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Overall
� Go back and review lecture 14, week 08 (review for midterm exam)

� The final will focus on material after the midterm

BUT

� I will assume you can handle anything from the first part of the course, 
if it comes up in some way on the final

� Final exam will cover material from week 06 through week 14 of the 
course:

� Multi-level models

� Model-checking using AIC/BIC/DIC, residuals, and/or simulation

� Basic facts about MLE’s, Fisher Information & SE’s, CI’s, etc.

� Bayesian statistics, the slogan, computation with conjugate priors

� Random simulation and MCMC as a way to “estimate” a model, CI’s

� Fitting and interpreting models using JAGS and rube()

� Using JAGS for simulation tests

� Selected topics from G&H Ch’s 11-15  and Lynch Ch’s 2, 3, 4 & 9 
� G&H Ch’s 16-18, 20 and 24 have material similar to what we covered in class, as 

well, though I didn’t really assign them as reading.
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Reading
� All class notes, R handouts, HW’s, solutions, etc.

� Gelman & Hill, Ch’s 11-15, (16-18, 20 and 24)

� I did not do anything in as great a detail as G&H. The level of material I 
expect you to "get" is somewhere between my class notes and G&H, 
but closer to my class notes. 

� One topic that I avoided and will not ask you about is problems 
involving the Wishart distribution. Nothing wrong with it, just not 
enough time to do everything. 

� Lynch Ch's 2, 3, 4, 9 

� I will only ask things about Ch 9 that are related to lectures or hw’s that 
you’ve had, fitting multilevel models with JAGS/rube (same as 
WinBUGS)

� I didn't talk about the dirichlet, inverse-gamma, or  wishart 
distributions, and I won't ask anything about them either. 

� I will feel free to refer to any distributions or  models that appeared in 
class notes, R notes, or hw problems & solutions. 
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Multi-level models

� Dealing with groups: 

� Totally pooled and totally unpooled models use only 

fixed effects

� Partially pooled models use random effects for 

variation among groups (and may use fixed effects for 

other things, like overall intercepts, slopes, etc.)

� lmer() notation, lmer() fits, lmer() output

� Regression to the mean and “shrinkage”
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Multi-level models
� Hierarchical Bayes Model

� Multi-Level Model

� Variance-Components Model

� lmer() notation

y ~ 1 + (1|group)
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Model-checking using AIC/BIC/DIC 

and/or simulation

� Appropriate use of likelihood ratio tests, vs 

AIC/BIC/DIC

� Definitions and anticipated effects of AIC/BIC/DIC

� Greater penalties lead to simpler models

� When does the random effect variance lead to higher 

or lower estimates of number of parameters for DIC?

� Idea of simulation tests: H0: real data comes from 

same distribution as data simulated from the 

fitted model. 
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Basic facts about MLE’s, Fisher 

Information & SE’s, CI’s, etc.

� For MLE

� Need a function proportional to L(θ)

� Calculate MLE by setting 0 = L’(θ)

� Calculate                                where I(θ) = E[-LL’’(θ)]

� Confidence Interval (CI)

“In 95% of analyses this interval will cover the 

true θ”
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Bayesian statistics, the slogan, 

computation with conjugate priors

� For Bayes

� Need a function proportional to L(θ)

� Need a prior distribution

� Slogan: (posterior) ∝ (likelihood)×(prior)

� Calculate posterior mean, SE,

� Use formula if you have one

� Use simulation if you don’t!

� Credible Interval (CI)

“The probability that θ is in the CI is 95%.”
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Bayesian statistics, the slogan, 

computation with conjugate priors
� A prior distribution is conjugate to the likelihood, if the 

posterior distribution comes from the same family as the 
prior; e.g.:
� If the prior is beta and the likelihood is binomial, the posterior 

will again be a beta

� If the prior is gamma and the likelihood is poisson, the posterior 
will again be gamma

� If the prior and the likelihood are both normal (and the variances 
are known) then the posterior will be normal

� Problems with conjugate priors generally have simple 
formulas for their solutions.

� Problems without conjugate priors cause us to resort to 
simulation methods to get an answer.
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Bayesian statistics, the slogan, 

computation with conjugate priors

� Bayesian shrinkage: the posterior is always 
“between” the likelihood and the prior

� In the normal prior / normal likelihood model, 
the posterior mean is exactly a weighted average 
of the prior mean and the data mean:

� This is “really what is going on” with shrinkage of 
random effects in multilevel models
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Random simulation and MCMC as a way 

to “estimate” a model, CI’s

� If we do not have formulas for the posterior, we 

can usually simulate

� For one-parameter problems we can usually cook 

up a simulation using

� Inverse CDF sampling (we talked about)

� Rejection sampling & other methods (we didn’t cover)

� Estimating a CI from the simulated output:
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Random simulation and MCMC as a way 

to “estimate” a model, CI’s

� Bayesian models with many parameters can 

often be separated into “levels”:

(posterior) ∝ (level 1)×(level 2)×(level 3)…

� Simulation for many parameters can be carried 

out with Markov Chain Monte Carlo (MCMC):

� Compute the “complete conditional densities”, e.g.

� Sample successively from each complete conditional

� (This is what JAGS does; we did not do this by hand!)



1312/6/2016

Random simulation and MCMC as a way 

to “estimate” a model, CI’s

� Throw away first part of MCMC sample as “burn-

in”

� Look at autocorrelation plot, and time series 

(“random walk”) plot to see that there are no 

serious problems

� Check R-hat for “convergence” to posterior 

distribution

� Use the MCMC sample to calculate CI’s, etc., just 

as with other simulation samples.
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Fitting and interpreting models using 

JAGS and rube()
� lmer: lmer( y ~ 1 + (1 | group)

� JAGS:

model {

for (i in 1:n) {

y[i] ~ dnorm(mu[i],sig2inv)

mu[i] <- b0 + a0[group[i]]

}

for (j in 1:n.groups) {

a0[j] ~ dnorm(0,tau2inv)

}

b0 ~ dnorm(0,0.000001)

tau2inv <- pow(tau,-2);  tau ~ dunif(0,100)

sig2inv <- pow(sig,-2);  sig ~ dunif(0,100)

}

• You describe the level 1,

level 2, level 3 parts of the

model;

• JAGS applies the slogan

and figures out the complete

conditionals;

• JAGS produces MCMC

sample

Use p3() to inspect

time series plot, auto-

correlation plot, R-hat

lmer() requires only a 

general description of 

structure
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Using JAGS for simulation tests

model {

for (i in 1:n) {

y[i] ~ dnorm(mu[i],sig2inv)

mu[i] <- b0 + a0[group[i]]

}

for (j in 1:n.groups) {

a0[j] ~ dnorm(0,tau2inv)

}

b0 ~ dnorm(0,0.000001)

tau2inv <- pow(tau,-2);  tau ~ dunif(0,1000)

sig2inv <- pow(sig,-2);  sig ~ dunif(0,1000)

for (i in 1:n) {

ynew[i] ~ dnorm(mu[i],sig2inv)

}

}

In the JAGS 

output, ynew will be

a n.iter x n matrix.

Each row is a repli-

cation of the full data

set.

Use to construct H0’s

for simulation checks 

of the model.
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Summary
� Final exam will cover material from week 06 through week 14 of the 

course:

� Multi-level models

� Model-checking using AIC/BIC/DIC, residuals, and/or simulation

� Basic facts about MLE’s, Fisher Information & SE’s, CI’s, etc.

� Bayesian statistics, the slogan, computation with conjugate priors

� Random simulation and MCMC as a way to “estimate” a model, CI’s

� Fitting and interpreting models using JAGS and rube()

� Using JAGS for simulation tests

� Reading:

� Class notes and other materials I’ve handed out (hw, hw sols…)

� Selected topics from G&H Ch’s 11-15  and Lynch Ch’s 2, 3, 4 & 9 

� G&H Ch’s 16-18, 20 and 24 have material similar to what we covered in 
class, as well, though I didn’t really assign them as reading.


