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‘ Overall

= Go back and review lecture 14, week 08 (review for midterm exam)
o The final will focus on material after the midterm
BUT

o | will assume you can handle anything from the first part of the course,
if it comes up in some way on the final

= Final exam will cover material from week 06 through week 14 of the
course:

Multi-level models
Model-checking using AIC/BIC/DIC, residuals, and/or simulation
Basic facts about MLE’s, Fisher Information & SE’s, Cl’s, etc.
Bayesian statistics, the slogan, computation with conjugate priors
Random simulation and MCMC as a way to “estimate” a model, CI’s
Fitting and interpreting models using JAGS and rube()

o Using JAGS for simulation tests
m Selected topics from G&H Ch’s 11-15 and Lynch Ch’s 2, 3,4 &9

0o G&H Ch’s 16-18, 20 and 24 have material similar to what we covered in class, as
well, though I didn’t really assign them as reading.
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‘ Reading

= All class notes, R handouts, HW’s, solutions, etc.
= Gelman & Hill, Ch’s 11-15, (16-18, 20 and 24)

o ldid not do anything in as great a detail as G&H. The level of material |
expect you to "get" is somewhere between my class notes and G&H,
but closer to my class notes.

o One topic that | avoided and will not ask you about is problems

involving the Wishart distribution. Nothing wrong with it, just not
enough time to do everything.

m LynchCh's2,3,4,9

o | will only ask things about Ch 9 that are related to lectures or hw’s that
you’ve had, fitting multilevel models with JAGS/rube (same as
WinBUGS)

o ldidn't talk about the dirichlet, inverse-gamma, or wishart
distributions, and | won't ask anything about them either.

o | will feel free to refer to any distributions or models that appeared in
class notes, R notes, or hw problems & solutions.
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‘ Multi-level models

m Dealing with groups:

o Totally pooled and totally unpooled models use only
fixed effects

0 Partially pooled models use random effects for
variation among groups (and may use fixed effects for
other things, like overall intercepts, slopes, etc.)

= Imer() notation, Imer() fits, Imer() output
m Regression to the mean and “shrinkage”
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‘ Multi-level models

= Hierarchical Bayes Model
Level 2: o X N (Bo, 72)

indep

Level 1: Yij ~ N(Ozi,0'2)
m Multi-Level Model

Yij = Q4+ €ij, € 1 N(0,0?)
a; = Bo+ni, N i’igl N(0,77)
= Variance-Components Model
Yij = Po+n+e€j, € “ N(0,0%)
i < N(0,72)

= Imer() notation
y~1+(1]|group)
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| Model-checking using AIC/BIC/DIC
and/or simulation

m Appropriate use of likelihood ratio tests, vs
AIC/BIC/DIC

m Definitions and anticipated effects of AIC/BIC/DIC
0 Greater penalties lead to simpler models
0 When does the random effect variance lead to higher
or lower estimates of number of parameters for DIC?
= Idea of simulation tests: H,: real data comes from
same distribution as data simulated from the
fitted model.
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Basic facts about MLE’s, Fisher
Information & SE’s, Cl’s, etc.

= For MLE
o Need a function proportional to L(6)

o Calculate MLE by setting 0 = L'(6)
o Calculate SE = l/\/m where 1(0) = E[-LL”(0)]
m Confidence Interval (Cl)
(0 —2SE, 0+ 2SFE)
“In 95% of analyses this interval will cover the
true 6”
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Bayesian statistics, the slogan,
computation with conjugate priors

= For Bayes
o Need a function proportional to L(6)
o Need a prior distribution
o Slogan: (posterior) o< (likelihood) x (prior)

o Calculate posterior mean, SE,
= Use formula if you have one
= Use simulation if you don’t!

= Credible Interval (Cl)
(0 —2SE, 0+ 2SE) or (05535, 05%7s)
“The probability that 8 is in the Cl is 95%.”
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Bayesian statistics, the slogan,

computation with conjugate priors

m A prior distribution is conjugate to the likelihood, if the
posterior distribution comes from the same family as the
prior; e.g.:

o If the prior is beta and the likelihood is binomial, the posterior
will again be a beta

o If the prior is gamma and the likelihood is poisson, the posterior
will again be gamma

o If the prior and the likelihood are both normal (and the variances
are known) then the posterior will be normal

= Problems with conjugate priors generally have simple
formulas for their solutions.

= Problems without conjugate priors cause us to resort to
simulation methods to get an answer.
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Bayesian statistics, the slogan,
computation with conjugate priors
m Bayesian shrinkage: the posterior is always

“between” the likelihood and the prior

= In the normal prior / normal likelihood model,
the posterior mean is exactly a weighted average
of the prior mean and the data mean:

2 2
post 70 — g /nz
& <T§+02/nz‘>yz+<Tg+02/nz‘)uo

m This is “really what is going on” with shrinkage of
random effects in multilevel models
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Random simulation and MCMC as a way
to “estimate” a model, Cl’s

= If we do not have formulas for the posterior, we
can usually simulate

m For one-parameter problems we can usually cook
up a simulation using
o Inverse CDF sampling (we talked about)
0 Rejection sampling & other methods (we didn’t cover)

m Estimating a Cl from the simulated output:

Lire L7IL 7 LITE [ XRE V.ogiS/
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Random simulation and MCMC as a way
to “estimate” a model, Cl’s

m Bayesian models with many parameters can
often be separated into “levels”:
(posterior) o< (level 1) x(level 2) x(level 3)...
= Simulation for many parameters can be carried
out with Markov Chain Monte Carlo (MCMC):
o Compute the “complete conditional densities”, e.g.
05 ~ F(03]61,09.04, ... 0K)
o Sample successively from each complete conditional
o (This is what JAGS does; we did not do this by hand!)

12/6/2016 12



Random simulation and MCMC as a way
to “estimate” a model, Cl’s

= Throw away first part of MCMC sample as “burn-

”

N

m Look at autocorrelation plot, and time series
(“random walk”) plot to see that there are no
serious problems

m Check R-hat for “convergence” to posterior
distribution

m Use the MCMC sample to calculate Cl’s, etc., just
as with other simulation samples.
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Fitting and interpreting models using
JAGS and rube()

Imer() requires only a
m Imer:Imer(y~1+ (1| group) general description of
= JAGS: structure
model {
for (iin 1:n) { * You describe the level 1,
yli] ~ dnorm(mul[i],sig2inv) Ievzl ? level 3 parts of the
. . model;
<_ ki
muli] <- b0 + a0[group(i] * JAGS applies the slogan
) . and figures out the complete
for (jin 1:n.groups) { conditionals;
a0[j] ~ dnorm(0,tau2inv) + JAGS produces MCMC
} sample

b0 ~ dnorm(0,0.000001)
tau2inv <- pow(tau,-2); tau ~ dunif(0,100) | Use p3() to inspect

sig2inv <- pow(sig,-2); sig ~ dunif(0,100) time series plot, auto-
} correlation plot, R-hat
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Using JAGS for simulation tests

model {
for (iin 1:n) {
yli] ~ dnorm(muli],sig2inv)
mul[i] <- b0 + a0[groupli]]
!
for (j in 1:n.groups) {
a0[j] ~ dnorm(0,tau2inv) In the JAGS
} output, ynew will be
b0 ~ dnorm(0,0.000001) a n.iter x n matrix.
tau2inv <- pow(tau,-2); tau ~ dunif(0,1000) . .
sig2inv <- pow(sig,-2); sig ~ dunif(0,1000) Each row is a repli-
cation of the full data
for (iin 1:n) { set.
} ynew[i] ~ dnorm(muli],sig2inv) Use to construct Hy's
for simulation checks
) of the model.
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‘ Summary
= Final exam will cover material from week 06 through week 14 of the
course:
o Multi-level models
o Model-checking using AIC/BIC/DIC, residuals, and/or simulation
o Basic facts about MLE’s, Fisher Information & SE’s, Cl’s, etc.
o Bayesian statistics, the slogan, computation with conjugate priors
o Random simulation and MCMC as a way to “estimate” a model, Cl’s
o Fitting and interpreting models using JAGS and rube()

Using JAGS for simulation tests
= Reading:

o Class notes and other materials I've handed out (hw, hw sols...)

o Selected topics from G&H Ch’s 11-15 and Lynch Ch’s 2,3,4 &9

m  G&H Ch’s 16-18, 20 and 24 have material similar to what we covered in
class, as well, though | didn’t really assign them as reading.

12/6/2016

16




