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‘ Outline

m Effect size, sample size and power for a simple
treatment effect
o Digression: The value of a baseline covariate

m Estimating a mean from clustered data
m Power for more complex multi-level models:

o od.exe (for balanced designs)

o Fake-data simulations (for unbalanced designs and
“unusual” assumptions)
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Effect size, sample size and power for a
simple treatment effect

m Let nunits, i=1, ..., n, be randomly assigned to
treatment (T,=1) or control (T=0), with outcome

Yi-
= The treatment effect is £, in the model
Vi = Bo+ 115 + &4, €; ~ N(O7O'2>
= How large does J have to be, to “detect” the
treatment effect?
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Effect size, sample size and power for a
simple treatment effect (cont’d)

= More formally, we are testing
0 HO: 3,=0,vs
o H1: 8,#0
with the test statistic S = |3;|/(SE(51)) ,

and z,=1.96 is the (two-sided) o = 0.05 cutoff of the
normal distribution.

m The level of the testis
PH61|/SE(61) > Za ‘ 61 = 0} ~ o = 0.05
= The power of the test at effect size b € H1 is

P[|B1]/SE(B1) > 20 | 1 = 1]
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Effect size, sample size and power for a
simple treatment effect (cont’d)

m A power calculation typically involves finding the
sample size that leads to a certain power, at level
« and effect size b.

m To do this we need a formula or other method to

~
oI/ 0N

relate SE(3;)to sample size.

= In the simple linear regression case it is not too
hard to derive a formula...
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Effect size, sample size and power for a
simple treatment effect (cont’d)
m Our regression

yi = Bo + 51T + €iy € ~ N(0,07%)

m can be rewritten y = X7+ ¢, where y and eare

column vectors of length n and
A

1 o | (thefirst column hasn1’s and the
I 11 second column has n;1’s)
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Effect size, sample size and power for a
simple treatment effect (cont’d)

m Consulting a linear regression reference,
SE(B) = \/s*(XTX)3,
= We calculate

"1 0]

ryv [ 1 o 11 111 0| [ n nr

XX_|:0"-01 1 1 1 - nr nr
11

= And after some further calculation
B AL [ 4 1
SE(B) = s/ 5 + e
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Effect size, sample size and power for a

simple treatment effect (cont’d)
= Power as a function of

Power to detect a simple treatement effect

total sample size, for
various effect sizes, is
shown at right.
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= Although we specified
effect size here, only the
ratio b/SE( ) really
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m b/SE(() = “standardized 2° w A oo
effect size” Pl|31]/SE(B1) > za | B1 =]
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‘ Estimating a mean in a clustered sample

= Now suppose we wish to estimate a population
mean 3, using y from clustered data, with J
clusters of size m, for a total sample size of n=/m.

m Under the model
Yi = o)t €, EZ%ZN(OJ) i=1,...,n
11d .
Qj = 60+77]7 UJNN(OT) =1,...,J

we can easily calculate that
SE(7) —SE( Zyz> Vo2 /n+12/)J
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‘ Estimating a mean in a clustered sample
(cont’d)
= We can rewrite this as

SE(7) = /o2/n+72/J = \/Ui"t[1+(m—1)lCC)]
where 02t0t= o2+ 72, and o

100 = _1° \ This is called the

2—|—’7’ design effect”, or
DEFF

m This tells us:

o SE for estimating 3, from’y depends on both number
of clusters J and number of observations m per cluster

o Bigger 7 = higher ICC & smaller effective sample size
for estimating 3, fromy.

11/29/2016 10



Power for balanced multi-level models

= Consider a multi-level model for detecting a
treatment effect, such as

Yi = Q5 + €, € Z}\C’i N(Oa 02)
11d
aj = Bo+ AT+, n; ~ N(0,7°)

m If the data are balanced
o Same number of observations in each cluster

o Same number of treatement as control cases, etc.

then there are tractable power formulae.
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‘ Power for balanced multi-level models
(cont’d)

= For balanced multilevel models, these papers work out
the ugly formulae [latest in a long line of such efforts]

o Raudenbush, S. & Liu, X (2000). Statistical power and optimal
design for multisite randomized trials. Psychological Methods, 2,
199-213

o Snijders, T. & Bosker, R. (1993). Standard errors and sample
sizes in two-level research. Journal of Educational Statistics, 18,
237-259.

m Fortunately there is a small computer program that does
the calculations...

o http://sitemaker.umich.edu/group-based/optimal design software
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‘ Power for balanced multi-level models
(cont’d)
Power for detecting (3, in
Yi = o5 + €, i
aj = Po+ BT+ n;

as calculated by od.exe

m J =# clusters ‘ ! ‘ ‘

27 50 73 % 18
size of cluster (m), for each of J clusters

= m = persons/cluster
m § = standardized effect size ~ Bl/SE(Bl)

Note that number of clusters

= Half of sample to Tx, half (J) has a bigger effect on
power than number of obser-
to Ctrl. vations per cluster (m). This

is very typical...
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‘ Power for other multilevel designs

= Power calculation software tends to fail when
o The design is severely unbalanced
o The software can’t handle your particular model

= multi-level glm’s for example!

= nonstandard distributions (say, t- or gamma distributions for
random effects, rather than normals, etc.)

o You want to explore

m  Robustness: E.g., will | still be able to detect an effect if | am using
slightly the wrong model?

m Utility: What if | trade off the cost of making a wrong decision
against the cost of collecting more data?

= Etc.
= In all these cases, we may resort to fake-data simulation
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Example: Our Cluster-Level Treatment
Model

m We simulate this model

Y, = ij + €;, € zfz\sl N(O,O’Q)
11d
a; = Bo+ BT +nj, nj ~ N(0,7%)

1000 times, and fit it with
lmer(y ~ Tx + (1l]|cluster),data=fakeS$data)
m We record a “hit” each time
B11/SE(f1) > 1.96
m Estimated power is (# hits)/1000
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‘ Example: Our Cluster-Level Treatment
Model (cont’d)

= We have taken

n.sims <- 1000

o 4 unequal cluster sizes, e e 0
o 50% assignment of clusters s e
to treatment cl.sizes=c(3,5,7,9),
. . frac.T = .5,
o fairly large variance b0 =1,
components compared to e 1
the treatment effect (3,=2). tan = 1.5)
fake.lmer <-
| Comparab|e to the |0W lmer(y ~ Tx + (1|cl),data=fake$data)
t.stat <- coef (summary(fake.lmer)) ["Tx",
end of the od.exe results "t valuen]

hits <- hits +
ifelse(abs(t.stat) > 1.96, 1, 0)
}

m Increasing the number of

(power <- hits/n.sims)

clusters should help...

PO This is not fast. It took

about 100 seconds to run.
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‘ Example: Our Cluster-Level Treatment
Model (cont’d)

= Results seem similartoor .. -
slightly better than
“od.exe” calculation =h

,,,,,,,,,,,,,,

= The power should be .
monotone, so any non-
monotonicity here is
Monte Carlo error.

Power
0.6

0.4

— 20clusters

= (Took about 30 min of
simulation!) ‘ ‘ | Aok

30-50 50-70 70-90 90-110

0.0
1

Cluster Sizes (random in each interval indicated)
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Power — Some Final Thoughts

= Snijders & Bosker (Ch 10) has a more elaborate
discussion, and Gelman & Hill (Ch 20) have more
elaborate examples, but the messages are largely the
same:

o Power is relatively tractable if you have a balanced design and a
lot of patience

o For unbalanced designs, “unusual” assumptions, cost tradeoff
considerations, etc., simulation-based power calculations are
fine, but you still need patience!

= Baseline covariates that
o are independent of Tx, but
o Explain a lot of the variationiny

really improve power, in both linear models and mim’s!

I”
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