Short C Tutorial

1of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

Short C Tutorial

Why would you want to learn C rather than COBOL (gag me) or
FORTRAN?

11

© ®© N O U AWNE

. Cisthe most widely used programming language.
. Even though FORTRAN is still in heavy use by Physicists, it is debatable whether it is dominant.
. If you want to get a computer-related job outside the field of Physics, you really need to know C.

C isthe first language ported to any new computer architecture. In fact, FORTRAN compilers often emit
C code!

. C will most likely be the language of choice for future generations of multiprocessor computers (and

hence if you are in the business of writing numerically intensive programs, you will need to know C).

. The C compiler will find errors in your source code that FORTRAN will ignore. This leads to a shorter

program development time, and a greater likelyhood of obtaining a correct program.
Many scientific instruments are most easily programmed in C (e.g., National Instruments PC cards come
with C library interfaces).

. Ciscloser to assembly language, so you can have finer control over what the computer is doing, and

thereby make faster programs.

. Thereisafree C compiler available (GNU C, gcc), that is of very high quality and that has been ported

to numerous machines. (Stop press: GNU now have a FORTRAN compiler, although it is still in the
early stages of development).

. UNIX iswrittenin C, soit iseasier to interface with UNIX operating systems if you writein C.

Once you have mastered C, you will find PERL easy to learn, and PERL is an extremely useful language
to know, but that is another story...

Some problemswith C

The language was designed with writing operating systems in mind, and so it was not purpose-built for
numerical work (e.g., until recently, all floating point arithmetic in C was done in double precision).
There are still major problems, e.g., the ANSI standard only requires trig functions to be provided in
double-precision versions (although many compilers, including cc on newt, do provide them in
single-precision as well).

* Thereis no support for complex numbers.

Handling multi-dimensional arrays, and understanding pointers, are difficult when you first encounter
them.

It is easier to write completely opaque codein C thanitisin FORTRAN (although, one rarely sees
example of spaghetti-C, whereas spaghetti-FORTRAN is the norm).

You have to explicitly declare every variable that you use. Thisis actually not aproblem at al! Itisa
feature. Y ou should have been using IMPLICIT NONE in your FORTRAN programs anyway, and if you
haven’t, | wouldn'’t trust any of your results!

It is possible to bypass many of the protective features of the language, and get yourself into trouble
(aternatively, this can be seen as an advantage, since the language imposes few limitations on what you
can do).

A brief history of C

C evolved from alanguage called B, written by Ken Thompson at Bell Labsin 1970. Ken used B to write one
of thefirst implementations of UNIX. B in turn was a decendant of the language BCPL (developed at
Cambridge (UK) in 1967), with most of itsinstructions removed.

So many instructions were removed in going from BCPL to B, that Dennis Ritchie of Bell Labs put some back
in (in 1972), and called the language C.

The famous book The C Programming Language was written by Kernighan and Ritchie in 1978, and was the
definitive reference book on C for aimost a decade.

09/25/2002 11:40 AM 20of 30

Short C Tutorial

http://www.stat.cmu.edu/~brian/711/cprog.html

Theoriginal C was still too limiting, and not standardized, and so in 1983 an ANSI committee was established
to formalise the language definition.

It has taken until now (ten years later) for the ANSI standard to become well accepted and almost universally
supported by compilers.

Recommended bookson C
This section isincomplete...
The simplest possible C program

Hereit is (it doesn’'t do anything useful):

min () {

Helloworld

Here isthe generic *‘Hello world* program:

#i ncl ude <stdio. h>
main () {
printf ("hello world\n");

Notes:

* #incl ude iSapre-processor directive, i.e, it isinterpreted by aprogram call the ‘ pre-processor’, cpp (any
line starting with the # character is interpreted by cpp). In this case, #i ncl ude Simply includes the file
Jusr/include/stdio.h into the source code, before passing it on to the C compiler. Thisis similar to the

I NCLUDE statement in FORTRAN.

The angle brackets around st di o. h indicate that thisis an include-file provided by the C compiler itself
(if you wanted to include your own file, then use double quotes instead).

Thereason that we include / usr /i ncl ude/ st di o. h is that it contains a function prototype for the function
printf which we call at line 3. Function prototypes are used by ANSI-standard C to check that you are
calling the function with the right number and type of arguments. This is a huge advantage over
FORTRAN, which does no checking, and eliminates lots of errors.

min () isafunction. Every C program must contain at least one function definition called mi n. The fact
that nein () isfollowed by acurly bracket means that thisis the definition of mai n. (To call afunction,
you give its name, its arguments (in parentheses), and then a semicolon).

printf ("hello world\n"); isanexampleof afunction being called. "hel 1 o worl d\n" isthe argument (in
this case a character string).

A semicolon is used to delimit statementsin C. Thisis one of the most confusing things about C for the
FORTRAN programmer. We will soon learn some rules for when and where to use semicolons.

Note afundamental difference with FORTRAN: C uses afunction (printf) to produce output on the terminal,
whereas FORTRAN has specific statements (WRITE, FORMAT) to accomplish the same thing.

Note also the strange character sequence ‘\n’ in the string constant " hel 1 o wor 1 d\n". ‘\n" is called a newline
character, and is regarded as a single character in C (i.e., it occupies one byte of storage).

Character constants, escape sequences, and string constants

A character constant in C isasingle character (or an escape sequence such as \n) enclosed in single quotes,
eg., 'A’. (Infact, you can use multiple characters within the quotes, but the result is not defined in the ANSI
standard).

The value of a character constant is the numeric value of the character in the computer’s character set (e.g.,'A’

09/25/2002 11:40 AM

Short C Tutorial

30f 30

http://www.stat.cmu.edu/~brian/711/cprog.html

has the value 65). In 99.99% of cases thisisthe ASCII character set, but thisis not defined by the standard!
But how do you represent a character such as a single quote itself? The answer is to use an escape sequence.

For reference, hereis a program to print out all the special escape sequences:

/* A programto print out all the special C escape sequences */

/* Mchael Ashley / UNSW/ 04-May-1994 */
#i ncl ude <stdio. h> /* for printf definition */
main () {
printf ("audible alert (bell) BEL \\a %l\n" ,
printf ("backspace BS \\b %\ n" |,
printf ("horizontal tab HT \\t %\ n" |
printf ("newine LF \\n %l\n"
printf ("vertical tab VI \\v %\n"
printf ("fornfeed FF \\f %\n"
printf ("carriage return CR \\r 9%l\n"
printf ("double quote " AW\ g\ nt,
printf ("single quote \’ W\ g\ n",
printf ("question mark ? W2 %\n" |
printf ("backslash \\ W\ %@\ nt,

}
And hereisthe output it produces, when compiled with gcc on newt:

audible alert (bell) BEL \a 7
backspace BS \b 8
horizontal tab HT \t 9
new i ne LF \n 10
vertical tab vi o \v 11
fornfeed FF \f 12
carriage return CR \r 13
doubl e quote " \" 34
single quote ' \" 39
question mark ? \? 63
backsl ash \ W92

Note: this program actually produces the wrong output when used with cc on newt!

EXERCI SE: try compiling the program with gcc and cc and determine which of the compilers produce the
correct result.

In addition, you can specify any 8-bit ASCI| character using either \ooo or \xhh where ‘000’ is an octal number
(with from 1 to 3 digits), and 'xhh’ is a hexadecimal number (with 1 or 2 digits). For example, \x20 isthe
ASCII character for SPACE.

The above program also shows how to add comments to your C program.

String constants are a sequence of zero or more characters, enclosed in double quotes. For example, "test", ",
"thisisaninvalid string" are al valid strings (you can’'t always believe what a string tells you!). String
constants are stored in memory as a sequence of numbers (usually from the ASCI| character set), and are
terminated by a null byte (\0). So, "test" would appear in memory as the numbers 116, 110, 115, 116, 0.

We have aready used some examples of strings in our programs, e.g, "hello world\n" was a null-terminated
character string that we sent to thepri ntf function above.

Comments

Comments are delimited by ‘/** and ‘*/". Any text between the first ‘/*’ and the next ‘*/’ isignored by the
compiler, irrespective of the position of line breaks. Note that this means that comments do not nest.. Here are
some examples of the valid use of comments:

/* This is a coment */
/* here is another one

09/25/2002 11:40 AM

Short C Tutorial

40of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

that spans two Iines */
i = /* a big nunber */ 123456;

Here are some problems that can arise when using comments:

i = 123456; /* a comment starts here
=i+ 2 this statement is also part of the comment */
/* this is a coment /* and so is this */ but this will generate an error */

The fact that comments don’t nest is areal nuisance if you want to comment-out a whole section of code. In
this case, it is best to use pre-processor directives to do the job. For example:

123456;

i+ 2

* -
i i

M akefiles - the easy way to automate compilation

When devel oping software, agreat deal of time (both your own, and CPU time) can be save by using the UNIX
utility make (there are similar utilities available on other platforms, e.g., Microsoft hasnmake for the PC).

The idea behind neke is that you should be able to compile/link a program simply by typing meke (followed by a
carriage-return). For this to work, you have to tell the computer how to build your program, by storing
instructionsin a Makefile.

While this step takes some time, you are amply repaid by the time savings later on. meke is particularly useful
for large programs that consist of numerous source files: make only recompiles the file that need recompiling (it
works out which ones to process by looking at the dates of last modification).

Hereis an example of asimple Makefi I e:
test: test.o; cc test.o -o test

Notes:

1. A makefile consistsof aseries of lines containing targets, dependencies, and shell commands for
updating the targets.

2. In the above example,

o test isthetarget,
o test.o iSthe dependency (i.e., thefilethat t est depends on), and
© cc test.o -o test jstheshell command for making test from its dependencies.

3. Important note: test is probably abad name for a program since it conflicts with the UNIX shell
command of the same name, hence if you type "test" it will run the UNIX command rather than your
program. To get around this problem, simply use " ./test" (if "test" isin your current directory), or rename
the program. It is always a good idea to use the leading "./" since it avoids alot of subtle problems that
can be hard to track down. Also, don’'t put a"." in your PATH, thisis a security risk.

Makefiles can get much more complicated than this simple example. Here is the next step in complexity,
showing the use of a macro definition and a program that depends on multiple files.

0BJS = main.o subl.o sub2.0
main: $(OBJS); cc $(OBIS) -0 main

It iswell worth learning alittle bit about meke since it can save alot of time!
How to compileand run a C program on newt

1. Create anew directory for the program (not essential, but it helps to be organised).

2. Use whatever editor you want to generate the program (make sure the program file has a suffix of ’.c’).

3. Construct a Makefile for the program (not essential, but worth doing).

4. Type make to compile the program (if you don’'t have a Makefile, you will need to type the compiler
command yourself).

09/25/2002 11:40 AM

Short C Tutorial

50f 30

http://www.stat.cmu.edu/~brian/711/cprog.html

5. Run the program by typing its name.
6. Locate and fix bugs, then go to step 4.

Here is a complete example of the above process for the *‘Hello world’” program:

cd

nkdir hello

cd hello

cat > hello.c

#i ncl ude <stdio. h>

main () {

printf ("hello world\n");
~D

cat > Makefile
hello: hello.o;
~D

neke

.Ihello

cc hello.o -0 hello

EXERCI SE: try doing this yourself with some of the example programs later in these notes.

C compilersavailable on newt

The MIPS C compiler (recommended, used for this course).
gec
The GNU C compiler (recommended).

A program to giveinformation on C data types

Like other programming languages, C has a variety of different data types. The ANS| standard defines the data
types that must be supported by a compiler, but it doesn’t tell you details such as the range of numbers that
each type can represent, or the number of bytes of storage occupied by each type. These details are
implementation dependent, and defined in the two system include-files "limits.h" and "float.h". To find out
what the limits are, try running the following program with your favourite C compiler.

/* A programto print out various machi ne-dependent constants */
/* Mchael Ashley / UNSW/ 04- May- 1994 *]

#i ncl ude <stdio. h>
#include <linits.h>
#i nclude <float.h>

/* for printf definition */
/* for CHAR_ M N, CHAR MAX, etc */
/* for FLT.DIG DBL_DIG etc */

main () {
printf ("char %l bytes %l to % \n", si zeof (char), CHAR_M N, CHAR MAX)
printf ("unsigned char %l bytes % to % \n", si zeof (unsi gned char), 0 , UCHAR MAX)
printf ("short %l bytes %i to %i \n", sizeof(short), SHRT_M N, SHRT_MAX)
printf ("unsigned short % bytes %wu to %u \n", sizeof(unsigned short), 0 USHRT_MAX)
printf ("int %l bytes % to % \n", si zeof (i nt), INT_MN, INT_MAX)
printf ("unsigned int %l bytes % to % \n", si zeof (unsigned int), O U NT_MAX)
printf ("long %l bytes %i to %i \n", sizeof(long), LONGMN, LONG MAX)
printf ("unsigned long %l bytes %u to %u \n", sizeof(unsigned long), 0 ULONG_MAX)
printf ("float %l bytes % to % \n", si zeof (f| oat), FLT_MN, FLT_MAX)
printf ("double %l bytes % to % \n", si zeof (doubl e), DBL_LM N, DBL_MAX)
printf ("precision of float % digits\n", FLT_DIQ;
printf ("precision of double % digits\n", DBL_DG;

}

Notes:

* sizeof lookslikeafunction, but it isactually abuilt-in C operator (i.e., just like +,-,*). The compiler
replaces si zeof (dat a- t ype- nane) (Or, in fact, si zeof (vari abl e)) with the number of bytes of storage
alocated to the data-type or variable.

* The’unsigned’ datatypes are useful when you are refering to things which are naturally positive, such as

09/25/2002 11:40 AM

Short C Tutorial

6 0f 30

http://www.stat.cmu.edu/~brian/711/cprog.html

the number of bytesin afile. They also give you afactor of two increase in the largest number that you
can represent.

Most of the time you don’t need to worry about how many bytes are in each data type, since the limits are

usually OK for normal programs. However, acommon problem isthat the "int" type is only 2-byteslong on
most PC compilers, whereas on UNIX machinesit is usually 4-bytes.

Hereisthe output of the preceeding program when run on newt, using cc:

char 1 bytes -128 to 127

unsigned char 1 bytes 0 to 255

short 2 bytes -32768 to 32767

unsi gned short 2 bytes 0 to 65535

int 4 bytes -2147483648 to 2147483647

unsi gned int 4 bytes 0 to 4294967295

| ong 4 bytes -2147483648 to 2147483647
unsigned long 4 bytes 0 to 4294967295

f1oat 4 bytes 1.175494e-38 to 3.402823e+38
doubl e 8 bytes 2.225074e-308 to 1.797693e+308

precision of float 6 digits
precision of double 15 digits

Constants

We have aready seen how to write character constants and strings. Let’s now look at other types of constants:

int 123, -1, 2147483647, 040 (octal), Oxab (hexadecimal)
unsi gned int 123u, 2147483648, 040U (octal), 0X02 (hexadeci mal)

| ong 123L, OXFFFFI (hexadeci nal)

unsigned long 123ul, 0777UL (octal)

float 1. 23F, 3.14e+0f

doubl e 1.23, 2.718281828
| ong doubl e 1.23L, 9.99E-9L
Note:

* Integers are automatically assumed to be of the smallest type that can represent them (but at least an
‘int"). For ®<ample, 2147483648 was assumed by the compiler tobean’ unsigned int’ since this number
istoo big for an'int’. Numbers too big to be an "unsigned int’ are promoted to 'long’ or ' unsigned long’
as approprlale although on the DECstation these types do not hold larger numbers, so an error will
result

An |nteger starting with a zero is assumed to be octal, unless the character after the zeroisan 'x’ or ' X’,
in which case the number in hexadecimal.

Unsigned numbers have a suffix of "u’ or 'U’.

Long’int’sor "double’s have asuffix of ’I’ or 'L’ (it is probably better to use’L’ so that it isn’t mistaken
for the number one).

Floating-point numbers are assumed to be ' doubl€’ s unless they have a suffix of 'f* or 'F for 'float’, or
I" or 'L’ for 'long double’.

It pays to be very careful when specifying numbers, to make sure that you do it correctly, particularly when
dealing with issues of precision. Thisis often neglected in FORTRAN. For example, consider the following
program:

real *8 r

r=10+02

r=r - 12

wite (*,*) r

end

When compiled with 'f77' on newt, this gives the result ' 4.7683715864721423E-08', not zero as you might
expect. The reason for thisisthat "1.0" and ’0.2" are single precision numbers by default and so the addition is
only done to this precision. The number '1.2" is converted into binary with double precision accuracy, and so is
adifferent number from’1.0+0.2'.

Interestingly, the above program gives the result * 0.0000000000000000E+00" when compiled with 'f772.1' on
newt, and’ 4.768371586472142E-08' when compiled with 'f77' on the CANCES HP cluster.

09/25/2002 11:40 AM

Short C Tutorial

70f 30

http://www.stat.cmu.edu/~brian/711/cprog.html

The correct way to write this program is as follows:

real *8 r

r = 1.0D0 + 0.2D0
r=r - 1.2D0
wite (*,*) r
end

Here isthe equivalent program writtenin C:

#i ncl ude <stdio. h>
mai n {

double r;

r =1.0+0.2;

r 1.2;
prlntf (" 922, 16e\ n" r);

In this case the result is’ 0.0000000000000000e+00", but thisisn't really afair companson with our original
FORTRAN program since floating pomt numbers are assumed to be 'doubl€e’ in C, not 'real*4’ asin
FORTRAN. So let’s go back to using ' float’ s instead:

#i nclude <stdio. h>
main () {
doubl e r;
r = 1 OF + 0 2F;

prlmf (" l’/6_?2 16e\n", r);

Now the program generates ' -4.4703483581542969e-08' when compiled with’cc’ on newt, and yet it gives
’0.0000000000000000e+00" when compiled with 'gcc’, interesting...

The lesson to be learnt here is when writing constants, always think carefully about what type you want them to
be, and use the suffixes’U’, 'L’, and 'F’ to be explicit about it. It is not agood ideato rely on the compiler to
do what you expect. Don’t be surprised if different machines give different answersif you program sloppily.

Conversion between integer s and floating point numbers

InC, asin FORTRAN, there are rules that the compiler uses when a program mixes integers and floating point
numbersin the same expression. Let’slook at what happens if you assign a floating point number to an integer
variable:

#i nclude <stdio. h>
maln O {
nt i, j;

i = .9
j 1.99
prlmf (
}

sod; o= o\nt, i, j);

This program produces theresult'i = 1; j = -1". Note that the floating point numbers have been truncated when
converted to integers (FORTRAN does the same thing).

When converting integers to floating-point, be aware that a’float’ has fewer digits of precision than an’int’,
even though they both use 4 bytes of storage (on newt). This can result in some strange behaviour, e.g.,

#i ncl ude <stdio. h>
main () {
unsi gned int i;

float f;

| = 4294967295 /* the largest unsigned int */
= /* convert it to a float *l

prlntf ("% 9%0.13e 9%®0.13e\n", i, f, f - i);

This program produces the following output when compiled with "cc’:

4294967295 4.2949672960000e+09 1.0000000000000e+00

09/25/2002 11:40 AM

Short C Tutorial

8of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

and this output when compiled with 'gec’:
4294967295 4.2949672960000e+09 0.0000000000000e+00

Curiouser and curiouser... It appears that what is happening isthat 'cc’ is doing the calculation 'f - i’ asa
"double, i.e., 'f’ and i’ are converted to type ' double’, and then subtracted. Whereas'gcc’ is converting'i’ to
type’float’ (just aswas done with 'f =i"), and hence the subtraction resultsin zero. To test this hypothesis, you
canforce’cc’ tousea’float’ conversion by putting atype-cast operator before’i’. Hereitis

#i ncl ude <stdio. h>

main () {
unsigned int i;
float f;
i = 4294967295 /* the largest unsigned int */
f = /* convert it to a float */
prlmf ("% 9%0.13e %®0.13e\n", i, f, f - (float)i);

}

This program now gives the same results when used with 'cc’ or 'gec’ (i.e., zero). Incidentally, 'gec’s
behaviour without the’ (float)’ agrees with the ANS| standard.

Note the use of the type-cast operator ’ (float)’. This converts the number or variable or parethesised expression

immediately to itsright, to the indicated type. It is agood idea to use type-casting to ensure that you leave
nothing to chance.

Operators

C has arich set of operators (i.e., things like + - * /), which allow you to write complicated expression quite
compactly (unlike FORTRAN which requires function calls to duplicate many of the C operators).

Unary operators

Unary operators are operators that only take one argument. The following list will be confusing when you first
seeit, sojust keep it mind for reference later on.

Some of the operators we have already seen (e.g., 'sizeof()’), othersare very simple (e.g., +, -), others are really
nest (e.g., ~, !), others are useful for adding/subtracting 1 automaticaly (e.g., ++i, --i, i++, i--), and the rest
involve pointers and addressing, which will be covered in detail later.

si zeof (i) the number of bytes of storage allocated to i

+123 positive 123

-123 negallve 123

~i one’s conpl enent (bitw se conplenent)

Hi logical negation (i.e., 1if i is zero, O otherw se)
*i returns the value stored at the address pointed to by i
& returns the address in nenory of i

++ adds one to i, and returns the new value of i

--i subtracts one fromi, and returns the new value of i
i++ adds one to i, and returns the old value of i

i-- subtracts one fromi, and returns the old value of i
i[j] array indexin

i (]) calling the function i with argunent j

i.j returns menmber j of structure i

i->j returns menber j of structure pointed to by i

Binary operators

Binary operators work on two operands (' binary’ here means 2 operands, not in the sense of base-2 arithmetic).

Hereisalist. All the usual operators that you would expect are there, with a whole bunch of interesting new
ones.

addi tion
subtraction
mul tiplication
di vi sion

—~ 4

09/25/2002 11:40 AM

Short C Tutorial http://www.stat.cmu.edu/~brian/711/cprog.html
Y% remainder (e.g., 298 1s 2), also called 'nodulo
<< left-shift (e.g., i<<j is i shifted to the left by j bits)
>> right-shift
& bitwi se AND
| bi twi se OR
" bitwi se exclusive-OR
&& logical AND (returns 1 if both operands are non-zero; else 0)
I logical OR (returns 1 if either operand is non-zero; else 0)
< less than (e.g., i<j returns 1 iff i is less thanj)
> greater than
<= l ess than or equal
>= greater than or equal
== equal s
I= does not equal
? condi tional operator, explained later...
Note:

90of 30

» Truth and falsity in C is represented by numbers being non-zero and zero respectively (although logical
operators aways return 1 or 0).

* Don't make the mistake of using’=" when you meant '=="!

» Note the distinction between bitwise operators and logical operators.

Assignment operators

Assignment operators are really just binary operators. The simplest exampleis’=", which takes the value on the
right and places it into the variable on the left. But C provides you with ahost of other assignment operators
which make life easier for the programmer.

assi gnnent

addi tion assi gnment
subtraction assi gnment

nul tiplication assignment

di vi si on assi gnment

remai nder / nodul us assi gnnent
bi twi se AND assi gnnent

bi twi se OR assi gnnent

bitwi se exclusive OR assignnent
left shift assignnent

right shift assignnent

VA >~ %1 4 |
vﬂun%’ﬁ

So, for example, 'i +=j’ isequivadentto’i =i +j’. The advantage of the assignment operatorsis that they can
reduce the amount of typing that you have to do, and make the meaning clearer. Thisis particularly noticeable
when, instead of asimple variable such as’i’, you have something complicated such as ' position[wavelength +
correction_factor * 2]’;

The thing to the | eft of the assignment operator has to be something where aresult can be stored, and is known
asan’lvalue (i.e., something that can be on the left of an’="). Valid 'lvalues’ include variables such as’i’, and
array expressions. It doesn’t make sense, however, to use constants or expressions to the left of an equalssign,
so these are not ’lvalues'.

The comma operator
C allows you to put multiple expression in the same statement, separated by acomma. The expressions are
evaluated in left-to-right order. The value of the overall expression is then equal to that of the rightmost

expression.

For example,

i=((4 =2, 3; i =2
nyfunct (i, (j =2, j + 1), 1); j 2; nyfunct (i, 3, 1);

The comma operator has the lowest precedence, so it is always executed last when evaluating an expression.
Note that in the example given commais used in two distinct ways inside an argument list for a function.

Both the above examples are artifical, and not very useful. The comma operator can be useful when used in

09/25/2002 11:40 AM

Short C Tutorial

10 of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

"for’ and 'whil€e’ loops as we will seelater.
Precedence and associativity of operators

Theprecedence of an operator gives the order in which operators are applied in expressions: the highest
precedence operator is applied first, followed by the next highest, and so on.

Theassociativity of an operator gives the order in which expressions involving operators of the same
precedence are evaluated.

The following table lists al the operators, in order of precedence, with their associativity:

QOper at or Associ ativity
O [1 ->>. left-to-right

++ -- | ~* & sizeof (type) right-to-left
* | % left-to-right
+ - left-to-right
<< >> left-to-right
< <= > >= left-to-right
== 1= left-to-right
& left-to-right
n left-to-right
| left-to-right
&& left-to-right
il left-to-right
?2: right-to-left
= 4= o= *= [= UF & "= | = <<= >>= right-to-left

left-to-right

Note: the + - and * operators appear twice in the above table. The unary forms (on the second line) have higher
precedence that the binary forms.

Operators on the same line have the same precedence, and are evaluated in the order given by the associativity.

To specify adifferent order of evaluation you can use parentheses. In fact, it is often good practice to use
parentheses to guard against making mistakes in difficult cases, or to make your meaning clear.

Side effectsin evaluating expressions

It is possible to write C expressions that give different answers on different machines, since some aspects of
expression-evaluation are not defined by the ANSI standard. Thisis deliberate since it gives the compiler
writers the ability to choose different evaluation orders depending on the underlying machine architecture. Y ou,
the programmer, should avoid writing expressions with side effects.

Here are some examples:

nyfunc (j, ++); /* the arguments nay be the sane, or differ by one */
array[j] = j++; /* is j increnented before being used as an index? */
i =f1() + f2(); /* the order of evaluation of the two functions

is not defined. If one function affects the
results of the other, then side effects will
result */

Evaluation of logical AND and OR

A useful aspect of C isthat it guarantees the order of evaluation of expressions containing the logical AND
(&&) and OR (||) operators: it is always left-to-right, and stops when the outcome is known. For example, in the
expression ‘1 || f()’, the function ‘()" will not be called since the truth of the expression is known regardless of
the value returned by ‘f()’.

It isworth keeping thisin mind. Y ou can often speed up programs by rearranging logical tests so that the
outcome of the test can be predicted as soon as possible.

09/25/2002 11:40 AM

Short C Tutorial

11 of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

Another good example is an expression such as‘i >=0&& i <n && array[i] == 0'. The compiler will
guarantee that the index into *array’ iswithin legal bounds (assuming the array has‘n’ elements).

What isa C identifier?

Anidentifier is the name used for a variable, function, data definition, etc.
Rulesfor identifiers:

Legal charactersare a-z, A-Z, 0-9, and _.

Case issignificant.

The first character must be aletter or _.

Identifiers can be of any length (although only the first 31 characters are guaranteed to be significant).
The following are reserved keywords, and may not be used as identifiers:

auto doubl e int struct

br eak el se | ong switch
case enum register typedef
char extern return union
const float short unsi gned
continue for si gned voi d
defaul t goto si zeof vol atile
do if static while

* Here are some examples of legal identifiers:
i
count
Number Of Aar dvar ks

nunber _of _aardvarks
MAX_LENGTH

Mathematical functions

Calling mathematical functionsin C isvery similar to FORTRAN, although C doesn’t have FORTRAN's
ability to use generic function calls that are converted to the right type during compilation (e.g., the FORTRAN
compiler will select theright version of the SIN routine to match the argument, C requires you to use a different
routine for single/double precision).

Prototypes for the math functions are in the system include-file "math.h", so you should put theline
#incl ude <math, h>

in any C source file that calls one of them.

Hereisalist of the math functions defined by the ANI standard:

si n(x) sine of x

cos(x) cosine of x

tan(x) tan of x

asi n(x) arcsine of x, result between -pi/2 and +pi/2
acos(x) arccosine of x, result between 0 and +pi

at an(x) arctan of x, result between -pi/2 and +pi/2
atan2(y, x) arctan of (y/x), result between -pi and +pi
hsi n(x) hyperbolic sine of x

hcos(x) hyperbolic cosine of x

ht an(x) hyperbolic tan of x

exp(x) exponential function

I og(x) natural |ogarithm

| 0g10(x) logarithmto base 10

pow(X, y) x to the power of y (x**y in FORTI

sqrt(x) the square root of x (x nust not be negative)
ceil (x) ceiling; the smallest integer not |ess than x
floor(x) floor; the largest integer not greater than x
fabs(x) absol ute val ue of x

| dexp(x, n) X tinmes 2**n

frexp(x, int *exp) returns x normalized between 0.5 and 1; the exponent of 2 is in *exp

nodf (x, double *ip) returns the fractional part of x; the integral part goes to *ip

09/25/2002 11:40 AM

Short C Tutorial

12 of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

tmd(Xx, y) returns the tloating-point remainder of Xx/y, wth the sign of x

In the abovetable, 'x’, and 'y’ are of type 'double’, and 'n’ isan 'int’. All the above functions return ' double’
results.

C libraries may also include 'float’ versions of the above. For example, 'fsin(x)’ on newt takes a float argument

and returns afloat result. Microsoft C does not provide’float’” versions (presumably because the floating-point
accelerator chips do al their work in double precision).

The‘for’ loop

The basic looping construct in C isthe ‘for’ loop.
Hereisthe syntax of the ‘for’ statement:

for (initial_expression; |oop_condition; |oop_expression) statenment;

An example will clear this up:
for (i =0; i <100; i++) printf ("%\n", i);

which simply prints the first 100 integers onto ‘stdout’. If you want to include more that one statement in the
loop, use curly brackets to delimit the body of the loop, e.g.,
for (i =0; i <100; i++) {
brintt (b= %) o= %\nt, 0L i)

Topicsleft over from last lecture

How to link with the math library
cc -0 prog prog.c -Im

The*-I" switch stands for ‘library’, which means that the specified library of pre-compiled C routinesis
searched in order to satisfy any external references from yoru program ‘prog.c’. Thelibrary that is searched in
thiscaseis‘libm.a and the path that is used for the search is the default library search path, which include
‘fusr/lib’ where’libm.a isfound.

Tousealibrary in adirectory that is not part of the default library search path, you use the’-L’ switch. For
example, to search the library ’ /usr/users/smith/libastro.a, you would use

cc -0 prog prog.c -L/usr/users/snith -lastro

Note: the order of the switches isimportant. External references are only searched for in libraries to the right of
the reference. So, if you have two libraries that call each other, then you need to do something like the
following:

cc -0 prog prog.c -L/usr/users/smith -11ibl -1lib2 -I1libl

Hereis asimple example of calling the math library:

#i ncl ude <stdio. h>

#i ncl ude <math. h>

min () {

const double pi = 3.1415926535;

double e, d = pi/2;

e = sin(d);

printf ("The sine of % is %\n", d, e);

This program produces the result:

09/25/2002 11:40 AM

Short C Tutorial

13 of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

The sine of 1.570796 1s 1.000000
However, if you leave off the ‘#include <math.h>’ line, you will get
The sine of 1.570796 is 4.000000

Why, because the default type for an undefined function is ‘ extern int function();’
Semicolonsin compound statements

The last statement in the body of statementsina‘for’ loop (or, in fact, in any other compound statement) must
be terminated with a semicolon.

For example,

for (i =0; i < 10; i++) {

X =i *i;

X += 2; /* the senicolon is required here */
} /* do not use a semicolon here */

#include <stdio.h> in the example programs

The example programs | showed last time didn’t always have ‘#include <stdio.h>" at the top. They should have
had this line (although they will work without it), since it defines the prototypes of the I/O functions, thereby
guarding against errors.

Variables defined within compound statements

Y ou can create variables that are local to acompound statement by declaring the variables immediately after
the leading curly bracket.

Variable storage classes

Variablesin C belong to one of two fundamental storage classes: ‘static’ or ‘automatic’.

A static variable is stored at a fixed memory location in the computer, and is created and initialised once when
the program is first started. Such a variable maintains its value between calls to the block (a function, or
compound statement) in which it is defined.

An automatic variable is created, and initialised, each time the block is entered (if you jump in half-way
through a block, the creation still works, but the variable is not initialised). The variable is destroyed when the
block is exited.

Variables can be explicitly declared as ‘static’ or ‘auto’ by using these keywords before the data-type
definition. If you don’t use one of these keywords, the default is‘ static’ for variables defined outside any block,
and ‘auto’ for those inside a block.

Actually, there is another storage class: ‘register’. Thisislike ‘auto’ except that it asks the compiler to try and
store the variable in one of the CPU’ s fast internal registers. In practice, it is usually best not to use the

‘register’ type since compilers are now so smart that they can do a better job of deciding which variablesto
placein fast storage than you can.

Const - volatile

Variables can be qualified as ‘const’ to indicate that they are really constants, that can beinitialised, but not
altered.

Variables can aso be termed ‘volatile' to indicate that their value may change unexpectedly during the
execution of the program (e.g., they may be hardware registers on a PC, able to be altered by externa events).

09/25/2002 11:40 AM

Short C Tutorial

14 of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

By using the ‘volatile’ qualifier, you prevent the compiler from optimising the variable out of loops.
Extern
Variables (and functions) can also be classified as ‘ extern’, which means that they are defined external to the

current block (or even to the current source file). An ‘extern’ variable must be defined once (and only once)
without the ‘extern’ qudifier.

As an example of an ‘extern’ function, all the functionsin ‘libm.a’ (the math library) are external to the source
file that calls them.

An example showing stor age class and variable scope

#i nclude <stdio. h>
; ! .

int i; i is static, and visible to the entire program*/

extern j; /* j is static, and visible to the entire program */

static int j; /* k is static, and visible to the routines in this source
file *

void func (void) { /* i.e., a function that takes no argunents, and

doesn’t return a value */

int m=1; /* mis automatic, local to this function, and initialised
each time the function is called */
auto int n = 2; /* nis automatic, local to this function, and initialised

each time the function is called */
static int p =3; /* pis static, local to this function, and initialised
once when the programis first started up */

extern int q; /* qis static, and defined in sone external nodule */

for (i =0; i <10; i++) {
int m= 10; /* mis automatic, local to this block, and initialised
each time the block is entered */
printf ("m=9%\n", m;

}

Initialisation of variables

A variableisinitiaised by equating it to a constant expression on the linein which it is defined. For example
int i =0

‘static’ variables are initidised once (to zero if not explicitly initidised), ‘automatic’ variables are initialised
when the block in which they are defined is entered (and to an undefined value if not explicitly initialised).

The ‘constant expression’ can contain combinations of any type of constant, and any operator (except
assignment, incrementing, decrementing, function call, or the comma operator), including the ability to use the
unary & operator to find the address of static variables.

Here are some valid examples:

#i ncl ude <stdio. h>
#i ncl ude <math. h>
int i
intj
int k
int m
int p
int g

t

o nnn

. 1)
r <1.0; r +=0.1) {

09/25/2002 11:40 AM

Short C Tutorial

http://www.stat.cmu.edu/~brian/711/cprog.html

double s = sin(r);
printf ("The sine of % is %\n", r, s);
}

}
Notes:
* An‘automatic’ variable can beinitialised to any expression, even one using other variables, since the
initialisation is done at run-time.
* |tisgood styleto put al your ‘extern’ variables at the top of each sourcefile, or even to put them into a
header file.
« Don't overuse ‘extern’ variables! It isusually better to passlots of arguments to functions rather than to
rely on hidden variables being passed (since you end up with clearer code, and reusuable functions).
If statements
if (expression)
st at enent
el se if (expression)
st at ement
el se if (expression)
st at ement
el se
st at ement

Where ‘statement’ is asimple C statement ending in a semicolon, or a compound statement ending in a curly
bracket.

Some examples will help:

if (i ==6) x = 3;
if (i ==6) {

X = 3;

}

if (i) x =3;

(i)
X = 3;

else if (i ==1)
it ()

=2;

el)s,e /* NOTE: possible anbiguity here, the conpiler uses */

y = 3; 1* the closest if statenent that does not have */

el se { /* an el se cl ause */
X = 4
y =5

}
Break and continue
These two statements are used in loop control.
‘break’ exits the innermost current loop.
‘continue’ starts the next iteration of the loop.
Infinite loops

for (553) {
statement ;

o {
statenent;

09/25/2002 11:40 AM

Short C Tutorial

16 of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

} owhile (1);

Infinite loops can be useful. They are normally terminated using a conditional test with a‘break’ or ‘return’
statement.

goto

C does havea‘goto’ statement, but you don’t need it. Using ‘goto’ is almost always a result of bad
programming.

Formatted output: printf description

The format string given to the ‘printf’ function may contain both ordinary characters (which are smply printed
out) and conversion characters (beginning with a percent symbol, %, these define how the value of an internal
variable isto be converted into a character string for output).

Here isthe syntax of a conversion specification:

% flags: - + space O #}{nininumfield width}{.}{precision}{length nodifier}{conversion character}
* Flags: ‘-’ means|eft-justify (default isright-justify), ‘+" meansthat asign will always be used, * * prefix
aspace, ‘0" pad to the field width with zeroes, '# specifies an alternate form (for details, see the
manual!). Flags can be concatenated in any order, or |eft off atogether.
Minimum field width: the output field will be at least thiswide, and wider if necessary.
'\ separates the field width from the precision.
Precision: its meaning depends on the type of object being printed:

° Character: the maximum number of characters to be printed.

° Integer: the minimum number of digits to be printed.

o Floating point: the number of digits after the decimal point.

o Exponential format: the number of significant digits.
Length modifer: ‘h” means short, or unsigned short; ‘I" means long or unsigned long; ‘L’ meanslong
double.
Conversion character: asingle character specifying the type of object being printed, and the manner in
which it will be printed, according to the following table:

Character Type Resul t

d,i int si gned deci nal integer
o int unsi gned octal (no leading zero)
x, X int unsi gned hex (no |eading Ox or 0X)
u int unsi gned deci mal integer
c int single character
s char * characters froma string
f double floating point [-]dddd.

pppp
e, E doubl e exponential [-]dddd. pppp e[=/-]xx
g, G double floating is exponent |ess than -4, or >= precision
el se exponenti al
p void * pointer
n int * the number of characters witten so far by printf
is stored into the argunent (i.e., not printed)
% print %

Here is an example program to show some of these effects:

#include <stdio.h>

main () {

int i = 123;

doubl e f = 3.1415926535;
printf ("i =9%\n", i);
printf ("i Y%\n", i);
printf ("i w\n", i);
printf ("i win", i);
printf (Y%ri\n", 1);
printf (wBi\n", i);
printf (9%8i\n", i);
printf (%-08i\n", i);
printf ("f = %\n", f);
printf ("f = 90.3f\n", f);

09/25/2002 11:40 AM

Short C Tutorial http://www.stat.cmu.edu/~brian/711/cprog.html Short C Tutorial http://www.stat.cmu.edu/~brian/711/cprog.html

printt ("t = %10.3t\n", 1); we started wth when the calculation 1s finished.) */
printf ("f =9%\n", f);
printf ("f = 9%0.6g\n", f); float bal ance;
printf ("f = %0.6e\n", f);
/* Counter of interest periods */
int i;
Notes: . . . o : /* Monthly deposit (negative values are pernitted) */
* Onebig difference is that FORTRAN will print asterisksin fields that are too small to fit the number, float deposit;
whereas C will expand the field. Be careful here, particularly when reading output generated by another . - - N
program. /* Flag: when this is set true (nonzero), the user is finished */
* There are differences between the various implementations of printf. The above should be a subset of the int done;

available options. Consult the manual for your particular C compiler to be sure.

* printf is actually an integer function, which returns the number of characters written (or a negative number if I* User input: analyze again? */

an error occurred). int again;
. . /* Initially, of course, we are *not* finished. (C does NOT automatically
Formatted Input: scanf de&:rlptlon set variables to zero. Making this assunption is a conmon mistake
anong new programmers.) */
Input in C is similar to output: the same conversion characters are used. The main differenceis that you use a done = 0;

routine called ‘ scanf’, and you must pass the addresses of the variables you want to change, not their values. /* Loop until done. */

For example: while (!done) {
/*_Fetch starting val ues fromuser */
scanf ("%l", &); /* reads an integer into ‘i’ */ printf("Initial balance: ");

scanf ("%", &); /* reads an integer (or octal, or hex) into ‘i’ */ scanf ("% ", &nitial_balance);

wog 0f " iy " ; *
scanf ("% %", &, &); /* reads a double followed by an integer */ printf("Interest rate (exanple: .05 for 5 percent): ");
scanf("9%", & nterest);

scanf is actually an integer function, which returns the number of input items assigned (or EOF if the

end-of-fileis reached or an error OCCUI’I’Gd) printf("Number of conpoundings per year (12 = nonthly, 365 = daily): ");
' scanf ("% ", &f requency);

The ampersand character ‘&’ isaunary operator that returns the address of the thing to itsright. Recall that aC printf("Nonthly deposit (enter negative value for Ioan payment): ");

function can not alter the value of its arguments (but there is nothing stopping it altering that value that is scanf ("% ", &deposit);

pOinted to by oneof its argummtS!)- printf("Number of years (exanples: 1, 5, .5): ");

scanf ("9%", &years);

User input, areal program example /* Actual logic begins here. */
/* interest.c, by Tom Boutell, 6/27/93. /* Cal culate nunber of interest periods. */
Updat ed 6/29/93 to support user input. */ interest_periods = frequency * years;
/* This program cal cul ates the bal ance of a savings or |oan account after /b*l Set wor ki !"lg_ b|a| gnfe to begin at initial balance. */
a nunber of years specified by the user, with an interest rate, al ance = initial_balance;
gyn{ EleyuggrrEE}, initial balance and rate of conpounding specified /* Loop through interest periods, increasing bal ance */
. for (i=0; (i

/* Get standard input and output functions */
#i ncl ude <stdio. h>

.) . EXERCISE: write a programin C to make a nicely-formatted table of sines, cosines, and tangents, of all the
fzi ngﬁudzt 3%‘[\%2&‘ h functions =/ integral degree values between two numbers entered by the user.

int main() {
/* Initial balance (noney in account). Since this value can

have a fractional part, we declare a float (floating point) The on-line manual pages

variable to store it. */
float initial_balance;

/* Rate of interest, per year (also a floating point value) */ man, xman, dxbook.

float interest;

The simple debugger ‘dbx’

/* Nunber of times interest is conpounded each year (interest periods)
(thus 1.0 is annually, 365.0 is daily) */
float frequency; cc -g -C0 main.c

/* Time in years */ dbx a. out
float years;

/* Total interest periods. This cannot have a fractional part,

so we declare an integer (no fractional part) variable to store it. */ quit[!] - quit dbx
int interest_periods; run argl arg2 ... { f1}&f2 - begin execution of the program
stop at {line} - suspend execution at the line
/* Current balance. (W store this in a separate place formthe [n] cont {signal} - continue with signal
initial balance, so we will still be able to tell how nuch nmoney return - continue until the current procedure returns

17 of 30 09/25/2002 11:40 AM 18 of 30 09/25/2002 11:40 AM

Short C Tutorial http://www.stat.cmu.edu/~brian/711/cprog.html
print {exp} ... - print the value of the expressions
printf "string", exp, ... - print expressions using format string(C)
where [n] - print currently active procedures (stack trace)
status - print trace/stop/record's in effect

19 of 30

- nove to activation |evel of {proc}

- display count nunber of formatted nenory itenms
- change current file to file

- list source lines from{expl} to {exp2}

- list source lines at {exp} for {int} lines

- performshell command

func {proc}

{exp}[/ | ?1{count}{format}
file {file}

list {expl}, {exp2}

list {exp}:{int}

sh {shell command}

Arrays

Arrays are declared in C as follows (for example):

int counts[100];
float tenperature[1024];

In this example, ‘count’ is an array that can hold 100 integers, and ‘temperature’ is an array that can hold 1024
floats.

So far so good. The major departure from FORTRAN is that the first element in a C array is element number O
(rather than 1 asin FORTRAN). While this may be confusing to die-hard FORTRAN programmers, it isreally
amore natural choice. A side-effect of this choice is that the last element in an array has an index that isone
less that the declared size of the array. Thisis a source of some confusion, and something to watch out for.

Initialising arrays

Toinitialise an array, specify theinitial valuesin alist within curly brackets. For example:

int primes[100] =
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,

149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223,

227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,

307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,

389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,

467, 479, 487, 491, 499, 503, 509, 521, 523, 541};

float tenp[1024] = {5.0F, 2.3F};
double trouble[] = {1.0, 2.0, 3.0};

In this example, ‘primes’ isinitialised with the values of the first 100 primes (check them!), and the first two
elements (temp[0] and temp[1]) of ‘temp’ are initialised to 5.0F and 2.3F respectively. The remaining elements
of ‘temp’ are set to 0.0F. Note that we use the trailing ‘F' on these numbers to indicate that they are floats, not
doubles.

Thearray ‘trouble’ in the above example contains three double numbers. Note that its length is not explicitly
declared, C is smart enough to work the length out.

Static arrays that are not explicitly initialised are set to zero. Automatic arrays that are not explicitly initialised,
have undefined values.

Multidimensional arrays

Multidimensional arrays are declared and referenced in C by using multiple sets of square brackets. For
example,

int table[2][3][4];

‘table’ isa2x3x4 array, with the rightmost array subscript changing most rapidly as you move through memory

(thefirst element is ‘table[0][0][0]’, the next element is ‘table[0][0][1]’, and the last element is ‘table[1][2][3] .

When writing programs that use huge arrays (say, more than a few megabytes), you should be very careful to

09/25/2002 11:40 AM

Short C Tutorial

20 of 30

ensure that array references are as close as possible to being consecutive (otherwise you may get severe
swapping problems).

Initialisation of multidimensional arrays

Thisis best demonstrated with an example:
int mat[3][4] = {
{

{
}

o wo
NE
@ o1N
228

Note that | have only initialised a 3x3 subset of the 3x4 array. The last column of each row will have the default
initialisation of zero.

Character arrays

Arrays can be of any type. Character arrays hold a single character in each element. In C, you manipulate
character strings as arrays of characters, and operations on the strings (such as concatenation, searching) are
done by calling specia libary functions (e.g., strcat, strcmp).

Note that when calling a string-manipulation function, the end of the string is taken as the position of the first
NUL character (0) in the string.

Character arrays can beinitialised in the following ways:

char str[] ={'a, 'b, 'c'};
char pronpt[] = "please enter a nunber";

In the example, ‘str’ has length 3 bytes, and ‘prompt’ has length 22 bytes, which is one more than the number
of charactersin "please enter anumber", the extra character is used to store aNUL character (zero) as an
indication of the end of the string. ‘str’ does not having atrailing NUL.

Pointers

If there is one thing that sets C apart from most other languages, it is the use of pointers. A ‘pointer’ isa
variable containing the address of a memory location.

Suppose ‘p’ isapointer, then ‘*p’ isthe thing which ‘p’ points to.

Suppose ‘i’ isbeing pointed at by ‘p’, then ‘i’ and ‘*p’ are the same thing, and ‘p’, being equal to the address of
‘I’, isequal to ‘&i’ (remember, ‘&’ isthe unary address operator).

Pointers are declared by specifying the type of thing they point at. For example,

int *p;

defines‘p’ asapointer to an int (so, therefore, ‘*p’ is an int, hence the form of the declaration).

Note carefully, then by declaring ‘p’ asin the above example, the compiler simply allocates space for the
pointer (4 bytesin most cases), not for the variable that the pointer pointsto! Thisis avery important point,
and is often overlooked. Before using ‘*p’ in an expression, you have to ensure that ‘p’ is set to point to avalid

int. This‘int” must have had space alocated for it, either statically, automatically, or by dynamically allocating
memory at run-time (using a‘malloc’ function).

Here is an example showing some of the uses of pointers:

#i ncl ude <stdio. h>

void main (void) {
int m=0, n=1, k =2;
int *p;

09/25/2002 11:40 AM

http://www.stat.cmu.edu/~brian/711/cprog.html

Short C Tutorial http://www.stat.cmu.edu/~brian/711/cprog.html Short C Tutorial http://www.stat.cmu.edu/~brian/711/cprog.html

char msg|] = "hello worid"; and greater than zero Is sl > s2.
char *cp;
char *strcpy (s1, s2) Copies s2 to s1, returning sil.
p =&m /* p now points to m */
po= 1 / mnow equals 1 */ size_t strlen (s) Returns the number of characters in s, excluding
k = *p; /* k now equals 1 */ the terninating null.
cp = rrsg. /* cp points to the first character of meg */
cp = / change the case of the 'h' in nsg */ char *strncat (sl, s2, n) Concatenates s2 onto s1, stopping after ‘n’
cp = &msg[G] /* cp points to the 'w */ characters or the end of s2, whichever occurs
cp = / change its case */ first. Returns si.
printf ("m=9%, n=29%, k = %\nmsg = \"%\"\n", m n, k, msQ); int strncnp (s1, s2, n) Li ke strcnp, except at nost ‘n’ characters are
} conpar ed.
. . ") s . . . char *strnc 1, s2 Li ke strcpy, except at nost ‘n' characters are
Note the very important point that the name of an array (‘msg’ in the above example), if used without an index, strnepy (sl s2) copred. | P exeep s s
is considered to be a pointer to the first element of the array. In fact, an array name followed by an index is
exactly equivalent to a pointer followed by an offset. For example, char *strrehr (s, c) TheesEriaar except searches from the end of
_ncl udg <Std? 0. h> int strstr (sl, s2) Searches for the string s2 in sl. Returns a
void main (void) { . pointer if found, otherwise the null-pointer.
char nmsg[] = "hello world";
char *cp; size_r strspn (sl, s2) Returns the number of consecutive characters
_ . in sl, starting at the beginning of the string,
cp = nsg; that are contained within s2.
cp[0] = H: size_r strcspn (s1, s2) Returns the nunber of consecutive characters
(msg+6) = "W; in sl, starting at the beginning of the string,
. that are not contained within s2.
printf ("%\n", nsg);
printf ("9s\n", &msg[0]); char *strpbrk (sl, s2) Returns a pointer to the first character in sl
printf ("°/s\n , cp); that is present in s2 (or NULL if none).
printf ("%\n", &cp[0]);
} char *strerror (n) Returns a p0| nter to a string describing the
error code ‘n’
Note, however, that ‘cp’ isavariable, and can be changed, whereas ‘msg’ is a constant, and is not an Ivalue. char *striok (sl, s2) Searches s1 for tokens delinited by characters
fromsl. The first tine it is called with a
Pointers used asargumentsto functions non-null s1, it wites a NULL into sl at the
first position of a character froms2, and

returns a pointer to the beginning of sl. Wen

We have already seen that C functions can not alter their arguments. They can, however, alter the variables that sfrrok is then called with a null sl it finds
their arguments point to. Hence, by passing a pointer to a variable, one can get the effect of ‘call by reference’. beyond the previous nul | 9 P
Hereisan example of afunction that swaps the values of its two arguments: The following program illustrates the use of *strtok’, the most complex of the string functions.
void swap_args (int *pi, int *pj) { #include <string. h>
int tenp; #i ncl ude <stdio. h>
int main (void) {
ienp . *pi char s1[80];
pr = PJ: char s2[80];
) *pj = tenp; char *cp;
if (gets(sl) == (char *)NULL) { /* gets returns the next line of input from
I all the asterisks were left out of this routine, then it would still compile OK, but its only effect would be to stdio, a null if there isn't one */
swap local copiesof ‘pi’ and ‘pj’ around. printf ("end of file\n");
return 1;

}
if (gets(s2) == (char *)NULL) {
printf (”end of file\n");

String functions

. 1;
The standard C libraries include a bunch of functions for manipulating strings (i.e., arrays of chars). y e
Note that before using any of these functions, you should include the line "#include <string.h>" in your cp {= strtok (sl, s2);
program. This include-file defines prototypes for the following functions, as well as defining special types such printf ("<v%>\n", cp);
as‘size_t', which are operating-system dependent. } V\hileo((cp = strtok ((char *)NULL, s2)) != (char *)NULL);
return O;
char *strcat (s1, s2) Concatenates s2 onto s1. null-terminates si. }
Returns sl1.
char *strchr (s, c) Searches string s for character c. Returns a FIIeopefaIlOnS
_p?i nt ;er to the first occurence, or null pointer
1 not .

<stdio> defines a number of functions that are used for accessing files. Before using afile, you have to declare
int strcnp (s1, s2) Conpares strings sl and s2. Returns an integer apointer to it, so that it can be referred to with the functions. Y ou do this with, for example,
that is less than 0 is sl < s2; zero if sl = s2;

21 0f 30 09/25/2002 11:40 AM 22 of 30 09/25/2002 11:40 AM

Short C Tutorial

23 of 30

http://www.stat.cmu.edu/~brian/711/cprog.html

FILE *In_tile
FILE *out _file

where ‘FILE’ isatype defined in <stdio> (it is usually a complicated structure of some sort). To open afile,
you do, for example:

infile
out_file

fopen ("input_file.dat", "r");
fopen ("output_file.dat", "w');

Note the use of "r" to indicate read access, and "w" to indicate write access. The following modes are available:

"t read

"W wite (destroys any existing file with the same nane)

"rb" read a binary file

"wb" wite a binary file (overwiting any existing file)

"r+" opens an existing file for randomread access, and
witing toits end

"w+" opens a new file for randomread access, and witing to
its end (destroys any existing file with the same nane)

Once thefileis opened, you can use the following functions to read/write it:

int getc (FILE *fp) Returns the next character from'fp', or

ECF on error or end-of-file.

Wite the character c to the file ‘fp',
returning the character witten, or EOF on
error.

int putc (int ¢, FILE *fp)

int fscanf (FILE *fp, char *format, ...) Like scanf, except input is taken
fromthe file fp.

int fprintf (FILE *fp, char *format, ...) Like printf, except output is witten
to the file fp.

char *fgets (char *line, int n, FILE *fp) Gets the next line of input fromthe
file fp, up to ‘n-1" characters in |ength.
The new ine character is included at the end
of the string, and a null is appended. Returns
“line’ if successful, else NULL if end-of-file
or other error.

int fputs (char *line, FILE *fp) Ojtputs the string ‘line’ to the file fp.
Returns zero is successful, EOF if not.

When you have finished with afile, you should closeit with 'fclose':

int fclose (FILE *fp) Closes the file "fp', after flushing any
buffers. This function is automatically called
for any open files by the operating

systemat the end of a program

It can also be useful to flush any buffers associated with afile, to guarantee that the characters that you have
written have actually been sent to thefile:

int fflush (FILE *fp) Flushes any buffers associated with the

file "fp'.
To check the status of afile, the following functions can be called:
int feof (FILE *fp) Returns non-zero when an end-of-file is read.

int ferror (FILE *fp) Returns non-zero when an error has occurred,

unl ess cleared by clearerr.
void clearerr (FILE *fp) Resets the error and end-of-file statuses.

int fileno (FILE *fp) Returns the integer file descriptor associated

with the file (useful for lowlevel 1/0.

Note that the above ‘functions” are actually defined as pre-processor macrosin C. Thisis quite acommon thing
to do.

09/25/2002 11:40 AM

Short C Tutorial

http://www.stat.cmu.edu/~brian/711/cprog.html

Structures

Any programming language worth its salt has to allow you to manipulate more complex data types that simply
ints, and arrays. Y ou need to have structures of some sort. Thisis best illustrated by example:

To define a structure, use the following syntax:

struct time {
int hour;
int ninute;
float second;

H

This defines anew data type, called ‘time’, which contains 3 elements (packed consecutively in memory). To
declare avariable of type ‘time’, do the following:

struct time t1[10], t2 = {12, 0, 0.0F};

To refer to an individual element of a structure, you use the following syntax:

t1[0]. hour = 12;

t1[0].m nutes = 0;
t1[0].second = t2.second;
t1] 2;

Pl

Structures can contain any type, including arrays and other structures. A common useiisto create alinked list
by having a structure contain a pointer to a structure of the same type, for example,

struct person {
char *name[80] ;
char *address[256] ;
struct person *next_person;

Multiple precision arithmetic

As an example of how to program in C, let’s explore the topic of multiple precision arithmetic. All the hard
work will be done by GNU’s Multiple Precision Arithmetic Library (GNU MP), written by Torbjorn Granlund.
Theversion | will be using hereis 1.3.2, obtained from archie.au on 9 August 1994.

Multiple precision arithmetic allows you to perform calculations to a greater precision than the host computer
will normally allow. The penalty you pay is that the operations are slower, and that you have to call subroutines
to do all the calculations.

GNU MP can perform operations on integers and rational numbers. It uses preprocessor macros (defined in
gmp.h) to define special data types for storing these numbers. MP_INT isan integer, and MP_RAT is arationa
number. However, since a multiple precision number may occupy an arbitrarily large amount of memory, itis
not sufficient to allocate memory for each number at compile time. GNU MP copes with this problem by
dynamically allocating more memory when necessary.

To begin with you need to initialise each variable that you are going to use. When you are finished using a
variable, you should free the space it uses by calling a special function.

MP_INT x, y
npz_init (&x);
mpz_init (&y);

/* operations on x and y */

npz_cl ear (&x);
npz_clear (&y);

Let’s now try afull program. For example, calculating the square root of two to about 200 decimal places:

#i ncl ude <gnp. h>
#i ncl ude <stdio. h>
void main (void) {

09/25/2002 11:40 AM

Short C Tutorial

250of 30

char two|450], guess|225];
int i;
MP_INT ¢, x, tenp, diff;

two[0] ="2";

for (i =1; i sizeof (two)-1; i++) {
two[i] ="'0";

two[i] = O;

npz_init_set_str (&, two, 10);

guess[0] ="1";

for (I =1, i < sizeof(guess)-1; i++) {

guess[i] ='0";
guess[i] = 0O;
npz_init_set_str (&, guess, 10);

npz_init (&enp);
npz_init (&diff);

do {
npz_div (&enp, &, &x);
npz_sub (&diff, &, &tenp);
npz_abs (&diff, &diff)

npz_add (&, &t enp, &x) ;
npz_di v_ui (&, &, 2U);
} while (nmpz_cnp_ui (&diff, 10U) > 0);

printf ("the square root of two is approximately ");

) npz_out _str (stdout, 10, &x);

To compile, link, and run the program, use

cc -o two two.c -1/usr/local/include -L/usr/local/lib -Ignmp

./ two

PREPROCESSOR

#define Pl 3.1415926535
#define SQR(a) (sqrarg=(a),sqrarg*sqrarg)

#i nclude "filename" /* fromthe current directory */

http://www.stat.cmu.edu/~brian/711/cprog.html

#i ncl ude <fil ename> /* fromthe systemdirectories (nodified by -1) */

#def i ne DEBUG

/* defines the synbol DEBUG */

#i f def DEBUG
/* code here is conpiled if DEBUG is defined */
#elif defined UNIX

/* code here is conpiled if DEBUG is not defined, and UNIX is defined */

#el se
/* code here is conpiled if neither DEBUG or UNI X are defined */
#endi f
#f 0
/* code here is never conpiled */
#endi f

COMMAND-LINE ARGS, and returning a statusto the shell

#i ncl ude <stdio. h>
void main (int argc, char *argv[]) {
printf (“this programis called '%'\n", argv[0]);
if (argc == 1) {
printf ("it was called without any arguments\n");

} else {
int i
printf ("it was called with % arguments\n", argc - 1);
for (i =1; i < argc; i++)
printf ("argunment nunmber %l was <%>\n", i, argv[i]);

09/25/2002 11:40 AM

Short C Tutorial http://www.stat.cmu.edu/~brian/711/cprog.html

26 of 30

I
exit (argc);
echo $status

MALLOC:

#i ncl ude <stdio. h>
#i nclude <stdlib.h>

/* Generates a two dinensional matrix, and fills it randomy with
zeroes and ones. */

void main (void) {
int xdim ydim
int i, j;
int *p, *q

printf di mension of matrix? > ");
scanf , &din;
printf ("y dinmension of matrix? > ");
scanf ("%, &din);

p = (int *) malloc (xdim* ydim=* sizeof(int));
if (p == NULL) {

printf ("malloc failed!\n");

return;

}

for (i =0; i <xdim* ydim i++) {
if Eran?() > RAND_MAX/ 2) {
*(p+i) =1

for (i =0; i <xdim i++) {
q=p+i *ydim
for (j =0; j <ydim j++) {
printf ("% ", *(qg++));
printf ("\n");

free ((void *)p);

ASSIGNMENTS:

Everyone should attempt the following assignment:

Write a C program that will accept an arbitrarily long list of real numbers from stdin, one per line, and will
output the list sorted into ascending order. You should use "malloc” to obtain space to store the numbers. You
do not know in advance how many numbers to expect, so you will have to "malloc" on-the-fly as necessary.

In addition, you will each be assigned one of the following exercises:

(1) Write aprogram that reads STDIN and outputs each line in reverse order to STDOUT, i.e., given the input

this is a test
of the program

It should return

tset a si siht
margorp eht fo

09/25/2002 11:40 AM

Short C Tutorial

27 of 30

You are not allowed to use the C library function for reversing strings!

(2) Write a program that reads STDIN and replaces multiple consecutive blanks with single blanks and
removes tralling blanks, i.e., given the input

this is a test
of the program

It should return

this is a test
of the program

(3) Write a program that reads STDIN and returns the frequency of occurence of the lengths of words
(delimited by spaces or end-of-line characters), i.e., given the input

this is atest
of the program

It should return

1212001

(4) Write aprogram that reads STDIN and returns the frequency of occurence of all the ASCII charactersin the
input.

(5) Write a program that takes two command-line arguments: atoken, and a filename, and then prints out al
linesin the file that contain the token.

(6) Write a program that takes two command-line arguments: atoken, and a filename, and then prints out all
linesin thefile that don’t contain the token, regardiess of case.

(7) Write aprogram that reads STDIN and prints out every token (delimited by spaces or an end-of-line
character) that isavalid integer.

(8) Write aprogram that reads STDIN and prints out every token (delimited by spaces or an end-of-line
character) that begins with a capital letter and that only contains characters from the set A-Za-z.

(9) Write a program that reads an arbitrary number of filenames from the command line, and write out the
number of bytes in each of thefiles. If afile doesn’t exist, give awarning message.

Thefollowing examples are taken from CORONADO ENTERPRISESC TUTOR - Ver
2.00

/* This is an exanple of a "while" |oop */
#i ncl ude <stdio. h>

mai n()
nt count;
count = 0;
while (count < 6) {
printf ("The value of count is %l\n", count);
count = count + 1;
}
}

http://www.stat.cmu.edu/~brian/711/cprog.html

/* This is an exanple of a do-while |oop */
#i ncl ude <stdio. h>

09/25/2002 11:40 AM

Short C Tutorial

i n()
int i;
i =0;
f)rin@f("The value of i is now %l\n",i);

i =i +1;
} while (i <B5);

http://www.stat.cmu.edu/~brian/711/cprog.html

/* This is an exanple of a for loop */
#i nclude <stdio. h>

mai n()
int index;

for (index = 0; index < 6; index++)
printf ("The value of the index is %l\n",index);

/* This is an exanple of the if and the if-else statenents */
#i ncl ude <stdio. h>

mai n()
int data;
for (data = 0; data < 10; data++) {

if (data == 2)
printf("Data is now equal to %\ n",data);

if (data < 5)
printf("Data is now %, which is less than 5\n",data);
el se

printf("Data is now %l, which is greater than 4\n",data);

} /* end of for loop */

#i ncl ude <stdio. h>
mai n()

int xx;

for (xx = 5; xx < 15; xx++){
if (xx == 8)
br eak;
printf("In the break |oop, xx is now %\ n", xx);

for(xx = 5;xx < 15;xx = xx + 1){
if (xx == 8)
conti nue;
printf("In the continue loop, xx is now %\ n", xx);

#i ncl ude <stdio. h>
mai n()

{
int truck;
for (truck = 3;truck < 13;truck = truck + 1) {
switch (truck) {

case 3 : printf("The value is three\n");
br eak;

09/25/2002 11:40 AM

Short C Tutorial

29 of 30

case 4 printr(”ine varue I's rour\n);
br eak
case 5
case 6
case 7
case 8 printf("The value is between 5 and 8\n");
br eak;
case 11 : prlntf("The value is eleven\n");
br eak;
defaul t printf("lt is one of the undefined values\n");

br eak;
} /* end of switch */

} /* end of for loop */

http://www.stat.cmu.edu/~brian/711/cprog.html

#i ncl ude <stdio. h>
nmai n()

int dog,cat, pig;
goto real _start;
sonme_wher e:

printf("This is another
goto stop_it;

line of the mess.\n");

/* the followi ng section is the only section with a useable goto */

real _start:
for(dog = 1;dog < 6;dog = dog + 1) {
for(cat = 1;cat < 6;cat = cat + 1) {
for(pig—lp|g<4p|g pig + 1) {
printf (" Dot v =% Pig = %\n",dog,cat,pig);
if ((dog + cat + pi g) > 8) goto enough;
H
H

enough printf("Those are enough animals for now. \n"
this is the end of the section with a useable goto statenent */

*

printf("\nThis is the first
goto there;

line out of the spaghetti code.\n");

wher e:
printf("This is the third Iine of spaghetti
goto sone_where;

An");

there:

printf("This is the second line of the spaghetti code.\n");
goto where;

stop_it:

printf("This is the last line of this mess.\n");

J T

* */
1* This is a tenperature conversion programwitten in */
* the C progranmi ng | anguage. This program generates */
* and displays a table of farenheit and centigrade */
I* tenperatures, and lists the freezing and boiling */
I* of water. */
/* */

R T T Ty
#i ncl ude <stdio. h>
mai n()

{

int count;

int farenheit;
int centigrade;

/* a loop control variable */
/* the tenperature in farenheit degrees */
/* the tenperature in centigrade degrees */

printf("Centigrade to Farenheit tenperature table\n\n");

+ 1){

for(count = -2;count <= 12;count = count

09/25/2002 11:40 AM

Short C Tutorial

http://www.stat.cmu.edu/~brian/711/cprog.html

centigrade = 10 = count
farenheit 32 + (centlgrade * 9)/5;
printf(" C =%d F =%d ,centigrade, farenheit);
if (centigrade == 0,
printf(" Freezing point of water");
if (centi grade == 100)
printf(" Boiling point of water");
printf("\n");

} /* end of for loop */

C programming course, School of Physics, UNSW / Michael Ashley / mcha@newt.phys.unsw.edu.au

30 of 30

09/25/2002 11:40 AM

