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LOG-LINEAR MODELS FOR FREQUENCY DATA: SUFFICIENT 

STATISTICS AND LLKELIHOOD EQUATIONS1 


BY SHELBYJ .  HABERMAN 

University of Chicago 

A general model is proposed for analysis of frequency tables. This 
model includes conventional log-linear models for complete and incomplete 
factorial tables and logit models for quanta1 response analysis. By use of 
coordinate-free methods of linear algebra and differential calculus, com- 
plete minimal sufficient statistics and likelihood equations for the maximum 
likelihood estimate are derived. The maximum likelihood estimate is shown 
to be unique if it exists, and necessary and sufficient conditions are given 
for its existence. 

1. Introduction. Log-linear models for contingency tables have received con- 
siderable attention in recent years; however, with a few exceptions, discussion 
has been confined to models corresponding to linear models used in the analysis 
of variance. The log-linear models considered have not exploited ordering of 
categories or the existence of covariates, and necessary and sufficient conditions 
for existence of maximum likelihood estimates have not been given. 

In this paper, models are considered which may be described in terms of linear 
manifolds. These models include the hierarchical log-linear models for factorial 
tables discussed by Bishop (1969), Fienberg (1 970, 1972), and Goodman (1968, 
1970), among others, together with the logit models of Finney (1952) and Dyke 
and Patterson (1952). The treatment in terms of linear manifolds permits develop- 
ment of a unified theory which allows examination of nonhierarchical log-linear 
models, models for ordered classifications, and multinomial response models. 

The proposed models may be employed to analyze tables which result from 
Poisson or multinomial sampling. In Section 2, the model is defined and complete 
minimal sufficient statistics are found. 

Maximum likelihood estimation is investigated in Section 3 .  No matter what 
sampling method is employed, maximum likelihood estimates are shown to be 
unique whenever they exist, and necessary and sufficient conditions are given for 
existence of these estimates. Maximum likelihood equations are given for the 
two sampling methods and estimates for Poisson and multinomial sampling are 
shown to coincide. 

2. Basic properties of log-linear models. A log-linear model is used to describe 
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6 18 SHELBY J .  HABERMAN 

a frequency table n = {ni: i E I} = {n,} indexed by a finite nonempty set I con-
taining q elements. This table is an element of the q-dimensional vector space R' 
of real q-tuples x = {xi: i E I} with inner produce defined for x and y in R' by 

In a log-linear model, n is assumed to have a mean m = {mi} such that mi > 0 
for i c I and p = {log m,} E ~4where -4'is a p-dimensional linear manifold 
contained in R' and 0 < p 5 q. Given this definition, the following are examples 
of log-linear models. 

EXAMPLE2.1. Consider an r x c contingency table with cell probabilities 
pi, > 0, 1 2 i 2 r ,  1 2 j 2 c, derived from a single multinomial sample of size 
N. If P is the set of integers from 1 to r and E is the set of integers from 1 to c, 
then I = P x E ,  n = {n,, : (i, j )  c F x E}, and the mean m = {Np,,}. If the vari- 
ables represented by the rows and columns of the table are independent, then 

where the summation notation 

and 

(2.4) p + 3. = C' $ 32 = 1  p . .  

is employed. As Bishop and Fienberg (1969) show, (2.2) is equivalent to the 
condition that p = {log mi,} be expressible in the form 

where 

The set A?' of p which satisfy (2.5) and (2.6) for some a, {Pi}, and {r,} is a linear 
manifold with dimension r + c - 1 .  

EXAMPLE In a quanta1 response experiment, N, > 0 subjects receive a log 2.2. 
dosage t j  of a drug, where 1 =( j 2 r. Two responses 1 and 2 are possible. Of 
the Nj subjects, njl have response 1 and n,, have response 2. If the probability 
that a subject given log dosage t has response 1 is 1 / [ 1  + exp - ( a  + j t ) ] ,  then 
a logit model is used for the data (see Finney (1952)).  In this example, I = P x 2 
and n = Inj, : ( j , k )  E F x 2). The assumption that the probability of response 1 
given log dosage t j  is 1 / [ 1  + exp - ( a  + j t ) ]  is equivalent to the condition 

If r 2 2 and t j  + t,, if j # j', then the set ,&of p such that (2.7) holds is a linear 
manifold of dimension r + 2 .  

EXAMPLE A number of models have been used in the analysis of complete 2.3. 
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r x c x d tables with I = P x Z x 2 and n = {nij,}. In one model, the hypothe- 
sis of no three-factor interaction, p is assumed to satisfy the equation 

(2.8) pijk = u 	+ uiA+ ujB+ + uiAjB + u;; + uj": where 

(2.9) 	 C;=,uiA = C;=,ujB = Ci=lukC = C;=, = C$=,uzPjB 
= CT=,u;; = Ci=,u;; = C;=,u;; = Ci=,a;; = 0 . 

The set J& of p which satisfy (2.8) and (2.9) for some u, {uiA}, {ujB}, {ukC}, {u,?jB}, 
{uf;}, and {uz}  is a linear manifold of dimension rc + rd + cd - r - c - d + 1. 
This log-linear model has been examined by numerous authors. Goodman (1 970) 
provides a thorough discussion of this model, as well as other related models. 

Other examples may be constructed. The important point is that A is an 
arbitrary linear manifold; therefore, any linear model appropriate for linear re- 
gression or analysis of variance corresponds to a log-linear model. 

No specification has been made yet concerning the underlying distribution of 
n. In this paper, the principal probability models coilsidered are the Poisson and 
multinomial models. A generalization of these models which is of some interest 
is the conditional Poisson model, which is discussed by Haberman (1 970 and 1972). 

2.1. The Poisson model. In the Poisson model, the elements of n are inde- 
pendent Poisson random variables with E(n,) = mi for every i E I and mi > 0 for 
each i e I. If m(p) = {exp pi} then the log likelihood may be written as 

In this equation, n is regarded as fixed and l(n, p )  is a function defined for p E A 
Let P, be the orthogonal projection from Rr to ,& Since p e A and P, is 

a symmetric operator, 

(2.11) 	 l(n, p )  = (", P,p) - Ci€I e" - Ci,, logn,! 
= (P,n, p )  - CieIepi - CieIlog n,! 

Therefore, the family of Poisson models such that p EA is an exponential 
family. Since A and RP are isomorphic (see Halmos (1958)), P,n is a complete 
minimal sufficient statistic for p. In addition, any nonsingular linear transfor- 
mation of P,n is a complete minim(a1 sufficient statistic. For example, if {p( j )  : 
j E 3 spans 4then {(p'j),  n) : j E f} is a complete minimal sufficient statistic. 

EXAMPLE Consider the hypothesis of no three-factor interaction of Ex- 2.4. 
ample 2.3. It is readily shown that is spanned by the vectors { ~ ( ~ t j ) } ,  { ~ ( ~ ' k ' } ,  
and {z(jpkl}, where 

(2.12) 	 xit.>j')= 1 if i = i' , j = j' , 
= 0 otherwise ; 

= 0 otherwise , 
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and 

(2.14) z;?L ,k ' )  1 if j = jr , k = k t  , 
= 0 otherwise . 

The inner product 

(2.15) (n , ~ ( ~ ~ j l )EL=,nijk= 

-- nij+. 
Similarly, 

(2.16) (n ,  y( i ,k) )  = nit, 

and 

(2.17) (n , ~ ( j , ~ ) )= n+jk 

Thus the marginal totals Inij+}, In,+,}, and { n + j k }form a complete minimal suffi- 
cient statistic under the Poisson model, as observed by Birch (1963) and Bishop 
( 1969) and implicit in Darroch ( 1962). 

2.2. The multinomial model. In the multinomial model, I = U,,, I,, where 
the I,, k E f ,  are disjoint. For each k c 5, {ni: i E I,} has a multinomial distribu- 
tion with mean {mi : i c I,}. The s collections of frequencies are independently 
distributed, and for each k E f ,  it is assumed that 

where z I k is the characteristic function of I,. 
Complete sufficient statistics may be found by considering a direct sum decom- 

position of into M and J&' -A;where M is the manifold generated by 
{v(,): k c f }  and JY' is the orthogonal complement of A/' relative to A? 

(see Kruskal (1968)). Suppose that the sample size for { n :  i  E I,} is N,. If ,u c 
and {mi@) : i e I,} is consistent with N,,  then 

For x and y in R', define x . y by {x i  yi}. Then 

For some {c, : k c $1, where c, is a constant for k E f,  expression (2.18) and the 
fact that each i is an element of exactly one I, imply that 

PJY,u = X i = , C ,  v',' 

= {Ei=,ck xlk(i)  : i E I }  

= {c , : i E I, and k E f }  . 
Thus 

(2.22) m(P,,u) = { e c k  : i E I, and k E f ]  



LOG-LINEAR MODELS FOR COUNTED DATA 

and 

(2-23) (m(p), v(,)) = (m(P,p) . m(P,-,p), v ' ~ ) )  

= CieI, mi(P&~)mi(P,-,~) 

= CieI~eckmi(PA-xP) 
= eCk(m(P,-,p), v',') . 

If i E I,, then mi(P,p) = eCkand (2.19) and (2.23) imply that 

Thus P,p is a function of PA-,p. Since p is P,p + PA-,p, p is a function 
of PA-,p. A complete minimal sufficient statistic for PA-,p is consequently 
a complete minimal sufficient statistic for p. 

The log likelihood function is 

(2.25) 	 = C;=I[ ~ i .  ni log mi(P,-,") + log N,! - log n,! I(m(P,-,p), v(,)) 

= (P,-,n, P,-,P) - Nk log (m(P,-,p), v',') 

+ log N,! - Cie,log n,! 

If p = dim ,& > s, then A - JY is isomorphic to Rp-\ The family of distri-
butions such that p E L a n d  for each k e S, (m(p), d k l )= N,, is then an expo-
nential family with PA-,n as a complete minimal sufficient statistic for PA-,p. 
If p = s, then the family contains only one distribution. As in the Poisson model, 
alternate complete sufficient statistics may be obtained by use of nonsingular linear 
transformations. In particular, P,n is a complete minimal sufficient statistic. 

EXAMPLE In Example 2.1, a single multinomial sample is present, so that2.5. 
s = 1 and I, = I = P x E .  The vector v(l' is the unit vector e = {I}, which is 
an element of the manifold ~ K d e f i n e dby (2.5) and (2.6). Thus the model pro-
posed in Example 2.1 is a multinomial model. Since P,n is a complete minimal 
sufficient statistic, an argument similar to that in Example 2.4 shows that the 
marginal totals Ini+}and form a complete minimal sufficient statistic. 

EXAMPLE In Example 2.2, if the Nj  are fixed, then multinomial sampling2.6. 
is employed with s = r and I, = {(k, I ) ,  (k, 2)). The vector v(,) satisfies 

(2.26) 	 yi'c,] - 3 2  -- O = 0 + O f j  ,u ( . ~ )  

so v(,) E JZ for each k E s. As shown in Haberman (1972), 

(2.27) 	 A- JY = span{x, y } ,  

where xjl = 1 and xj, = -1 for j E P and yjl = t j  and y,, = - t j  for j E P. Thus 
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{(x, n), (y, n)} is a complete minimal sufficient statistic for p. Since nj2 = Nj - njl, 

and 

Consequently (n,,, C$=,nil tj) is a complete minimal sufficient statistic. 
The complete minimal sufficient statistics found in this section can be applied 

in some cases to construction of minimum variance unbiased estimates and exact 
confidence intervals and hypothesis tests (see Lehmann (1959) and Haberman 
(1972)); however, the principal application of these statistics is in maximum 
likelihood estimation, the subject of the next section. 

3. Maximum likelihood estimation. It is convenient to begin consideration of 
maximum likelihood estimation with an examination of the Poisson model. Re-
sults for the multinomial model follow directly. In this section, existence and 
uniqueness of estimates is investigated. This topic has been considered by Birch 
(1963) in connection with hierarchical models for complete factorial tables such 
as the model in Example 2.3. More recently, Fienberg (1970, 1972) has consid- 
ered the problem in the case of incomplete multiway tables. Results in this sec- 
tion are more general and sharper than those previously derived. 

3.1. The Poisson model. In the maximum likelihood estimation problem for 
the Poisson model, an element ,& of J k i s  sought such that 

(3.1) l(n, p )  = sup,,, [(n, p )  . 
If p exists, then it is a maximum likelihood estimate (MLE) of p and m = {exppi} 
is an MLE of m. 

In order to examine the properties of p, it is necessary to consider the first and 
second differentials of l(n, p ) .  The first differential at p is a linear function 
dl,(n, v) defined for v E -./f such that 

where o(v)/llvII 3 0 as llvll 3 0. By elementary calculus, 

(3.3) n(x + y) - ex+g= (nx - ex) + (ny - ezy) + o(y) , 

where (l/y)o(y) +0 as y +0.  Therefore, 

The second differential d21,(n, &)(v) of l(n, p )  at  p is a linear function from A 
to the space .A&* of linear functionals on L/&7 This differential satisfies 
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where 

(3 .6)  

Since 

(3 .7)  	 dlp+,(n,V )  - dlp(n,V )  = C i e lui(epi - e"ifci1 
= - ,C i s ru i t i eP i+ (v ,~ ( e ) )  

where (l/llell)llo(e)ll-0 as llell + 0 ,  it follows that 

If D ( p ) { x i }= { e ~ i x ~ } ,then one may write 

If v # 0 ,  v e A4 and p E A,then 

Thus l (n,  p )  is a strictly concave function of p .  
Given the results of the preceding paragraph, the following theorem can be 

proven: 

THEOREM If an MLE ,G exists, then it is unique and satisfies the equation 3.1. 

(3.1 1 )  P,m = P_,n. 

Conversely, if for some ,G e -42 and m = {eki}, (3.1 1 )  is satisfied, then ,G is the MLE 

of P .  

PROOF. Since l (n, p )  is strictly concave, at most one critical point exists, and 
this point must be a maximum. Therefore, only one MLE can exist. If the MLE 
,G exists, then for every v e -42 

(3.12) 	 dl;@, v )  = ( v ,n - m )  = 0 ,  

n - m E = { X  e Rr  : ( x ,p)  = 0 V p  E A},and equation (3.11) must hold. 
On the other hand, if m satisfies equation (3.1 I ) ,  then 

(3 .13)  d l ; (n , v )  = ( v , n - m )  = ( P _ , v , n - m )  = ( v ,P_,n- P,m) = O  

for every v E A Thus a critical poi,nt exists at ,l2. 0 
The likelihood equation (3.11) requires that m fit the sufficient statistic P,n. 

If { p ' j ): j E 3) spans -42 then equation (3.1 1 )  is equivalent to the condition 

(3.14) 	 (m,p l j ) )  = ( n , p l j ) )  

for every j E s. This equation is particularly suggestive if 

(3.15) 	 = 1 if i € I j ,  

= O  if i c I - I j ,  
in which case 

(3.16) 	 C i e r j f i i  = C i e I j n i  . 
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Thus certain marginal totals must be equal for m and n. This relationship is 
frequently used in the discussion of hierarchical models by Birch (1963), Fienberg 
(1970, 1972), and Goodman (1 968, 1970), among others, although general proofs 
are not provided in these references. 

So far, no conditions have been given for the existence of the maximum like- 
lihood estimate. In order to rectify this situation, the following theorem is useful: 

THEOREM3.2. A necessary and suficient condition that the MLE ,t2 of p exists 
is that there exist b E JJLsuch that n, + 6, > 0 for every i E I. 

PROOF.TO prove necessity, assume that ,t? satisfies equation (3.11). Then 
m - n E /HL. In addition, m - n + n = m, where hi> 0 for each i E I. Thus 
b = m - n has the desired properties. 

To prove sufficiency, assume that there exists b E -ML such that ni + 6i > 0 
for each i E I. Suppose that 

(3.17) I(p)(n, p )  = Cier(nipi - e'i) = (n, p )  - CiBlePi 


Then i(p)(n, p )  and l(n, p )  differ only by a constant. Since 8E (n, p )  = 

(n + 8 ,  p )  and 


(3.18) ilp)(n, p )  = Cie  [(n, + 6,)pi - evil 


Each summand is bounded above. Therefore, if any summand is small enough, 

then f'pl(n, p )  < f'pl(n, 0). For any i E I n, + 6, > 0. Thus as jpil + co,(n, + 

fii)pi - epi + - a .  Suppose A = { pE A?': i'p)(n, p )  >= j1p)(n,0)). Then A is 

bounded. Since i y n ,  p )  is continuous in p ,  A is closed. Therefore, ilp)(n, p )  

has a finite maximum for some p E A .  0 

The following corollary follows immediately: 

COROLLARY If n, > 0 for every i E I, then the MLE ,t? exists.3.1. 

PROOF.Use b = 0 and apply Theorem 3.2. 0 
A related condition to that of Theorem 3.2 is often useful: 

THEOREM A necessary and suficient condition that the MLE ,t? exist is that 3.3. 
there not exist p E J l s u c h  that p # 0, pi 5 0 for every i E I, and (n, p )  = 0. 

PROOF. Suppose that the MLE of p exists. Then there exists b E such 
that n, + 6, > 0 for each i E I. If p E,4(n, p )  = 0, pi 5 0 for every i E I, and 
p f 0, then (n + b, p )  < 0. Since (n, p )  and (n + 8 ,  p )  are equal, a contradic- 
tion results. Thus no such p exists. 

On the other hand, suppose that the MLE does not exist. Then there does not 
exist b E such that ni + 6, > 0 for every i E I. Let I, be the set of indices 
in I such that n, = 0.  Suppose S = {xE Rr : xi > 0 V i  E I,}. Then S and J f L  
are disjoint convex sets. By the separating hyperplane theorem (see Blackwell 
and Girshick (1954)), there exists p E R', p f 0, such that if v E &l, (p ,  v) 2 0, 
and if v E S ,  (p ,  v) 5 0. Suppose j E I - I,. If v E S ,  then v + cb'j)E S for any 
real-valued c, where b(j)  = {aij: i E I} and is the Kronecker delta. Thus 
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( p ,  6 ( j 1 )  = p j  = 0 .  Now suppose j c I,. Then if v c S ,  v + c d f j )c S for all posi- 
tive c. Thus ( p ,  b f j ) )= p j  5 0 .  It is now sufficient to show that p E JA This 
result follows since if P,,L is the orthogonal projection from Rr to &l, then 

LJnless P ,L p is 0 ,  there is a contradiction. 0 
The following corollaries may be proven: 

COROLLARY3.2. Suppose M, and M, are linear manifolds such that MI c M,. 
Suppose f l f i )  is the MLE for p E ,<, i c 2. If P f 2 )exists, then exists. If @ ( l )  

does not exist, then f i f 2 )  does not exist. 

PROOF. If @ ( 2 )  exists, then there exists 6 c ,@ such that ni + 6; > 0 for each 
i E I. Since J& c M I L ,  6 c J&. Therefore, @'llexists. The converse follows 
immediately. 0 

COROLLARY3.3. Suppose I, = { i c I :  ni = 0 ) .  Let p : Rr +Rrl satisfy p{pi : 
i E I }  = {p i : i c I,}. Let p ( 1 H L )  = { p ( p ): p E J H ~ } .If p ( / z L )  = R'1, then the 
MLE of p exists. 

PROOF. Suppose that ( n ,  p )  = 0 ,  p c-4p # 0 ,  and pi 5 0 for every i E I. 
Then pi = 0 for every i E I - I,. If ( ( o ,  *))  denotes the standard inner product 
for R1l, then ( ( p ( p ) ,  p (v ) ) )  = ( p , v )  = 0 for v c Thus p ( p )  is orthogonal 
to all elements of p ( . ~ ? l )  = Rrl. Therefore, p ( p )  = 0 .  Thus p = 0 ,  a contra- 
diction. Hence the MLE exists. O 

COROLLARY Suppose I, = { iE I :  ni > 0 ) .  Let n : Rr --+ R'o satisfy n{pi :3.4. 
i c I }  = { p i: i E I,}. = { ~ ( p )  Suppose n(/&') has dimension Let ~ ( J H )  : p E &}. 
k and I - I, has h elements. If p - k = h ,  then the MLE of p does not exist. If 
p - k = 0 ,  then the MLE exists. 

PROOF.The kernel of n has dimension p - k .  This kernel is a submanifold 
of { p c Rr : pi = 0 V i  c I,}. This latter manifold has dimension h. I f p  - k = h ,  
then the kernel is equal to { p  c R': pi = 0 V i  c I,}. Hence a p E exists such 
that pi % 0 for each i E I ,  (n,p )  = 0 ,  and p # 0 .  By Theorem 3.3, the MLE 
of p does not exist. If p - k = 0 ,  then the kernel of T is 0 .  Since no p cA 
which is not equal to 0 exists such that ( n ,  p )  = 0 and pi 2 0 for i f  I ,  the MLE 
exists. 5 

The following examples illustrate use of these theorems and corollaries in terms 
of the r x c x d table of Example 2.3. 

EXAMPLE Theorem 3.1 and the results of Example 2.4 imply that if A3.1. 
is the linear manifold corresponding to the hypothesis of no three-factor interac- 
tion and if m exists, then 

(3.20) (G,x f i , j )) = f i i j+ 
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and 

(3.22) m + j k  = n + j k  

(see Birch (1963)). Since - ~ ( ~ , j ) ,-y c i r k l ,and - z ( j s k )  are all in J 4 are nonzero, 
and have no positive coordinates, Theorem 3.3 implies that m can only exist if 
n i j + -> 0 for i E P and j c 2, ni+ ,  > 0 for i E P and j c d,  and n + j k> 0 for j c 2 and 
k c d. These conditions are not, however, sufficient to ensure that m exists, as 
will be shown in Example 3.2. 

EXAMPLE Suppose that in the preceding example, r = c = d = 2. Then3.2. 
.,,&?l is the span of p*, where 

(3.22) p *z 3 k  = - 1  if i + j + k  i s even ,  

= 1 if i + j + k, is odd . 
Using tabular notation, one may write 

In this representation, the left block represents k = 1 and the right block repre- 
sents k = 2. The first row in each block stands for i = 1,  and the first column 
stands for j = 1. Suppose J = {(i, j, k) : i + j + k is odd). Let K = {(i, j, k) : 
i + j + k is even}. Then a MLE of ,u exists if and only if either I ,  c J or I ,  c K, 
where I ,  is defined as in Corollary 3.3. To verify this result, observe that if 
I ,  c J, then n i j k  + &p;,,  > 0 for each (i, j, k) c Z x 2 x 2. Thus the maximum 
likelihood estimate exists. A similar result holds if I, c K. On the other hand, 
if (i, j, k) c J, (i', j', k') c K, and n i j k  = n i I j , , ,  = 0, then for any real c ,  

(3.25) n i j k  + c p G k  = c and 

Thus there exists no b c such that n i j k  + a,,, > 0 for every (i, j, k) E 2 x 
-
2 x 2. Hence the MLE does not exist. 

To illustrate this result, it is useful to consider several different values of n, 
employing the tabular notation of (3.24). If 

then I ,  c J. Thus the MLE exists. In fact, whenever there is only one zero cell, 
the MLE exists. 

When there are two cells which are zero, then the MLE may or may not 
exist. If 

the estimate does not exist since (1, 1, 1) c J and (1, 2, 1) c K. The result may 
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also be verified by observing that the observed marginal total n,+, = 0 and 
p+E J 4  where 

Another case in which the MLE does not exist occurs when 

Although the marginal totals { n i j + } ,  {n,,,} and {n+j , }are all positive, ( 1 ,  1 ,  1 )  E J 
and ( 2 ,  2 ,  2 )  c K.  Thus n,,, + cp,,, and n,,, + cp,,, are of opposite signs. How-
ever, if 

then the MLE does exist since both ( 1 ,  1 ,  1 )  and ( 2 ,  2 ,  1 )  are in J .  The result also 
follows directly from Theorem 3.2 since the elements of n + p *  are all positive. 

In general, rules for existence of MLE's are more difficult to find than in the 
preceding examples. Nevertheless, Theorems 3.2 and 3.3 and Corollaries 3.1, 
3.2, 3.3, and 3.4 are readily applied to problems in which a specific n and 
are considered. Further applications are given in Haberman (1970 and 1972). 
The following example illustrates a possible procedure for a 3 x 3 x 3 table. 

EXAMPLE In Example 3.1, suppose that r = c = d = 3 and assume that 3.3. 
in (2 .8) ,  u,AjB = -u$, 1 5 j 5 3. The likelihood equations are then 

Suppose 

(3.35) n = 

To show that ,G exists, first note that pI1' and p(2)  whereare in 1HL, 

(3.36) p"' = 

and 

0 0 0 0 0 0 0 
(3.37) ,Cd2'= 0 - 1  1 2 2 0 1 1J 

0 1 - 1  0 - 2  2 1  0 1 - 1  
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If 6 > 0 is sufficiently small, then nil+, + ~?(/1:3;~~, 3,+ p:;;2i3) 2 0 for 1 5 i j  
1 I- j I- 3, and the inequality is strict except for the indices (1, 3, l ) ,  (1, 3, 2), 
(3, 2, l ) ,  and (3, 2, 3). Thus n + 6(pn)+ p(2 ) )has 6 fewer elements equal to 0 
than n has. To eliminate the remaining four zeroes, define p(3'E /ELby 

If y > 0 is sufficiently small, then all elements of 

are positive. Since 

the MLE exists. 

3.2. The multinomial model. The multinomial model is closely related to the 
Poisson model. In the maximum likelihood estimation problem for the multi- 
nomial model, an element P(m)of -42is sought such that 

w 

where A = { p c . ~ ? :  xiel,epi = Cierk and I,, k €3,isdefinedasinni V k ~ f )  

Section 2.2. It is assumed that ,&has dimension greater than s. The fundamen- 
tal result of this section is that if ,& is the MLE of p E A'for  the Poisson model, 
then ji = P(m).This equation means that if one side exists, then the other side 
exists and the two sides are equal. This result is extremely useful since it implies 
that conditions for existence of MLE's under Poisson sampling also apply to 
multinomial sampling, and it is important in both numerical and algebraic work 
since it permits use of the relatively simple Poisson log likelihood in estimation 
problems involving multinomial sampling. This point is discussed by Haberman 
(1970 and 1972). Results of this section are related to those of Birch (1963), who 
provides a detailed analysis of the complete three-way table. 

In order to examine maximum likelihood estimation for the multinomial case, 
the function 

(3.40) hm)(n, p*)  = (n, p * )  - (n, vIk') log (m(p*), vIk') 

defined for p*E - JYmay be considered. By (2.24), to every p*E .,& -J" 
.--

corresponds a unique p c JX such that Pd,-w,p = p* .  One may write p as 
w(p*). If ilm)(n, p * )  has a maximum for p *  = @*, then l(")(n, p )  has a maximum 
for p = w(P*). If Pm)(n, p )  has a maximum for p = @, then jl")(n, p*)  has a 
maximum for p* = P,-,. @. Thus maximization of ltm)(n, p )  for p c A? is 
equivalent to maximization of ilm)(n, p * )  for p *  c A -M: 

To examine the properties of the MLE PIm),it is necessary to examine the first 
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and second differentials of hm)(n ,  p*) .  Since 

- CLl 
(n , d k ) )  

m i ( p * ) ~ i ( ~ ) u iC iEZk  + o(v ) ,
( m ( p * ) ,vIk)) 

it follows that if v E - .M, then 

(3.42) dl;T1(n, v )  = ( v ,  n )  - Ci=l (n , v ( ~ ) )Cie lk m i ( ~ * ) v i ' ~ ' u i
( m ( p * ) ,  

If m ( p c )= {ewi(p*)},then 

(3.43) di;yl(n,v )  = ( v ,  n  - m ( p * ) )  

In order to find the second differential d21;T)(n, e ) ( v ) ,  it is only necessary to note 
that 

(3.44) d!;T;,(n, v )  = dl;y)(n,v )  - EL=, (n , v ( ~ ) ){ E i E Z ,  viFimi(p*)
( m ( p * ) ,  v ( , ) )  

Thus 

(3.45) d2fp*(n,e ) ( v )= - ( v ,D ( p * ) e )  + ( v ,  D(p*)v l ' ) ) (e ,  D( ,u*)v (~) )  
( v ( ~ ) ,D( ,u*)v (~) )  

where D(p*){x i }= {mi(p*)xi} .  If P,(p*) is the orthogonal projection on N 
relative to the inner product ((-, *)) defined by ( ( x ,  y))  = (x,D(p*)y ) for x € R z  
and y E Rr,  then 

Here Q,  ( p * )  = I - P,,(p*). Since -(Q ,  (,uC)v,~ ( p * ) ~ , ( p * ) v )=( 0 for v c 
-&' -4bm)(n ,  p*)is concave. If - ( ~ , ( p * ) v ,  D(p*)Q,(p*)v) = 0, then 
~ , ( p * ) v  = 0.  Therefore, v c JK Since v EA - .M,v = 0. Thus I1")(n, p*)  
is strictly concave for p* E -M. 

The fundamental result for multinomial models now follows: 

THEOREM3.4. If ,G(m)is the MLE'for a  multinomial model for which p  c and 
if ,G is the corresponding estimate for a Poisson model for which p  E~4then 
, & I m )  = ,G, in the sense that when one side of the equation exists, then the other side 
exists and the two sides are equal. 

PROOF. Suppose ,G exists. Then for v 6 A2 

(3.47) ( v ,  n  - m )  = 0 .  

Since ( n , ~ ( ~ = ) ( m ,  for k c f, ,G c A If ,&* = Px-,,G, then1 for any 
v E ./ - L/Y; 

(3.48) di$)(n,  v )  = (v ,n - m )  = 0 . 
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Therefore, i(")(n, p*)  has a critical point a t  ,G*. Since ffm)(n, p * )  is strictly con- 
cave, this critical point, a maximum, is the only point p* for which di;~)(n, v) 
is 0 for all v E .A? -A? Thus ,ti'") = w(,G*) = ,G. 

On the other hand, suppose that ,G(") exists. Then for v e A - .M, 

where &("I = {e/ifm)}.If k c 3, then ( v ( ~ ) ,  mfm))= ( v ( ~ ) ,n). Thus for any v E -4 
A

(3.50) 	 (v, n - m(")) = 0 .  

By Theorem 3.1, ,G = P("). 0 
Since Theorem 3.4 holds, the results concerning necessary and sufficient con- 

ditions for existence of MLE's under Poisson sampling also apply to multinomial 
sampling. 

EXAMPLE In the independence model for the r x c contingency table of 3.4. 
Example 2.1, it is well known that whenever ni+ > 0 for i e P and n+j  > 0 for 
j e c, then 

This result may be verified by use of Theorems 3.1 and 3.4, for whenever ni+ > 0 
for i c P and n+ > 0 for j E c, {log (n,+ n+ j/N)} c and 

= PAYn 

(see Kruskal (1968)). On the other hand, if for some i' c P ,  ni,+ = 0, then 

(3.53) (n, x) = 0 

for 

(3.54) 	 x . .2 2  = -1 if i = i ' ,  

= 0 otherwise . 
Since x E J4x # 0, and xij 5 0 for (i, j) c P x E, Theorems 3.3 and 3.4, together 
with (3.35), imply that m(") does not exist. A similar argument shows that mIm) 
does not exist if n+j, = 0 for some j' E E. Thus mfm) exists if and only if nit > 0 
for i E P and n+ > 0 for i c E. If mfm) exists, then it is given by (3.51). 

EXAMPLE Consider the quanta1 response model of Examples 2.2 and 2.6. 3.5. 
The linear manifold 14' is the span of x, y,  and v ' ~ ) ,  k E P ,  where these vectors are 
defined as in Example 2.6. Theorems 3.1 and 3.4 imply that if m(") exists, then 
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and 

-- "j+ 

= Nj 

for j e P. Since (3.57) implies that nj, = Nj - njl  and tfz$yl = Nj - tfz$T1, (3.55) 
and (3.56) may be replaced by the equations 

and 

(3.59) C;=ltj&;;n) = C;=ltjnjl , 
where tfzj;nl may be written 

(3.60) Nj/(l + e-("m)+i(mlt 

and 8'") and 1'"'are the MLE's of a and P ,  respectively. These likelihood 
equations are consistent with those given in standard works on quanta1 response 
such as Finney (1952). It should be noted that (3.55), (3.56), and (3.57) are still 
the likelihood equations if the njk, 1 5 j 5 r, 1 5 k s 2, are independent Poisson 
random variables or if n has been obtained from a single multinomial sample of 
size N > 0. 

To find necessary and sufficient conditions for the existence of m("1, order the 
t j  so that t j  < tj, if j < j'. Given this condition, m(") exists if and only if for no 
j' e P is it the case that either (a) njl = 0 for j < j' and nj, = 0 for j >j' or (b) 
n j 1 = O f o r j > j ' a n d n j , = O f o r j < j ' .  

If m("1 does not exist, Theorems 3.3 and 3.4 imply that for some p e 
p # 0, pjk 5 0 for j e  P and k e 2, and (n, p )  = 0. If p e 4then for some a, 
b, and {cj : j e P}, 

Since Nj > 0 for each j e  P, either njl  > 0 or nj2  > 0. If njl  > 0, pjl = 0, cj = 
-(a + bt,), and pj2 = -2(a + btj) s 0. If nj2 > 0, pj, = 0, cj = a + bt,, and 
pjl = 2(a + bt,) 4 0. 

Suppose A = { j e  P :  njl  > 0 and, nj, = 0}, B = { j e  P: nj, > 0 and njl = 01, 
and C = { je P :  njl  > 0 and nj,  > 0). Then A, B and C are disjoint sets with 
union A u  B u  C = P .  Thus a + b t j e O  f o r j e A , a + b t j s O f o r j e B , a n d  
a + btj = 0 for j e C. If C has 2 or more elements, then since t j  # tj. if j # j', 
a = b = 0 and p = 0, a contradiction. Thus C has no more than 1 element. 
There are now 3 possibilities: b > 0, b = 0, or b < 0. If b > 0, then for some 
j ' e P , a + b t j > O f o r j > j ' a n d a + b t j < O f o r j < j ' .  T h u s n j l = O f o r j < j '  
and n,, = 0 for j > j'. Similarly, if b < 0, then for some j' e P, njl = 0 for j > j' 
and nj, = 0 for j <j'. If b = 0, then in order that p # 0, a > 0 or a < 0. If 
a > 0, nj, = 0 for all j e P, while if a < 0, njl  = 0 for all j e P. Thus (a) or (b) 
holds for some j' e P. 
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On the other hand, suppose that for some j' E f , (a) or (b) holds. Without loss 
of generality, suppose that (a) holds. Let a = - t j , ,  b  = 1, and c j  = -la + bt j l .  
Suppose p satisfies (3.61). Then p E ./4p j ,  _I 0 for j~ F and k E 2, p + 0, and 
(n, p)  = 0. Therefore, m("'does not exist. These conditions have been used in 
the case r = 3 by Silverstone (1957). 

4. Conclusion. In this paper, a general log-linear model for use with frequency 
data has been proposed. This model has been applied to logit analysis and the 
analysis of factorial tables. Discussion in this paper has emphasized construction 
of complete minimal sufficient statistics and likelihood equations. Future papers 
will consider computation of maximum likelihood estimates and determination 
of asymptotic properties for these estimates. 
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