=TRUE)

P.prob <- plogis(term.1 - term.2)

log.bernoulli <- U.data*log(P.prob) + (1-U.data)*log(1-P.prob)

return(log.bernoulli)

}

sample.th <- function(U.data, old) {

th.old <- old$th

MH.th <- oldMHth

P.persons <- length(th.old)

th.star <- rnorm(P.persons,th.old,MH.th)

log.cc.star <- apply(log.prob(U.data, th.star, olda, oldb),1,sum) +

log(dnorm(th.star,0,sqrt(old$s2)))

log.cc.old <- apply(log.prob(U.data, th.old, olda, oldb),1,sum) +

log(dnorm(th.old,0,sqrt(old$s2)))

log.prop.star <- log(dnorm(th.star,th.old,MH.th))

log.prop.old <- log(dnorm(th.old,th.star,MH.th))

log.alpha.star <- pmin(log.cc.star + log.prop.old - log.cc.old -

log.prop.star,0)

acc.new <- ifelse(log(runif(P.persons))<=log.alpha.star, 1, 0)

cur <- old

cur$th <- ifelse(acc.new==1, th.star, th.old)

curACCth <- oldACCth + mean(acc.new)

curACCth.n <- curACCth.n + 1

return(cur)

}

FIGURE 1.9
Definition of sample.th, for sampling from the complete conditionals for θ’s,
using a normal random-walk Metropolis-Hastings strategy. An auxiliary func-
tion log.prob which is used several times in sample.th and other complete-
conditional samplers, is also defined here. See text, and VanHoudnos (2012),
for details.

Markov Chain Monte Carlo for Item Response Models∗ 33

Note that in this algorithm, we are accumulating only average acceptance
counts across all P θp parameters, rather than individual acceptance rates for
each θp. In well-behaved IRT models with no missing data in the rectangular
array U , this is a workable strategy; in more challenging situations, it may be
necessary to keep track of acceptance rates for each θp individually and use
separate M-H proposal variances for each θp (expanding both oldMHth and
oldMHACC to I-dimensional vectors).

After some trial runs to make sure we are happy with sample.th, we would
move on to developing sample.a, sample.b, and sample.s2. For sample.a

and sample.b, a strategy similar to that of Figure 1.9 can be used. Since
sample.s2 will be a Gibbs step, simpler direct sampling from the inverse-
Gamma distribution in Equation 1.27 can be implemented. More details on
all four sampling functions are supplied in VanHoudnos (2012).

1.8.4 Tuning Metropolis-Hastings

The Metropolis-Hastings samplers sample.th, sample.a and sample.b must
also be tuned—that is, proposal variances MH.th, MH.a and MH.b must be
chosen to get workable acceptance rates. If the acceptance rate is too high,
the chain may not explore very much of the posterior distribution because
it is taking too many small, incremental steps. The resulting trace plot may
look like plot (b) in Figure 1.2. If the acceptance rate is too low, the chain will
also not explore much of the posterior distribution because most proposals are
rejected and it stays in place. The resulting trace plot may look like plot (c)
in Figure 1.2. In both the too high and too low regions of acceptance rate, the
autocorrelation will be high (Figure 1.3). For a single parameter at a time,
the optimal acceptance rate is near 0.44; in practice rates between 0.2 and 0.6
are usually reasonable (Rosenthal, 2011).

In Figure 1.10 we show one possible strategy for tuning the M-H samplers.
In the figure, we only keep track of the average acceptance rate for θ’s, the
average rate for a’s and the average rate for b’s. It is possible that some indi-
vidual parameters do not have reasonable acceptance rate. We could instead
tune acceptance rates for each θp, ai and bi individually, by recording sepa-
rate acceptance rates for each of them, and using different component values
in th.MH. Note that tuning one M-H sampler can affect the acceptance rates
of the others.

The results of three tuning runs using the code illustrated in Figure 1.10 are
shown in Table 1.1. The first run (first row of the table) shows unacceptably
low average acceptance rates, especially for the a and b parameters. The second
run (second row) shows acceptable but still somewhat low average acceptance
rates for all three sets of parameters. The third run (third row) shows nearly
optimal average acceptance rates.

In addition to changing a “tuning parameter” for a specific proposal distri-
bution, it can also be advantageous to change the proposal distribution itself,
in order to more efficiently explore the posterior. Typically, the proposal distri-

34 Markov Chain Monte Carlo for Item Response Models

set.seed(314159)

M.burnin <- 250

M.keep <- 1000

M.thin <- 1

See Section 1.8.5 for details of prior specification

hyperpars <- list(mu.a = 1.185,

s2.a = 1.185,

s2.b = 100,

alpha.th = 1,

beta.th = 1)

use naive method of moments estimators as initial values for

theta’s and b’s, and set the initial values of a’s and s2 to 1.

th.tmp <- qlogis(0.98*apply(U,1,mean) + .01)

a.tmp <- rep(1,I.items)

b.tmp <- qlogis(0.98*apply(U,2,mean) + .01)

s2.tmp <- 1

specify the MH tuning parameters

MH.th <- .75; MH.a <- .15; MH.b <- .10

tune.run <- run.chain.2pl(M.burnin, M.keep, M.thin, U, hyperpars,

th.tmp, a.tmp, b.tmp, s2.tmp,

MH.th, MH.a, MH.b, verbose=TRUE)

#Average acceptance rates:

theta.abl: 0.416

a.disc: 0.47

b.diff: 0.436

FIGURE 1.10
Example of tuning the completed sampler by iteratively adjusting the values
of MH.th, MH.a, and MH.b. The table presents additional sampling runs that
were used to find the final tuned values.

TABLE 1.1
Results of tuning runs as in Figure 1.10 for various values of tuning parameters.

MH.th Acceptance MH.a Acceptance MH.b Acceptance

2. 0.218 1. 0.076 1. 0.072
1. 0.352 0.25 0.306 0.25 0.226
0.75 0.416 0.15 0.470 0.10 0.436

Markov Chain Monte Carlo for Item Response Models∗ 35

bution would be chosen to mimic the posterior distribution before running the
chain, or it can be adaptively adjusted to mimic the posterior distribution as
the whole MCMC algorithm runs (see also the discussion of choice of proposal
distributions in Section 1.5 above). In the case of one-dimensional complete
conditionals, one adaptive approach is to simply adjust the variance of the pro-
posal distribution as the chain runs in order to zero in on optimal acceptance
rates. Such adaptations could be built into the function run.chain.2pl in
Figure 1.7. When the complete conditional is multidimensional, the adaptive
procedure would try to mimic the covariance structure of the posterior distri-
bution. Unfortunately these methods are beyond the scope of the chapter; see
Rosenthal (2011) and the references therein for an accessible discussion.

1.8.5 Testing on Simulated Data

We tried the algorithm out on data simulated as in Figure 1.4. We used the
prior distributions listed in Equations 1.20–1.22 with the hyperparameters
listed in Figure 1.10.

The hyperparameters were chosen to create uninformative priors. The bi
prior is a normal with variance σ2

b = 100, which is uninformative because it
is very flat for typical values of item difficulty. We similarly dispersed the log-
normal prior of the ai values by matching the 95% quantile of a more familiar
distribution: a positive truncated normal distribution with a variance of 100.
A quick calculation shows that 95% of the mass of a truncated normal with
a variance of 100 is below 19.6 units, and that a log-normal with a mode of 1
must have µa = σ2

a = 1.185 to also have 95% of its mass below 19.6 units.
Values larger than 1.185 will further flatten the prior, but since the discrim-
ination parameters are typically less variable than difficulty parameters it is
not useful to further broaden the discrimination prior. Unlike the previous two
priors, which were more uniformative for larger values of the hyperparameters,
the inverse-gamma prior for σ2

θ becomes less informative as α and β become
smaller as can be seen from complete conditional in Equation 1.27. We chose
the minimum values of α = β = 1. A more detailed discussion of these prior
specifications can be found in VanHoudnos (2012).

We simulated three chains from starting values that were overdispersed
from the method of moments starting values shown in Figure 1.10. On one
hand, in order to get trustworthy evidence of convergence from the Gelman-
Rubin convergence statistic R, and moreover any iterative search algorithm
should be started from several different initial values, to gain evidence that al-
gorithm does not get “stuck” in non-optimal solutions. On the other hand, we
have found that MCMC for IRT can be sensitive to excessively poor starting
values: typically much of the IRT likelihood and posterior is extremely flat,
and starting the MCMC algorithm in a flat part of the posterior distribution
will cause the chain to wander a very long time, and/or become numerically
unstable, before converging on a local or global mode.

We note in passing that, although simulating multiple chains is extremely

36 Markov Chain Monte Carlo for Item Response Models

valuable—both for diagnosing problems with the MCMC algorithm and for
confirming that the chain has converged to the stationary distribution—it is
extremely slow computationally, especially if the chains must be generated
sequentially. VanHoudnos (2012) suggests some methods for generating the
chains in parallel, by exploiting the fact that most modern personal computers
are equipped with multiple CPU cores.

To generate starting values for the chains we began by mildly jittering the
method of moments estimates in Figure 1.10. We further spread the starting
values out by exploiting the location and scale indeterminacy of logistic IRT
models, transforming these jittered values by randomly chosen location and
scale values which did not change the probabilities of correct responses.

However, even this mild dispersion caused the chains to converge very
slowly, especially for parameters with little support in the data such as σ2

θ

and the largest item discrimination parameter (max ai). To speed convergence
we modified the scan order of the Metropolis-Hastings algorithm to reduce
autocorrelation and cross-correlation in the chain, without incurring a large
computational cost, by repeatedly sampling item parameters, holding person
parameters fixed, and vice-versa (see Section 1.8.7 below for details). This
improved stability of the Markov chain and sped convergence to the stationary
distribution. Figure 1.11 shows typical behavior of the chain, for three sets of
overdispersed starting values, using the modified scan order.

Care in starting values and scan order here is partly due to numeri-
cal instability in the expression log.bernoulli <- U.data*log(P.prob) +

(1-U.data)*log(1-P.prob) in the top panel of Figure 1.9, especially when
P.prob is close to 0 or 1. In R, a more numerically stable expression would be
log.bernoulli <- log(P.prob^U.data) + log((1-P.prob)^(1-U.data));
using this expression instead, we are able to use much more overdispersed
starting values, for example. For additional details, see VanHoudnos (2012).

From trace plots like Figure 1.11, as well as acf plots, we chose M.burnin

= 3,000, M.thin = 1, and M.keep = 3,000 for the final run of the improved
scan order chain. It converged nicely: the Gelman-Rubin convergence statistic
R̂ ≤ 1.055 for all parameters and every MCMC standard error was at least
an order of magnitude smaller than the associated posterior standard error.
A comparison of posterior quantiles with the equated true values from the
simulated fake-data is shown in Figure 1.12, confirming that our algorithm
works well. Additional details, such as the code to generate the graphs, can
be found in VanHoudnos (2012).

1.8.6 Applying the Algorithm to Real Data

We analyzed data collected as a part of the national standardization research
for the Comprehensive Test of Basic Skills, Fifth Edition (CTBS/5), published
by CTB/McGraw-Hill (1996). A mathematics test comprised of 32 multiple-
choice items and 11 constructed-response items was administered to a U.S.
nationally representative sample of 2171 Grade 5 students. All multiple-choice

Markov Chain Monte Carlo for Item Response Models∗ 37

0 500 1000 1500 2000 2500 3000

−
3

−
2

−
1

0
1

2
3

Burn−in with low posterior variance

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

6

Burn−in with high posterior variance

FIGURE 1.11
Trace plots demonstrating the differences in burn-in times between a parame-
ter with small posterior variance, which burns-in within 100 iterations, and a
parameter with large posterior variance, which burns-in after 2000 iterations.
The equated true values of each parameter are plotted as a horizontal line.
See text, and VanHoudnos (2012) for details on the code used to setup, run,
and visualize the overdispersed chains.

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

Item Discrimination

True values

P
os

te
rio

r
m

ed
ia

n

●●

●
●●●

●●
●

●●●

●
●

●
●

●
●

●●
●●

●

●
●

●
●

●

●●

−4 −2 0 2 4

−
4

−
2

0
2

4

Item Difficulty

True values

P
os

te
rio

r
m

ed
ia

n

FIGURE 1.12
Checking the MCMC algorithm by verifying that the simulation model pa-
rameters can be recovered. The left panel compares equated theoretical and
MCMC-estimated values of the discrimination parameters ai and the right
panel makes the same comparison for the difficulty parameters bi. The error
bars are equated 95% posterior quantiles.

38 Markov Chain Monte Carlo for Item Response Models

item responses were dichotomously scored, and all constructed responses were
professionally evaluated on rubrics that ranged from zero to a maximum of
between 2 and 5 points. For this illustration, we analyzed only the 32 multiple-
choice questions. There are no missing data.

In principle all aspects of the model described in Equations 1.17–1.23
should be reconsidered when new data is considered. Especially the form of
the prior distributions and hyperparameters in Equations 1.20–1.23 should
receive special care, since they can affect parameter and latent proficiency es-
timates even if we keep the form of the IRT model in Equations 1.17–1.19 the
same. For the purposes of illustration in this chapter, however, we used the
same prior distributions and chosen hyperparameters µa = 1.185, σ2

a = 1.185,
σ2
b = 100, αθ = 1, βθ = 1. The example Grade 5 dataset had properties very

similar to the simulated “fake data” above (indeed, we designed the “fake
data” to mimic the real data), so it was very straightforward to analyze with
our improved scan order MCMC algorithm, prior distributions, and so forth.

After a 6,000 iteration burn-in from overdispersed starting values the sam-
pler had clearly converged both from the inspection of trace plots and the
calculation of R̂ statistics for each of the parameters, which were all less than
1.05. Even though the chain was properly tuned and it had clearly converged,
the autocorrleation of some parameters was still quite high as can be seen
in Figure 1.13. To bring the autocorrelation down to non-significant levels,
the chain would have had to be thinned to keep only every 150th iteration,
which would have left only 67 samples per 10,000 iterations. However, this ex-
treme thinning is unnecessary: in all cases the MCMC error as estimated with
overlapping batch means was very small compared to the posterior variance.

Figure 1.14 compares the posterior quantile estimates from pooling all
three converged chains to maximum likelihood estimates. Note that in all
cases the two sided 95% credible intervals contained the ML estimates. There
is also evidence in Figure 1.14 that CI’s for a’s and b’s were wider where they
were difficult to estimate (larger magnitude a’s and b’s).

1.8.7 Miscellaneous Advice

As we have seen, setting up a functioning MCMC algorithm for an IRT
model is not difficult. In practice, the MCMC algorithm may be computation-
ally slow, may converge slowly to the f(τ |U), and/or may exhibit excessive
autocorrelation/cross-correlation. Each of these takes some care to correct, in
practice.

Computational Improvements & Restarting

If the chain is mixing reasonably well but is executing slowly, then some com-
putational adjustments may be needed. Adapting M-H proposal distributions
dynamically (Rosenthal, 2011), or replacing M-H steps with adaptive rejection
(Gilks and Wild, 1992) or Gibbs (Albert, 1992; Fox, 2010) sampling steps, can

Markov Chain Monte Carlo for Item Response Models∗ 39

0 2000 4000 6000 8000 10000

−
1

0
1

2

Converged with low autocorrelation

Iterations

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

0 2000 4000 6000 8000 10000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Converged with high autocorrelation

Iterations

●

●
●
●
●

●

●●●
●●

●
●

●
●●

●

●
●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●
●
●
●
●

●

●

●●

●●●

●

●●●
●

●
●●

●

●●

●

●

●

●
●
●
●

●

●
●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

FIGURE 1.13
Converged trace plots on the real data example with the autocorrelation func-
tions calculated from the black chains. The left plots are of a typical person
ability parameter (θp); the right plots, a typical item discrimination parame-
ter (ai). The 67 white circles are values that would be kept if the chain were
thinned so that its autocorrelation would be as low as that of the left example
chain (M.thin= 150).

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Item Discrimination

ML Estimates

P
os

te
rio

r
m

ed
ia

n

●

●●

●

●

●

●●

●●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

−6 −4 −2 0 2 4

−
4

−
2

0
2

4

Item Difficulty

ML Estimates

P
os

te
rio

r
m

ed
ia

n

FIGURE 1.14
Posterior medians compared to equated ML estimates. The error bars are
equated 95% posterior quantiles.

40 Markov Chain Monte Carlo for Item Response Models

speed up computation. Avoiding time-intensive matrix calculations, precom-
puting quantities that will be used repeatedly, and/or pre-marginalizing over
nuisance parameters, can also help. Parallel computing is an obvious speed-up
tool: simply taking advantage of modern hardware to run multiple instances
of existing code simultaneously on a multi-core CPU speeds up computation
by a simple division of labor (e.g. VanHoudnos, 2012); running a single chain
on multiple CPUs is also possible, if one can identify or construct regeneration
states (e.g. Brockwell and Kadane, 2005) in the Markov chain. More recently
efficient and highly accurate approximate methods for running a single MCMC
algorithm on multiple computers has been developed (Scott, Blocker, Bonassi,
Chipman, George, and McCulloch, 2013).

The order in which the complete conditionals in Figure 1.1 are sampled is
called the scan order of the MCMC algorithm. Fixed scan algorithms sample in
the fixed order that the blocks are numbered—1, 2, 3, . . . , H, as in Figures 1.1
and 1.8. Although fixed-scan algorithms do not satisfy the reversibility condi-
tion of Equation 1.5, they still do have f(τ |U) as the stationary distribution,
as suggested in the discussion of Equation 1.6. Reversible kernels tend to have
better asymptotic properties—it is easier to prove asymptotic normality, and
to calculate or estimate convergence rates. Palindromic scan algorithms sam-
ples the complete conditional in order and then in reverse order, to produce
one Markov chain step, and is reversible. Random permutation scan algorithms
sample from the complete conditionals in random order for each step of the
Markov chain, and random scan algorithms simply sample from a random
complete conditional H times, to produce one step. Roberts and Sahu (1997)
argue that fixed scan Gibbs samplers generally have the fastest convergence
rates, though random scan methods will be faster for some parameterizations
of models with linear mean structure.

Sometimes the scan order needs to be tailored to the specific features of the
model or data one is working with. For example in the running IRT example
in this chapter, we found that with a simple fixed order

θp → ai → bi → σ2
θ , (1.28)

samples of the parameter σ2
θ were highly affected by variability of samples of

θp’s and in turn samples of the a and b parameters; this slowed the convergence
of the chain considerably. We found that the MCMC algorithm stabilized more
quickly if we could somewhat isolate samples of θ’s and σ2

θ from samples of
a’s and b’s, and vice-versa, by sampling k sets of θp’s and σ2

θ for each set of
a’s and b’s. Thus, the scan order(

θp → σ2
θ

)k → (ai → bi)
k

will still generate an MCMC algorithm that converges to the true posterior dis-
tribution, as discussed in Section 1.3, but will converge much faster. The value
of k controls a tradeoff between reduced autocorrelation and cross-correlations
in the Markov chain, and computational time. By trial and error we found
k = 7 to be a reasonable choice.

Markov Chain Monte Carlo for Item Response Models∗ 41

Although it is not a computational improvement per se, it also is very good
practice to save the random number generator seed (or some other sufficient
description of the current state of the simulated Markov chain) at regular
intervals during an MCMC run. That way, if the simulation is interrupted (by
a power failure for the computer running the algorithm, by the need to move
to another computer with more memory or a faster processor, etc.) then the
simulation can begin from the last saved state rather than from the initial
state. This can also be useful in reproducing “bad” behavior to help diagnose
computational errors, slow mixing, etc.

Blocking, Reparametrization, and Decorrelation Steps

If the chain is mixing slowly and/or exhibiting large autocorrelation or cross-
correlation, several remedies are possible. Graves, Speckman, and Sun (2011)
survey a number of strategies for dealing with slowly mixing or highly autocor-
related or cross-correlated chains, many of which were first gathered together
by Gilks and Roberts (1996) and Roberts and Sahu (1997). The most common
are blocking, reparametrization, and decorrelation steps.

One suggestion often made is to try a different blocking scheme, that is,
choose different disjoint subsets of parameters τ 1, . . . , τH in Figure 1.1. How-
ever, the item parameters for each item are natural blocks that often exhibit
strong posterior dependence. These and other groups of parameters that ex-
hibit strong dependence can be revealed in shorter preliminary runs of of
a less-than-optimal MCMC algorithm. When blocks of dependent parame-
ters are grouped together and sampled as a block, overall mixing can improve
(though of course the dependence between parameters within blocks remains).
Exact conditions under which blocking does or does not help, for normal com-
plete conditionals (which are often approximately true for other complete con-
ditionals, by a CLT-like argument), can be found in Roberts and Sahu (1997);
see also Doucet et al. (2006).

Another way to deal with dependence between parameters is to
reparametrize the model so that the new parameters are less dependent. Pa-
rameters with a normal or nearly normal posterior distribution can be rotated,
via linear transformation, to be uncorrelated for example. This does not re-
move the dependence among the original parameters, but an MCMC algorithm
for the transformed parameters may run better (and the results transformed
back to the original parametrization if needed). Hierarchical centering (Gilks
and Roberts, 1996; Roberts and Sahu, 1997) involves expressing prior distri-
butions at one level as centered at the hyperparameters at the next level. It
is particularly suited to models with linear mean structure such as hierar-
chical linear models (HLMs), generalized HLMs and HLM-like models, and
has the effect of both making parameters at level 2 independent and concen-
trating more data on estimates at level 3. Data augmentation (Section 1.6.4)
simplifies complete conditionals and often reduces both computational time
and chain autocorrelation (Fox, 2010), but the gains are not always obvious

42 Markov Chain Monte Carlo for Item Response Models

and probably deserve empirical investigation for each new class of models one
encounters (see, for example, Thissen and Edwards, 2005).

Finally, a common source of poor behavior in an MCMC algorithm is
that the underlying model is overparametrized, or nearly so. The Markov
chain will tend to walk along the ridge in the posterior distribution induced
by the overparametrization. In that case Graves et al. (2011) suggest that
inserting occasional M-H steps with proposals that are perpendicular to the
ridge can reduce autocorrelation in the chain and lead to better exploration
of the parameter space. A simpler idea along the same lines (Tierney, 1994)
is to insert occasional independence M-H steps as decorrelation steps. More
general considerations along these lines lead to stochastic relaxation (Geman
and Geman, 1984) and simulated annealing (Bertsimas and Tsitsiklis, 1993)
algorithms.

Model Fit

Applying a sophisticated model to complex data is more than defining the
model, as in Section 1.7, and successfully implementing an estimation algo-
rithm, as in Section 1.8. Assessing the fit of the model, informally while work-
ing with the estimation algorithm, and formally after estimation is complete,
is an essential part of statistical and psychometric practice.

It will sometimes be the case that the model fits the data so poorly that
no MCMC algorithm will converge or give sensible answers. MCMC is par-
ticularly sensitive to the shape of the posterior distribution: if the posterior
is well peaked around a well-defined maximum, MCMC works quite well. If
the posterior is relatively flat with ridges and/or poorly defined maximas, as
can happen when the model fits the data poorly, then the MCMC sample will
tend to wander without converging, often to the edge of the parameter space.

Formal methods can be used to compare the fit of competing models, if
more than one model has been fitted to the data. There is a large literature
on Bayesian model comparison, focusing mainly on Bayes factor calculations
(Han and Carlin, 2001; Kass and Raftery, 1995; Wasserman, 2000) and fit
indices such as AIC (Akaike, 1977; Burnham and Anderson, 2002), BIC (Kass
and Wasserman, 1995; Schwarz, 1978), and DIC (Ando, 2007; Celeux, Forbes,
Robert, and Titterington, 2006; Spiegelhalter, Best, Carlin, and van der Linde,
2002).

Model criticism is the process of isolating particular features of a model
that can be changed to improve the fit of the model; the process is similar
in spirit to model modification indices in structural equations modeling, for
example. A model criticism method particularly suited to MCMC calculation
is posterior predictive checking (Gelman et al., 2003; Gelman, Meng, and
Stern, 1996; Lynch and Western, 2004). Essentially, one takes the output of
the MCMC algorithm and uses it to generate more fake data from the fitted
model, and compares some summary of the fake data with the same summary
of the real data used to fit the model. If the fake data summaries look like the

Markov Chain Monte Carlo for Item Response Models∗ 43

real data summary, this gives confidence that the model is capturing whatever
feature of the data the summary was intended to focus on. If not, the difference
between the real and fake data summaries usually suggest ways to improve
the model. A full discussion is beyond the scope of this chapter; see Sinharay,
Johnson, and Stern (2006) or Sinharay (vol. 2, chap. 19) for an introduction
to posterior predictive checking of psychometric models.

1.9 Discussion

In this chapter, we have reviewed some theory and useful methodology for
implementing Markov Chain Monte Carlo (MCMC) algorithms for inferences
with Bayesian IRT models. These ideas were illustrated using a standard 2PL
IRT model.

MCMC has been applied successfully in many IRT and IRT-related con-
texts. To give only a few examples, data-augmentation-based MCMC for nor-
mal ogive models (Albert, 1992) has been extended to hierarchical IRT models
(Fox, 2010), testlet models (Bradlow et al., 1999), and other settings. Other
applications of MCMC include estimation of hierarchical rater models Casabi-
anca, Junker, and Patz, vol. 1, chap. 27, models for test compromise (Segall,
2002; Shu, 2010), and models involving change over time (Studer, 2012) in IRT
and cognitive diagnosis models (CDM’s, e.g. Junker and Sijtsma, 2001; Rupp,
Templin, and Henson, 2010). In a related direction, Weaver (2008) gives an
example of MCMC applied to a detailed computational production model for
cognitive response data, tied to a particular cognitive architecture (Anderson
and Lebiere, 1998).

For modest-sized applications with fairly standard models, it makes sense
to work with existing standard software, rather than developing an MCMC
algorithm from scratch. WinBUGS (Johnson, vol. 3, chap. 22; Lunn et al.,
2009) and its cousins OpenBugs (Spiegelhalter, Thomas, Best, and Lunn,
2012) and JAGS (Plummer, 2012a) are readily available and can be used
to fit and make inferences with a wide variety of standard models. R pack-
ages such as R2WinBUGS (Gelman et al., 2012), rube (Seltman, 2010), BRugs
(Ligges, 2012) and rjags (Plummer, 2012b) make it convenient to access
the power of WinBUGS and its cousins from R. For example, Ayers (2009)
sketches a flexible approach to fitting various IRT models and CDM’s using
WinBUGS from R. A number of other packages for R (Geyer and Johnson,
2012; Hadfield, 2010; Martin, Quinn, and Park, 2009) and other computa-
tional platforms (Daumé III, 2007; Patil, Huard, and Fonnesbeck, 2010; Stan
Development Team, 2012) allow for faster computation for specific models,
exploration of specific techniques for improving MCMC, and so forth. For a
review, see Rusch, Mair, and Hatzinger (vol. 3, chap. 21).

For developing new models, or performing MCMC computations in new or

44 Markov Chain Monte Carlo for Item Response Models

complex settings, it can be preferable to develop MCMC algorithms by hand:
one then has greater flexibility concerning sampling methods, scan order, par-
allelization, diagnostics, etc., and these can be quite important in creating an
efficient and trustworthy algorithm. In addition, the methods illustrated here
can be applied not only in R but also in C++ or any other computational
language, and this can by itself produce significant speed-ups (see for example
VanHoudnos, 2012). The monographs of Gilks, Richardson, and Spiegelhal-
ter (1996) and Brooks, Gelman, Jones, and Meng (2011) provide good entry
points into the large literature on established MCMC methodology as well as
more novel related approaches.

Bibliography

Akaike, H. (1977), “On entropy maximization principle,” in Applications of
Statistics, ed. Krishnaiah, P., Amsterdam: North-Holland, pp. 27–41.

Albert, J. H. (1992), “Bayesian estimation of normal ogive item response
curves using Gibbs sampling,” Journal of Educational Statistics, 17, 251–
269.

Albert, J. H. and Chib, S. (1993), “Bayesian analysis of binary and polychoto-
mous response data,” Journal of the American Statistical Association, 88,
669–679.

Anderson, J. R. and Lebiere, C. (1998), The atomic components of thought,
Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Ando, T. (2007), “Bayesian predictive information criterion for the evaluation
of hierarchical Bayesian and empirical Bayes models,” Biometrika, 94, 443–
458.

Ayers, E. (2009), “Using R to Write WinBUGS COde,” Tech.
rep., American Institutes for Research, Washington DC,
http://www.stat.cmu.edu/˜eayers/BUGS.html.

Bartholomew, D. J. and Knott, M. (1999), Latent variable models and factor
analysis (Kendalls Library of Statistics, No. 7, 2nd. ed., New York, NY:
Edward Arnold.

Béguin, A. A. and Glas, C. A. (2001), “MCMC estimation and some model-fit
analysis of multidimensional IRT models,” Psychometrika, 66, 541–561.

Bertsimas, D. and Tsitsiklis, J. (1993), “Simulated annealing,” Statistical Sci-
ence, 8, 10–15.

Billingsley, P. (1995), Probability and Measure, 3rd Edition, New York, New
York, USA: Wiley-Interscience.

Bradlow, E., Wainer, H., and Wang, X. (1999), “A Bayesian Random Effect
Model for Testlets,” Psychometrika, 64, 153–168.

Brockwell, A. and Kadane, J. B. (2005), “Identi fication of regeneration times
in MCMC simulation with application to adaptive schemes,” Journal of
Statistical Computation and Graphics, 14, 436–458.

45

46 Markov Chain Monte Carlo for Item Response Models

Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (eds.) (2011), Handbook
of Markov Chain Monte Carlo, Boca Raton FL: Chapman & Hall/CRC.

Brooks, S. P. and Gelman, A. (1998), “General Methods for Monitoring Con-
vergence of Iterative Simulations,” Journal of Computational and Graphical
Statistics, 7, 434–455.

Burnham, K. and Anderson, D. (2002), Model Selection and Multimodel In-
ference: A Practical Information-Theoretic Approach, New York: Springer.

Casella, G. and Robert, C. P. (1996), “Rao-Blackwellization of sampling
schemes,” Biometrika, 83, 81–94.

Celeux, G., Forbes, F., Robert, C., and Titterington, D. (2006), “Deviance
Information Criteria for Missing Data Models (with discussion),” Bayesian
Analysis, 651–674 (disc. 675–706).

Chang, H.-H. and Stout, W. (1993), “The asymptotic posterior normality of
the latent trait in an IRT model,” Psychometrika, 58, 37–52.

Chib, S. and Greenberg, E. (1995), “Understanding the Metropolis-Hastings
Algorithm,” The American Statistician, 49, 327–335.

Chib, S., Greenberg, E., and Chiband, S. (1995), “Understanding the
metropolis-hastings algorithm,” American Statistician, 49, 327–335.

Congdon, P. (2007), Bayesian Statistical Modelling, 2nd Edition, New York:
Wiley.

Cook, L. L. and Eignor, D. R. (1991), “IRT Equating Methods,” Educational
Measurement: Issues and Practice, 10, 37–45.

Cowles, M. K. and Carlin, B. P. (1996), “Markov Chain Monte Carlo Con-
vergence Diagnostics : A Comparative Review,” Journal of the American
Statistical Assocation, 91, 883–904.

CTB/McGraw-Hill (1996), Comprehensive Test of Basic Skills, Fifth Edition,
Monterey, CA: Author.

Daumé III, H. (2007), “HBC: Hierarchical Bayes Compiler,” Tech. rep.,
http://hal3.name/HBC/.

De Boeck, P. and Wilson, M. E. (2004), Explanatory item response models: A
generalized linear and nonlinear approach, New York: Springer-Verlag.

de la Torre, J. and Douglas, J. (2004), “Higher-order latent trait models for
cognitive diagnosis,” Psychometrika, 69, 333–353.

Doucet, A., Briers, M., and Sénécal, S. (2006), “Efficient Block Sampling
Strategies for Sequential Monte Carlo Methods,” Journal of Computational
and Graphical Statistics, 15, 693–711.

Markov Chain Monte Carlo for Item Response Models∗ 47

Fill, J. A. (1998), “An interruptable algorithm for perfect sampling via Markov
chains,” Annals of Applied Probability, 8, 131–162.

Flegal, J. and Jones, G. (2011), “Implementing MCMC: Estimating with con-
fidence,” in Handbook of Markov Chain Monte Carlo, eds. Brooks, S., Gel-
man, A., Jones, G. L., and Meng, X.-L., Boca Raton FL: Chapman &
Hall/CRC, chap. 7, pp. 175–197.

Flegal, J. M., Haran, M., and Jones, G. L. (2008), “Markov Chain Monte
Carlo: Can We Trust the Third Significant Figure?” Statistical Science, 23,
250–260.

Fox, J. (2010), Bayesian item response modeling: Theory and applications,
New York: Springer.

Fox, J. P. (2011), “Joint Modeling of Longitudinal Item Response Data and
Survival (Keynote Address),” Keynote Address, Escola de Modelos De Re-
gressao. Fortaleza, Brazil.

Fox, J.-P. and Glas, C. A. (2001), “Bayesian Estimation of a Multilevel IRT
Model Using Gibbs Sampling,” Psychometrika, 66, 271–288.

Gelfand, A. E. and Smith, A. F. M. (1990), “Sampling-based approaches to
calculating marginal densities,” Journal of the American Statistical Associ-
ation, 85, 398–409.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003), Bayesian
Data Analysis, New York, New York, USA: Chapman & Hall, 2nd ed.

Gelman, A., Meng, X.-L., and Stern, H. S. (1996), “Posterior Predictive As-
sessment of Model Fitness Via Realized Discrepancies (with discussion),”
Statistica Sinica, 6, 33–87.

Gelman, A. and Rubin, D. B. (1992), “Inference from iterative simulation
using multiple sequences,” Statistical Science, 7, 457–511.

Gelman, A., Sturtz, S., Legges, U., Gorjanc, G., and Kerman, J. (2012),
“R2WinBUGS: Running WinBUGS and OpenBUGS from R / S-PLUS,”
http://cran.r-project.org/web/packages/R2WinBUGS/index.html, version
2.1-18.

Geman, S. and Geman, D. (1984), “Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images.” IEEE transactions on pattern anal-
ysis and machine intelligence, 6, 721–41.

Geweke, J. (1992), “Evaluating the accuracy of sampling-based approaches
to calculating posterior moments,” in Bayesian Statistics 4, eds. Bernado,
J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M., Oxford, UK:
Clarendon Press, pp. 169–194.

48 Markov Chain Monte Carlo for Item Response Models

Geyer, C. J. (1996), “Estimation and Optimization of Functions,” in Markov
Chain Monte Carlo in Practice, eds. Gilks, W. R., Richardson, S., and
Spiegelhalter, D. J., London: Chapman and Hall, pp. 241–258.

— (2011), “Introduction to Markov Chain Monte Carlo,” in Handbook of
Markov Chain Monte Carlo, eds. Brooks, S., Gelman, A., Jones, G. L.,
and Meng, X.-L., Boca Raton FL: Chapman & Hall/CRC, chap. 1, pp.
3–48.

Geyer, G. J. and Johnson, L. T. (2012), “mcmc: Markov Chain Monte Carlo
(R package),” Tech. rep., http://www.stat.umn.edu/geyer/mcmc/.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.) (1996), Markov
Chain Monte Carlo in Practice, London: Chapman and Hall.

Gilks, W. R. and Roberts, G. O. (1996), “Strategies for improving MCMC,”
in W. R, London: Chapman and Hall, pp. 89–114.

Gilks, W. R. and Wild, P. (1992), “Adaptive Rejection Sampling for Gibbs
Sampling,” Journal of the Royal Statistical Society, Series C (Applied
Statistics), 41, 337–348.

Glas, C. A. W. and Pimentel, J. (2008), “Modeling nonignorable missing data
in speeded tests,” Educational and Psychological Measurement, 68, 907–922.

Graves, T. L., Speckman, P. L., and Sun, D. (2011), “Improved Mixing in
MCMC Algorithms for Linear Models,” Journal of Computational and
Graphical Statistics.

Hadfield, J. (2010), “MCMC Methods for Multi-Response Generalized Linear
Mixed Models: The MCMCglmm R Package,” Journal of Statistical Soft-
ware, 33, 1–22, http://www.jstatsoft.org/v33/i02/.

Haertel, E. H. (1989), “Using restricted latent class models to map the skill
structure of achievement items,” Journal of Educational Measurement, 26,
301–321.

Han, C. and Carlin, B. P. (2001), “MCMC Methods for Computing Bayes
Factors: a Comparative Review,” Journal of the American Statistical Asso-
ciation, 96, 1122–1132.

Hastings, W. (1970), “Monte Carlo samping methods using Markov chains
and their applications,” Biometrika, 57, 97–109.

Janssen, R., Tuerlinckx, F., Meulders, M., and de Boeck, P. (2000), “A Hi-
erarchical IRT Model for Criterion-Referenced Measurement,” Journal of
Educational and Behavioral Statistics, 25, 285–306.

Johnson, M. S. and Sinharay, S. (2005), “Calibration of Polytomous Item Fam-
ilies Using Bayesian Hierarchical Modeling,” Applied Psychological Measure-
ment, 29, 369–400.

Markov Chain Monte Carlo for Item Response Models∗ 49

Jones, D. H. and Nediak, M. (2005), “Item Parameter Calibration of LSAT
Items Using MCMC Approximation of Bayes Posterior Distributions,” Tech.
Rep. Computerized Testing Report 00-05, Law School Admission Council,
Newton, PA, http://www.lsac.org/lsacresources/Research/CT/pdf/CT-00-
05.pdf.

Junker, B. (1999), “Some statistical models and computational
methods that may be useful for cognitively-relevant assessment,”
Tech. rep., Department of Statistics, Carnegie Mellon University,
http://www.stat.cmu.edu/˜brian/nrc/cfa/.

Junker, B. W. and Sijtsma, K. (2001), “Cognitive Assessment Models with
Few Assumptions, and Connections with Nonparametric Item Response
Theory,” Applied Psychological Measurement, 25, 258–272.

Kamata, A. (2001), “Item analysis by the hierarchical generalized linear
model,” Journal of Educational Measurement, 38, 79–93.

Karabatsos, G. and Sheu, C. (2004), “Order-Constrained Bayes Inference for
Dichotomous Models of Unidimensional Nonparametric IRT,” Applied Psy-
chological Measurement, 28, 110–125.

Kass, R. E. and Raftery, A. E. (1995), “Bayes Factors,” Journal of the Amer-
ican Statistical Association, 90, 773–795.

Kass, R. E. and Wasserman, L. (1995), “A reference Bayesian test for nested
hypotheses and its relation to the Schwarz criterion,” Journal of the Amer-
ican Statistical Association, 90, 928–934.

Lazarsfeld, P. F. and Henry, N. W. (1968), Latent structure analysis, Boston:
Houghton Mifflin.

Ligges, U. (2012), “Package BRugs,” Tech. rep., Tec-
nische Universität Dortmund, Germany, http://cran.r-
project.org/web/packages/BRugs/index.html.

Lord, F. M. and Novick, M. R. (1968), Statistical theories of mental test scores,
Reading, MA: Addison-Wesley, with contributions by Allan Birnbaum.

Los Alamos National Laboratory (2012), “History Center,” Tech. rep.,
http://www.lanl.gov/history/.

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009), “The BUGS
project: Evolution, critique and future directions,” Statistics in Medicine,
28, 3049–3067.

Lynch, S. M. and Western, B. (2004), “Bayesian Posterior Predictive Checks
for Complex Models,” Sociological Methods & Research, 32, 301–335.

50 Markov Chain Monte Carlo for Item Response Models

Macready, G. B. and Dayton, C. M. (1977), “The use of probabilistic models
in the assessment of mastery,” Journal of Educational Statistics, 2, 99–120.

Maier, K. (2001), “A Rasch hierarchical measurement model,” Journal of Ed-
ucational and Behavioral Statistics, 26, 307–330.

Mariano, L. T. and Junker, B. (2007), “Covariates of the rating process in hi-
erarchical models for multiple ratings of test items,” Journal of Educational
and Behavioral Statistics, 32, 287–314.

Maris, E. (1995), “Psychometric latent response models,” Psychometrika, 60,
523–547.

Martin, A., Quinn, K., and Park, J. (2009), “MCMCpack: Markov
Chain Monte Carlo (R package),” Tech. rep., http://CRAN.R-
project.org/package=MCMCpack.

Matteucci, M. and Veldkamp, B. V. (2011), “On the use of MCMC CAT with
empirical prior information to improve the efficiency of CAT,” Tech. rep.,
AMS Acta, Università di Bologna, http://amsacta.unibo.it/3109/.

Metropolis, N. (1987), “The beginning of the Monte Carlo method,” Los
Alamos Science (1987 Special Issue dedicated to Stanisaw Ulam), 125–130.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.
(1953), “Equations of state calculations by fast computing machines,” J.
Chem. Phys., 21, 1087–1091.

Miyazaki, K. and Hoshino, T. (2009), “A Bayesian Semiparametric Item Re-
sponse Model with Dirichlet Process Priors,” Psychometrika, 74, 375–393.

Monahan, J. F. (2011), Numerical Methods of Statistics, New York, NY: Cam-
bridge University Press.

Mykland, P., Tierney, L., and Yu, B. (1995), “Regeneration in Markov Chain
Samplers,” Journal of the American Statistical Association, 90, 233–241.

Neal, R. (2003), “Slice sampling,” Annals of Statistics, 31, 705–767.

Patil, A., Huard, D., and Fonnesbeck, C. J. (2010), “PyMC: Bayesian
Stochastic Modelling in Python,” Journal of Statistical Software, 35,
http://www.jstatsoft.org/.

Patz, R. J. and Junker, B. W. (1999a), “A Straightforward Approach to
Markov Chain Monte Carlo Methods for Item Response Models,” Journal
of Educational and Behavioral Statistics, 24, 146–178.

— (1999b), “Applications and Extensions of MCMC in IRT: Multiple Item
Types, Missing Data, and Rated Responses,” Journal of Educational and
Behavioral Statistics, 24, 342–366.

Markov Chain Monte Carlo for Item Response Models∗ 51

Patz, R. J., Junker, B. W., Johnson, M. S., and Mariano, L. T. (2002), “The
hierarchical rater model for rated test items and its application to large-
scale educational assessment data,” Journal of Educational and Behavioral
Statistics, 27, 341–384.

Plummer, M. (2012a), “JAGS Version 3.2.0 user manual,” Tech. rep.,
http://mcmc-jags.sourceforge.net.

— (2012b), “Package rjags,” Tech. rep., http://cran.r-
project.org/web/packages/rjags/index.html.

Polson, N. G., Scott, J. G., and Windle, J. (2013), “Bayesian infer-
ence for logistic models using Pólya-Gamma latent variables,” Jour-
nal of the American Statistical Association, 108, 1339–1349, available at
http://arxiv.org/pdf/1205.0310.pdf.

R Development Core Team (2012), “R: A Language and Environment for
Statistical Computing,” Tech. rep., R Foundation for Statistical Computing,
Vienna, Austria, http://www.r-project.org/.

Ripley, B. D. (1987), Stochastic Simulation, New York: Wiley & Sons.

Rizopoulos, D. (2006), “ltm: An R package for latent variable modelling and
item response theory analyses,” Journal of Statistical Software, 17, 1–25,
http://www.jstatsoft.org/v17/i05/.

Robert, C. and Casella, G. (2011), “A Short History of Markov Chain Monte
Carlo: Subjective Recollections from Incomplete Data,” Statistical Science,
26, 102–115.

Roberts, G. and Sahu, S. K. (1997), “Updating schemes, correlation structure,
blocking and parameterization for the Gibbs sampler,” Journal of the Royal
Statistical Society. Series B (Methodological), 59, 291–317.

Rosenthal, J. S. (2011), “Optimal proposal distributions and adaptive
MCMC,” in Handbook of Markov Chain Monte Carlo, eds. Brooks, S., Gel-
man, A., Jones, G. L., and Meng, X.-L., Boca Raton FL: Chapman &
Hall/CRC, chap. 4, pp. 93–111.

Roussos, L. A., DiBello, L. V., Stout, W., Hartz, S. M., Henson, R. A., and
Templin, J. H. (2007), “The Fusion Model Skills Diagnosis System,” in
Cognitive Diagnostic Assessment for Education: Theory and Applications,
eds. Leighton, J. and Gierl, M., Cambridge University Press.

Rupp, A., Templin, J., and Henson, R. (2010), Diagnostic Assessment: The-
ory, Methods, and Applications, New York: Guilford.

Sass, D. A., Schmitt, T. A., and Walker, C. M. (2008), “Estimating Non-
Normal Latent Trait Distributions within Item Response Theory Using True
and Estimated Item Parameters,” Applied Measurement in Education, 21,
65–88.

52 Markov Chain Monte Carlo for Item Response Models

Scheiblechner, H. (1972), “Das Lernen und Lösen komplexer Denkaufgaben
[The Learning and Solving of Complex Reasoning Items],” Zeitschrift für
Experimentelle und Angewandte Psychologie, 3, 456–506.

Schwarz, G. E. (1978), “Estimating the dimension of a model,” Annals of
Statistics, 6, 461–464.

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H., George, E.,
and McCulloch, R. (2013), “Bayes and big data: the consensus Monte
Carlo algorithm,” in EFaBBayes 250 conference (Vol 16), available
at http://static.googleusercontent.com/media/research.google.com/en/us/
pubs/archive/41849.pdf.

Segall, D. (2002), “An item response model for characterizing test compro-
mise,” Journal of Educational and Behavioral Statistics, 27, 163–179.

Segall, D. O. (2003), “Calibrating CAT Pools and Online Pretest Items Using
MCMC Methods,” in Annual Meeting of the National Council on Measure-
ment in Education, Chicago IL.

Seltman, H. (2010), “R Package rube (Really Useful WinBUGS Enhancer),”
http://www.stat.cmu.edu/˜hseltman/rube/, version 0.2-13.

Serfling, R. (1980), Approximation Theorems of Mathematical Statistics, New
York: Wiley.

Shu, Z. (2010), “Detecting test cheating using a deterministic, gated item
response theory model,” Ph.D. thesis, The University of North Carolina at
Greensboro, Greensboro NC.

Sinharay, S. and Almond, R. G. (2007), “Assessing Fit of Cognitive Diagnostic
Models A Case Study,” Educational and Psychological Measurement, 67,
239–257.

Sinharay, S., Johnson, M., and Stern, H. (2006), “Posterior Predictive Assess-
ment of Item Response Theory Models,” Applied Psychological Measure-
ment, 30, 298–321.

Sinharay, S., Johnson, M. S., and Williamson, D. M. (2003), “Calibrating Item
Families and Summarizing the Results Using Family Expected Response
Functions,” Journal of Educational and Behavioral Statistics, 28, 295–313.

Smith, B. J. (2007), “boa: An R Package for MCMC Output Convergence
Assessment and Posterior Inference,” Journal of Statistical Software, 21,
1–37.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2012), “OpenBUGS
User Manual,” Tech. rep., http://www.openbugs.info.

Markov Chain Monte Carlo for Item Response Models∗ 53

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002),
“Bayesian measures of model complexity and fit (with discussion),” Journal
of the Royal Statistical Society, Series B (Statistical Methodology), 64, 583–
639.

Stan Development Team (2012), “Stan Modeling Language: Users Guide and
Reference Manual. Version 1.0.” Tech. rep., http://mc-stan.org/.

Studer, C. E. (2012), “Incorporating Learning Over Time into the Cognitive
Assessment Framework,” Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh PA.

Tanner, M. A. and Wong, W. H. (1987), “The calculation of posterior distri-
butions by data augmentation (with discussion),” Journal of the American
Statistical Association, 82, 528–550.

Thissen, D. and Edwards, M. C. (2005), “Diagnostic Scores Augmented Us-
ing Multidimensional Item Response Theory: Preliminary Investigation of
MCMC Strategies,” in Annual Meeting of the National Council on Mea-
surement in Education, Montreal, Canada.

Thompson ISI (2012), “Web of Knowlege,” Tech. rep., http://wokinfo.com/.

Tierney, L. (1994), “Markov chains for exploring posterior distributions,” The
Annals of Statistics, 22, 1701–1728.

van den Oord, E. J. C. G. (2005), “Estimating Johnson Curve Population
Distributions in MULTILOG,” Applied Psychological Measurement, 29, 45–
64.

VanHoudnos, N. (2012), “Online Supplement to “Markov Chain Monte
Carlo for Item Response Models”,” Tech. rep., Department of Statis-
tics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA,
http://mcmcinirt.stat.cmu.edu/.

Walker, A. M. (1969), “On the asymptotic behaviour of posterior distribu-
tions,” J. R. Statist. Soc., 31, 80–88.

Wasserman, L. (2000), “Bayesian Model Selection and Model Averaging,”
Journal of Mathematical Psychology, 44, 92–107.

Weaver, R. (2008), “Parameters, Predictions, and Evidence in Computational
Modeling: A Statistical View Informed by ACTR,” Cognitive Science, 1349–
1375.

Woods, C. M. (2006), “Ramsay-curve item response theory (RC-IRT) to detect
and correct for nonnormal latent variables,” Psychological Methods, 11, 253–
270.

54 Markov Chain Monte Carlo for Item Response Models

Woods, C. M. and Thissen, D. (2006), “Item response theory with estima-
tion of the latent population distribution using spline-based densities,” Psy-
chometrika, 71, 281–301.

