
Final Exam Takehome Portion / Last HW Assignment
SOLUTIONS

Background (from the assignment sheet)

Lillard & Panis (2000) discuss data on the decisions of 501 mothers to deliver babies in a hospital vs. at
home or elsewhere. The mothers have varying numbers of children, ranging from 1 to 10, and make separate
decisions about where to deliver each child. There are a total of 1060 births in the data set. The available
variables are

’data.frame’: 1060 obs. of 6 variables:

$ hospital: int 0 0 1 0... 1 = hospital birth, 0 = birth elsewhere

$ loginc : num 4.33 5.62... logarithm of family income (log dollars)

$ distance: num 1.7 7.9... distance (miles) from nearest hospital

$ dropout : int 0 0 0 0 0... 1 = mother did not complete hs, 0 = completed hs

$ college : int 1 0 0 0 0... 1 = mother attended college, 0 = did not

$ mom : int 1 2 2 2 2... unique identifier for each mother

Note that family income varies from the birth of one child to the next, hence family income is recorded
for each child, rather than once only for each mother. Note also that if both dropout and college are
zero, then the mother completed high school but did not go on to college. The mother’s group identi-
fier appears once for each of her children; thus, the number of children per mother could be obtained as
n.kids <- table(mom).

The data are available in the file hosp.txt under a link for the takehome portion of the final, at
http://www.stat.cmu.edu/˜brian/463.

Exercises

1. A simple model (perhaps good, perhaps bad) would be to allow the probability of birth to depend on
family income at the time of birth, with a random intercept for each mother. As a multilevel model,
this is

Level 1:
logit(P[yi = 1]) = α0 j[i] + β1xi, i = 1, . . . , 1060

Level 2:
α0 j = β0 + η j, η j ∼ N(0, τ2), j = 1, . . . , 501

where yi = 1 if the ith child was born in a hospital, j[i] is the mom on the ith child, and xi is the
log(income) for the family at the time of that child’s birth. Equivalently in lmer()’s modeling lan-
guage

lmer.inc <- lmer(hospital ˜ loginc + (1|mom), data=hosp, family=binomial)
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(a) Write this as a hierarchical Bayes model, adding prior distributions wherever needed.

Here is one acceptable way to do it:

Likelihood:
yi ∼ Bernoulli(pi)

pi = exp(α0 j[i] + β1xi)/(1 + exp(α0 j[i] + β1xi)), i = 1, . . . , 1060

Priors:
α0 j ∼ N(β0, τ

2), j = 1, . . . , 501

β0 ∼ N(0, 1000)

β1 ∼ N(0, 1000)

τ2 ∼ Gamma(0.01, 0.01)

Notes:

• I will write Normal distributions parametrized by mean and variance unless otherwise
noted.
• Any relatively flat prior for β0 and β1 is fine, since they are fixed effects (fixed effects get flat

priors in Bayesian models; random effects get priors with a variance that you estimate as
part of the model.
• Many different prior densitites are possible for τ2. A Gamma with small α and β (as I have

written above) is common. Another common possibility is a Uniform distribution on a large
positive interval (e.g. Unif(0,100) or Unif(0,10), etc.).

(b) Write this as s variance components model.

Substituting the level-2 model into the level-1 model we get

yi ∼ Ber(pi), with

logit(pi) = β0 + β1xi + η j[i]

where i = 1, . . . , 1060, j[i] is the mother ( j = 1, . . . , 501) of the ith child, and η j ∼ N(0, τ2). Note
that since this is not a Bayesian model we don’t have to specify prior distributions.

2. In the file 2012-final-takehome-rcode.r in the takehome final area on
http://www.stat.cmu.edu/˜brian, there is R code to fit two different WinBUGS models to the
hosp.txt data:

• model.00 and rube.00

• model.01 and rube.01
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(a) Fit each model and inspect the output and diagnostic graphs. Is there anything remarkable to
point out, or is the MCMC algorithm working well all parameters in each model? Write a few
sentences about your findings, illustrated with appropriate graphs or numerical output.

Here is the result of fitting model.00:

> rube.00

Rube Results:

Run at 2012-12-03 17:29 and taking 16.19 secs

mean sd MCMCerr 2.5% 25% 50% 75% 97.5% Rhat n.eff

b0[1] -25.579 18.3045 0.9967 -68.270 -36.172 -21.470 -11.418 -2.182 1.00 1000

b0[2] -3.112 1.1913 0.0778 -5.451 -3.896 -3.119 -2.304 -0.905 1.00 750

b0[3] 24.137 19.4425 0.8678 -1.568 8.775 20.245 35.425 70.037 1.00 1000

b0[4] -2.332 1.2916 0.0780 -4.783 -3.137 -2.375 -1.524 0.245 1.01 460

b0[5] 24.893 18.6502 0.8167 -0.206 10.395 21.525 35.940 68.060 1.00 1000

b0[6] -26.558 19.7207 1.0950 -74.437 -38.112 -22.330 -11.387 -2.255 1.00 1000

b0[7] -26.507 17.5909 0.7746 -69.023 -36.922 -21.610 -13.145 -4.952 1.00 1000

b0[8] -28.430 18.3735 0.8906 -70.039 -38.690 -24.155 -13.887 -5.183 1.00 410

b0[9] 24.285 19.3886 0.8304 -2.221 8.990 20.705 35.795 69.804 1.00 1000

b0[10] 22.941 20.2336 0.8697 -2.797 7.249 18.590 33.135 71.885 1.00 1000

b1 0.484 0.0871 0.0106 0.304 0.433 0.486 0.545 0.640 1.07 54

deviance 579.534 19.6944 0.8968 544.300 566.325 578.100 591.900 622.185 1.01 140

DIC = 730.135

This model has a different fixed-effect intercept (flat normal prior!) for each mom, and a single
fixed-effect slope on loginc (again, a flat normal prior). There are 501 fixed-effect intercepts,
of which only 10 are printed here.

We see that although all of the parameters in this report seem to have converged Markov chains
(R̂ ≤ 1.1), very few of the visible fixed effect intercepts are significantly different from zero. We
can explore this furtheer with the �p3() command.

Exploration with the p3() command does not suggest any serious problems with estimating
any of the parameters. One thing we do notice is that, although most of the intercepts are not
significantly different from zero, their CI’s lie almost entirely on one side of zero or the other.
These are log-odds, so a value less than zero corresponds to a baseline probability less than 1/2
to use a hospital for birth, and a value greater than zero corresponds to a baseline probability
greater than 1/2. This suggests that there may be another factor (in this data, or possibly not
collected by the experimenters) that would help us to predict when the baseline1 probability of
using a hospital for birth is less than or greater than 1/2.

Here is the result of fitting model.01:
1Note that this is a baseline for loginc=0, which corresponds to an income of $1. The intercept might be much more interpretable

if we had first centered log-income.
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> rube.01

Rube Results:

Run at 2012-12-03 17:49 and taking 15.54 secs

mean sd MCMCerr 2.5% 25% 50% 75% 97.5% Rhat n.eff

b0[1] -0.775 1.4223 0.05225 -3.6984 -1.652 -0.734 0.236 1.817 1.01 330

b0[2] 0.183 0.8714 0.03576 -1.6428 -0.388 0.180 0.757 1.824 1.00 1000

b0[3] 1.137 1.2605 0.05776 -1.3202 0.319 1.120 1.927 3.724 1.01 150

b0[4] 0.374 0.9460 0.04161 -1.5740 -0.221 0.412 0.990 2.142 1.00 760

b0[5] 2.081 1.1203 0.06041 0.0492 1.304 2.039 2.782 4.317 1.03 76

b0[6] -0.670 1.3277 0.05161 -3.3443 -1.572 -0.600 0.201 1.786 1.01 270

b0[7] -1.025 1.3188 0.06584 -3.7811 -1.861 -1.045 -0.175 1.450 1.01 150

b0[8] -1.181 1.1918 0.05070 -3.7607 -1.927 -1.073 -0.367 0.894 1.01 280

b0[9] 1.173 1.3913 0.07488 -1.4248 0.257 1.085 1.970 4.385 1.00 1000

b0[10] 1.078 1.3480 0.05411 -1.4186 0.175 1.063 1.921 3.765 1.01 170

b1 -0.140 0.0185 0.00124 -0.1763 -0.152 -0.139 -0.127 -0.103 1.02 130

tau2 2.554 0.6417 3.62400 1.4060 2.116 2.516 2.916 3.983 1.18 16

deviance 1011.806 38.4398 0.07188 936.4100 986.225 1011.000 1036.000 1088.000 1.08 32

DIC = 1223.61

This model replaces the fixed intercepts for each mom with a random intercept (the b0’s now
have a normal prior with a variance τ2 that we are estimating from the data, rather than the
flat priors in model.00), and sa single fixed-effect slope on loginc. Again all of the intercepts
seem to be converged, and so does the slope. The magnitudes of the intercepts are much smaller
than in rube.00 and the CI’s are more nearly centered on zero; this may be in part because the
prior density is not very flat and is centered at zero, so the model is going to prefer intercepts
closer to zero overall.

Exploration with the p3() command does not suggest any serious problems with estimating any
of the parameters. It is notable that τ2 is not completely converged (R̂ ≈ 1.18).

A couple of troubling things to note: the slope on income is significantly different from zero
in both models, but of opposite sign: positive in rube.00 and negative in rube.01; and as
indicated above the magnitudes of the random intercepts in rube.01 are much smaller than
for the fixed intercepts in model.00. It’s hard to know what to make of this without a lot more
exploration of the data and model fits.

(b) Write model.01 as a hierarchical Bayes model. Find a glm() or lmer() model that is more or
less equivalent to model.01, and fit it. Submit the model you found, the output of summary() or
display() on the fitted model, and a sentence or two comparing parameters estimates between
your models and rube.01.

model.01 is almost the same as the random-intercepts model considered in problem 1, except,
that no fixed effect intercept is estimated. So the model would be

> lmer.inc.0 <- lmer(hospital ˜ loginc + (1|mom) -1, data=hosp, family=binomial)
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> display(lmer.inc.0)

glmer(formula = hospital ˜ loginc + (1 | mom) - 1, data = hosp,

family = binomial)

coef.est coef.se

-0.14 0.02

Error terms:

Groups Name Std.Dev.

mom (Intercept) 1.23

Residual 1.00

---

number of obs: 1060, groups: mom, 501

AIC = 1294.5, DIC = 1290.5

deviance = 1290.5

The lmer estimate of τ2 is 1.232 = 1.51, a little smaller than the rube estimate. The slope on
loginc is -0.14, same as the rube estimate.

You were not required to do this for the problem, but if we had instead fitted exactly the random-
intercepts model considered in problem 1, we would get
> lmer.inc <- lmer(hospital ˜ loginc + (1|mom), data=hosp, family=binomial)

> display(lmer.inc)

glmer(formula = hospital ˜ loginc + (1 | mom), data = hosp, family = binomial)

coef.est coef.se

(Intercept) -4.44 0.42

loginc 0.53 0.06

Error terms:

Groups Name Std.Dev.

mom (Intercept) 1.46

Residual 1.00

---

number of obs: 1060, groups: mom, 501

AIC = 1174, DIC = 1168

deviance = 1168.0

This makes a little more sense and is a little more consistent with the results of rube.00. The
two lmer fits together suggest that model.01 should have estimated a fixed effect intercept as
well as the random intercepts.

(c) Write model.00 as a hierarchical Bayes model. Find a glm() or lmer() model that is more or
less equivalent to model.00, and fit it. Submit the model you found, the output of summary() or
display() on the fitted model, and a sentence or two comparing parameters estimates between
your models and rube.00.

model.00 is an all-fixed effects model, that can be fitted using glm:

> fmom <- as.factor(hosp$mom)
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> glm.inc <- glm(hospital ˜ fmom - 1 + loginc, data=hosp,family=binomial)

> display(glm.inc)

glm(formula = hospital ˜ fmom - 1 + loginc, family = binomial,

data = hosp)

coef.est coef.se

fmom1 -23.53 17730.37

fmom2 -4.11 1.14

fmom3 16.95 17730.37

fmom4 -3.20 1.13

fmom5 16.00 10010.33

fmom6 -23.04 17730.37

fmom7 -25.50 12435.47

fmom8 -25.31 10086.76

fmom9 16.68 17730.37

fmom10 16.37 17730.37

fmom11 -23.75 12486.19

fmom12 -23.17 17730.37

. . .

. . .

. . .

fmom497 -25.34 17730.37

fmom498 -23.89 12536.83

fmom499 -4.08 1.55

fmom500 15.85 17730.37

fmom501 15.31 17730.37

loginc 0.69 0.11

---

n = 1060, k = 502

residual deviance = 420.6, null deviance = 1469.5 (difference = 1048.8)

The estimates of the fixed mom intercepts are comparable in sign and magnitude to the estimates
from rube.00. The estimate of the slope on loginc is also similar, although a bit larger for glm
than rube.

One difference is that the standard errors tend to be much larger in glm() than rube. This is in
part because prior distributions contribute some information about where we think the parame-
ter values are, and hence reduce standard errors.

(d) Using only the fitted model objects rube.00 and rube.01, and any numerical or graphical output
you can derive from them, which model fits the data better? Why? [Advice: Don’t kill yourself
doing lots of different things to answer this question!]

The overwhelming evidence from DIC is to prefer model.00, the fixed-intercepts model.
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However, as alluded to above, the problem may just be that we should have put a fixed intercept
(as well as random intercepts) in model.01!

3. Assume the children are listed in birth order for each mother, in the data set. We can obtain the birth
order as follows:

b.ord <- unlist(lapply(split(mom,mom),function(x){1:length(x)}))

Do mothers tend to be more likely to have hospital births with each successive child?

(a) Answer this question using glm() models that relate the probability of hospital birth to the
b.ord variable. Feel free to add other covariates from hosp.txt if they make for a better model.

The coefficient of b.ord in the simplest model

> display(

+ glm.00 <- glm(hospital ˜ b.ord, data=hosp, family=binomial)

+ )

glm(formula = hospital ˜ b.ord, family = binomial, data = hosp)

coef.est coef.se

(Intercept) -0.76 0.12

b.ord -0.05 0.05

---

n = 1060, k = 2

residual deviance = 1288.8, null deviance = 1289.9 (difference = 1.1)

is not significantly different from zero (so birth order does not affect hospital usage). A little
crude variable selection

> glm.03 <- glm(hospital ˜ (b.ord + . - mom)ˆ2, data=hosp, family=binomial)

> display(

+ glm.AIC.2 <- stepAIC(glm.00,scope=list(lower=formula(glm.00),

+ upper=formula(glm.03)))

+ )

glm(formula = hospital ˜ b.ord + dropout + loginc + college +

distance + dropout:distance + college:distance, family = binomial,

data = hosp)

coef.est coef.se

(Intercept) -2.60 0.40

b.ord -0.02 0.05

dropout -1.94 0.27

loginc 0.46 0.06

college 1.39 0.47

distance -0.10 0.04

dropout:distance 0.10 0.06
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college:distance -0.14 0.09

---

n = 1060, k = 8

residual deviance = 1067.2, null deviance = 1289.9 (difference = 222.7)

provides a model that fits the data much better, but also does not show a coefficient of b.ord
that is significantly different form zero.

(b) Does your model fit better if you allow a random intercept or slope, or both? Try to assess this,
using lmer() and related tools (not WinBUGS).

Here are all three models (rand int, rand slope, and rand both), and a comparison with the best
glm model:

> formula(glm.AIC.2)

hospital ˜ b.ord + dropout + loginc + college + distance + dropout:distance +

college:distance

> lmer.inter <- lmer(hospital ˜ b.ord + dropout + loginc + college +

+ distance + dropout:distance + college:distance +

+ (1|mom),

+ data=hosp, family=binomial)

>

> lmer.slope <- lmer(hospital ˜ b.ord + dropout + loginc + college +

+ distance + dropout:distance + college:distance +

+ (b.ord - 1|mom),

+ data=hosp, family=binomial)

>

> lmer.both <- lmer(hospital ˜ b.ord + dropout + loginc + college +

+ distance + dropout:distance + college:distance +

+ (b.ord|mom),

+ data=hosp, family=binomial)

>

> anova(lmer.inter,lmer.slope,lmer.both)

Data: hosp

Models:

lmer.inter: hospital ˜ b.ord + dropout + loginc + college + distance + dropout:distance +

lmer.inter: college:distance + (1 | mom)

lmer.slope: hospital ˜ b.ord + dropout + loginc + college + distance + dropout:distance +

lmer.slope: college:distance + (b.ord - 1 | mom)

lmer.both: hospital ˜ b.ord + dropout + loginc + college + distance + dropout:distance +

lmer.both: college:distance + (b.ord | mom)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

lmer.inter 9 1059.7 1104.4 -520.84

lmer.slope 9 1066.8 1111.5 -524.43 0.0000 0 1.00000
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lmer.both 11 1063.3 1118.0 -520.68 7.5021 2 0.02349 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

>

> AIC(glm.AIC.2)

[1] 1083.159

>

> -deviance(glm.AIC.2)/2

[1] -533.5795

Clearly, all three lmer models fit better than the corresponding glm model, and the random in-
tercept model fits best, in terms of AIC.

Checking residual plots for the conditional residuals suggests a somewhat different answer:

> par(mfrow=c(1,3))

> binnedplot(fitted(lmer.inter),residuals(lmer.inter),main="Random Intercept")

> binnedplot(fitted(lmer.slope),residuals(lmer.slope),main="Random Slope")

> binnedplot(fitted(lmer.both),residuals(lmer.both),main="Random Int & Slope")
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The conditional residuals show a modest preference for the random slopes only model, even
though this model is the least good random effects model according to AIC.

(c) Does the answer to the question change if you use an lmer() model from part (b) rather than a
glm() model from part (a)? Explain.

Let’s look at the fixed effect estimates for all three models:
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> round(summary(lmer.inter)@coefs,2)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.19 0.47 -6.82 0.00

b.ord -0.04 0.06 -0.63 0.53

dropout -2.30 0.33 -6.88 0.00

loginc 0.56 0.07 8.36 0.00

college 1.75 0.56 3.11 0.00

distance -0.10 0.04 -2.15 0.03

dropout:distance 0.09 0.07 1.46 0.15

college:distance -0.18 0.11 -1.71 0.09

> round(summary(lmer.slope)@coefs,2)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.67 0.44 -6.07 0.00

b.ord -0.17 0.08 -2.06 0.04

dropout -2.05 0.30 -6.77 0.00

loginc 0.51 0.06 8.20 0.00

college 1.49 0.51 2.94 0.00

distance -0.10 0.04 -2.32 0.02

dropout:distance 0.10 0.06 1.58 0.11

college:distance -0.15 0.10 -1.53 0.13

> round(summary(lmer.both)@coefs,2)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.11 0.46 -6.72 0.00

b.ord -0.06 0.07 -0.95 0.34

dropout -2.26 0.33 -6.86 0.00

loginc 0.55 0.07 8.35 0.00

college 1.71 0.56 3.08 0.00

distance -0.10 0.04 -2.16 0.03

dropout:distance 0.09 0.06 1.46 0.14

college:distance -0.18 0.11 -1.68 0.09

In all three models, the estimated slope on b.ord is negative, but it is only significantly different
from zero in the random slopes model, which did not have a good AIC value but had good con-
ditional residuals.

At this point, I would conclude that birth order does not have a significant effect on whether a
hospital is preferred for birth. If there were an effect, I would expect it to be negative (the later
the childbirth, the less likely to use a hospital). It would be worthwhile to explore the models and
data further, to see if the random slopes model really is better at capturing important variation
in the data. If that were the case, then I would want to say that increasing birth order has a
negative effect on the likelihood of using a hospital for childbirth.
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